首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Neonatal foals have unique pharmacokinetics, which may lead to accumulation of certain drugs when adult horse dosage regimens are used. Given its lipophilic nature and requirement for hepatic metabolism, metronidazole may be one of these drugs. The purpose of this study was to determine the pharmacokinetic profiles of metronidazole in twelve healthy foals at 1–2.5 days of age when administered as a single intravenous (IV) and intragastric (IG) dose of 15 mg/kg. Foals in the intravenous group were studied a second time at 10–12 days of age to evaluate the influence of age on pharmacokinetics within the neonatal period. Blood samples were collected at serial time points after metronidazole administration. Metronidazole concentration in plasma was measured using LC‐MS. Pharmacokinetic parameters were determined using noncompartmental analysis and compared between age groups. At 1–2.5 days of age, the mean peak plasma concentration after IV infusion was 18.79 ± 1.46 μg/mL, elimination half‐life was 11.8 ± 1.77 h, clearance was 0.84 ± 0.13 mL/min/kg and the volume of distribution (steady‐state) was 0.87 ± 0.07 L/kg. At 10–12 days of age, the mean peak plasma concentration after IV infusion was 18.17 ± 1.42 μg/mL, elimination half‐life was 9.07 ± 2.84 h, clearance was 1.14 ± 0.21 mL/min/kg and the volume of distribution (steady‐state) was 0.88 ± 0.06 L/kg. Oral approximated bioavailability was 100%. Cmax and Tmax after oral dosing were 14.85 ± 0.54 μg/mL and 1.75 (1–4) h, respectively. The elimination half‐life was longer and clearance was reduced in neonatal foals at 1–2.5 days as compared to 10–12 days of age (P = 0.006, P = 0.001, respectively). This study warrants consideration for altered dosing recommendations in foals, especially a longer interval (12 h).  相似文献   

2.
A simple LC/MSMS method has been developed and fully validated to determine concentrations and characterize the concentration vs. time course of methocarbamol (MCBL) and guaifenesin (GGE) in plasma after a single intravenous dose and multiple oral dose administrations of MCBL to conditioned Thoroughbred horses. The plasma concentration–time profiles for MCBL after a single intravenous dose of 15 mg/kg of MCBL were best described by a three‐compartment model. Mean extrapolated peak (C0) plasma concentrations were 23.2 (±5.93) μg/mL. Terminal half‐life, volume of distribution at steady‐state, mean residence time, and systemic clearance were characterized by a median (range) of 2.96 (2.46–4.71) h, 1.05 (0.943–1.21) L/kg, 1.98 (1.45–2.51) h, and 8.99 (6.68–10.8) mL/min/kg, respectively. Oral dose of MCBL was characterized by a median (range) terminal half‐life, mean transit time, mean absorption time, and apparent oral clearance of 2.89 (2.21–4.88) h, 2.67 (1.80–2.87) h, 0.410 (0.350–0.770) h, and 16.5 (13.0–20) mL/min/kg. Bioavailability of orally administered MCBL was characterized by a median (range) of 54.4 (43.2–72.8)%. Guaifenesin plasma concentrations were below the limit of detection in all samples collected after the single intravenous dose of MCBL whereas they were detected for up to 24 h after the last dose of the multiple‐dose oral regimen. This difference may be attributed to first‐pass metabolism of MCBL to GGE after oral administration and may provide a means of differentiating the two routes of administration.  相似文献   

3.
The study objective was to compare butorphanol pharmacokinetics and physiologic effects following intravenous and subcutaneous administration in horses. Ten adult horses received 0.1 mg/kg butorphanol by either intravenous or subcutaneous injections, in a randomized crossover design. Plasma concentrations of butorphanol were measured at predetermined time points using highly sensitive liquid chromatography–tandem mass spectrometry assay (LC‐MS/MS). Demeanor and physiologic variables were recorded. Data were analyzed with multivariate mixed‐effect model on ranks (≤ 0.05). For subcutaneous injection, absorption half‐life and peak plasma concentration of butorphanol were 0.10 ± 0.07 h and 88 ± 37.4 ng/mL (mean ± SD), respectively. Bioavailability was 87%. After intravenous injection, mean ± SD butorphanol steady‐state volume of distribution and clearance was 1.2 ± 0.96 L/kg and 0.65 ± 0.20 L/kg/h, respectively. Terminal half‐lives for butorphanol were 2.31 ± 1.74 h and 5.29 ± 1.72 h after intravenous and subcutaneous administrations. Subcutaneous butorphanol reached and maintained target plasma concentrations >10 ng/mL for 2 ± 0.87 h (Mean ± SD), with less marked physiologic and behavioral effects compared to intravenous injection. Subcutaneous butorphanol administration is an acceptable alternative to the intravenous route in adult horses.  相似文献   

4.
The pharmacokinetics of ampicillin in dogs was determined after intravenous (i.v.) bolus and constant rate infusion. Ampicillin was administered to six beagle dogs as an i.v. bolus at 20 mg/kg and as a constant rate i.v. infusion (CRI) at 20 mg/kg during 8 h (0.042 mL/min/kg) in Ringer's lactate (Hartmann's) solution. The concentrations were determined by an LC/MS/MS method. After i.v. bolus, ampicillin total body clearance, apparent volume of distribution at steady‐state, mean residence time (MRT), and half‐life were 4.53 ± 0.70 mL/min/kg, 0.275 ± 0.044 L/kg, 61 ± 13 min, and 111 (85–169) min, respectively. The corresponding parameters calculated after CRI were 13.5 ± 1.06 mL/min/kg, 0.993 ± 0.415 L/kg, 73 ± 27 min, and 49 (31–69) min. Ampicillin concentration decreased by 30% in the Ringer's lactate infusion solution mostly during the first hour after preparation of the solution. Constant rate infusion of Ringer's lactate solution during 8 h caused significant changes in ampicillin pharmacokinetics. The results suggested that special attention should be given to drug pharmacokinetics when co‐administered intravenously with electrolyte solutions.  相似文献   

5.
The purpose of this study was to determine the pharmacokinetics of baicalin after intravenous and intramuscular administration of sodium baicalin at 50 mg/kg to piglets. Plasma baicalin levels were determined by high‐performance liquid chromatography. The plasma concentration–time data of baicalin for both administration routes were best described by two‐compartmental open model. The area under the plasma concentration–time curve and the elimination half‐lives were 77.47 ± 6.14 µg/ml × h and 1.73 ± 0.16 hr for intravenous and 64.85 ± 5.67 µg/ml × h and 2.42 ± 0.15 hr for intramuscular administration, respectively. The apparent volume of distribution and body clearance were 1.63 ± 0.23 L/kg and 2.74 ± 0.30 L h?1 kg?1 for intravenous and 0.51 ± 0.10 L/kg and 0.78 ± 0.08 L h?1 kg?1 for intramuscular routes, respectively. An intramuscular injection of sodium baicalin in piglets resulted in rapid and complete absorption, with a mean maximal plasma concentration of 77.28 ± 7.40 µg/ml at 0.17 hr and a high absolute bioavailability of 83.73 ± 5.53%.  相似文献   

6.
The pharmacokinetic characteristics of valnemulin in layer chickens were studied after single intravenous, intramuscular, and oral administration at a dose of 15 mg/kg body weight. Plasma samples at certain time points were collected and the drug concentrations in them by ultra high‐performance liquid chromatography tandem mass spectrometry (UHPLC‐MS). The concentration–time data for each individual were plotted by noncompartmental analysis for the whole three routes. Following intravenous administration, the plasma concentration showed tiny fluctuation. The elimination half‐life (), total body clearance (Cl), and area under the plasma concentration–time curve (AUC) were 1.85 ± 0.43 h, 2.2 ± 0.9 L/h, and 7.52 ± 2.46 μg·h/mL, respectively. Following intramuscular administration, the peak concentration (Cmax, 1.40 ± 0.43 μg/mL) was achieved at the time of 0.34 h. A multiple‐peak phenomenon existed after oral administration, and the first peak and secondary peak were at 10 min and during 2–4 h, respectively, while the tertiary peak appeared during 5–15 h. The bioavailability (F %) for intramuscular and oral administration was 68.60% and 52.64%, respectively. In present study, the detailed pharmacokinetic profiles showed that this drug is widely distributed and rapidly eliminated, however has a low bioavailability, indicating that valnemulin is likely to be a favorable choice in the clinical practice.  相似文献   

7.
Pharmacokinetics and pharmacodynamics of alfaxalone was performed in mallard ducks (Anas platyrhynchos) after single bolus injections of 10 mg/kg administered intramuscularly (IM; n = 10) or intravenously (IV; n = 10), in a randomized cross‐over design with a washout period between doses. Mean (±SD) Cmax following IM injection was 1.6 (±0.8) µg/ml with Tmax at 15.0 (±10.5) min. Area under the curve (AUC) was 84.66 and 104.58 min*mg/ml following IV and IM administration, respectively. Volume of distribution (VD) after IV dose was 3.0 L/kg. The mean plasma clearance after 10 mg/kg IV was 139.5 (±67.9) ml min?1 kg?1. Elimination half‐lives (mean [±SD]) were 15.0 and 16.1 (±3.0) min following IV and IM administration, respectively. Mean bioavailability at 10 mg/kg IM was 108.6%. None of the ducks achieved a sufficient anesthetic depth for invasive procedures, such as surgery, to be performed. Heart and respiratory rates measured after administration remained stable, but many ducks were hyperexcitable during recovery. Based on sedation levels and duration, alfaxalone administered at dosages of 10 mg/kg IV or IM in mallard ducks does not induce clinically acceptable anesthesia.  相似文献   

8.
The pharmacokinetic parameters of moxidectin (MXD) after intravenous and pour‐on (topical) administration were studied in sixteen pigs at a single dose of 1.25 and 2.5 mg/kg BW (body weight), respectively. Blood samples were collected at pretreatment time (0 hr) over 40 days. The plasma kinetics were analyzed by WinNonlin 6.3 software through a noncompartmental model. For intravenous administration (n = 8), the elimination half‐life (λZ), the apparent volume of distribution (Vz), and clearance (Cl) were 10.29 ± 1.90 days, 89.575 ± 29.856 L/kg, and 5.699 ± 2.374 L/kg, respectively. For pour‐on administration (n = 8), the maximum plasma drug concentration (Cmax), time to maximum plasma concentration (Tmax), and λZ were 7.49 ng/ml, 1.72, and 6.20 days, respectively. MXD had a considerably low absolute pour‐on bioavailability of 9.2%, but the mean residence time (MRT) for pour‐on administration 10.88 ± 1.75 days was longer than 8.99 ± 2.48 days for intravenous administration. These results showed that MXD was absorbed via skin rapidly and eliminated slowly. The obtained data might contribute to refine the dosage regime for topical MXD administration.  相似文献   

9.
DiMaio Knych, H.K., Steffey, E.P., Deuel, J.L., Shepard, R.A., Stanley, S.D. Pharmacokinetics of yohimbine following intravenous administration to horses. J. vet. Pharmacol. Therap. 34 , 58–63. Yohimbine is an alpha 2 adrenergic receptor antagonist used most commonly in veterinary medicine to reverse the effects of the alpha 2 receptor agonists, xylazine and detomidine. Most notably, yohimbine has been shown to counteract the CNS depressant effects of alpha 2 receptor agonists in a number of species. The recent identification of a yohimbine positive urine sample collected from a horse racing in California has led to the investigation of the pharmacokinetics of this compound. Eight healthy adult horses received a single intravenous dose of 0.12 mg/kg yohimbine. Blood samples were collected at time 0 (prior to drug administration) and at various times up to 72 h post drug administration. Plasma samples were analyzed using liquid chromatography–mass spectrometry (LC‐MS) and data analyzed using both noncompartmental and compartmental analysis. Peak plasma concentration was 114.5 + 31.8 ng/mL and occurred at 0.09 + 0.03 h. Mean ± SD systemic clearance (Cls) and steady‐state volume of distribution (Vdss) were 13.5 + 2.1 mL/min/kg and 3.3 + 1.3 L/kg following noncompartmental analysis. For compartmental analysis, plasma yohimbine vs. time data were best fitted to a two compartment model. Mean ± SD Cls and Vdss of yohimbine were 13.6 ± 2.0 mL/min/kg and 3.2 ± 1.1 L/kg, respectively. Mean ± SD terminal elimination half‐life was 4.4 ± 0.9 h following noncompartmental analysis. Immediately following administration, two horses showed signs of sedation, while the other six appeared behaviorally unaffected. Gastrointestinal sounds were moderately increased compared to baseline while fecal consistency appeared normal.  相似文献   

10.
Knych, H. K., Casbeer, H. C., McKemie, D. S., Arthur, R. M. Pharmacokinetics and pharmacodynamics of butorphanol following intravenous administration to the horse. J. vet. Pharmacol. Therap.  36 , 21–30. Butorphanol is a narcotic analgesic commonly used in horses. Currently, any detectable concentration of butorphanol in biological samples collected from performance horses is considered a violation. The primary goal of the study reported here was to update the pharmacokinetics of butorphanol following intravenous administration, utilizing a highly sensitive liquid chromatography‐mass spectrometry (LC‐MS) assay that is currently employed in many drug‐testing laboratories. An additional objective was to characterize behavioral and cardiac effects following administration of butorphanol. Ten exercised adult horses received a single intravenous dose of 0.1 mg/kg butorphanol. Blood and urine samples were collected at time 0 and at various times for up to 120 h and analyzed using LC‐MS. Mean ± SD systemic clearance, steady‐state volume of distribution, and terminal elimination half‐life were 11.5 ± 2.5 mL/min/kg, 1.4 ± 0.3 L/kg, and 5.9 ± 1.5 h, respectively. Butorphanol plasma concentrations were below the limit of detection (LOD) (0.01 ng/mL) by 48 h post administration. Urine butorphanol concentrations were below the LOD (0.05 ng/mL) of the assay in seven of 10 horses by 120 h post drug administration. Following administration, horses appeared excited as noted by an increase in heart rate and locomotion. Gastrointestinal sounds were markedly decreased for up to 24 h.  相似文献   

11.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

12.
The objective of this study was to investigate the toxicokinetic characteristics of melamine in broilers due to the limited information available for livestock. Melamine was then administered to broiler chickens at an intravenous (i.v.) or oral (p.o.) dosage of 5.5 mg/kg of body weight, and plasma samples were collected up to 48 h. The concentration of melamine in each plasma sample was analyzed using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). Melamine was measurable up to 24 h after i.v. and p.o. administration. A one‐compartment model was developed to describe the toxicokinetics of melamine in broilers. Following i.v. administration, the values for the elimination half‐life (t1/2β), the volume of distribution (Vd), and the clearance (CL) were 4.42 ± 1.02 h, 00.52 ± 0.18 L/kg, and 0.08 ± 0.01 L/h/kg, respectively. The absolute oral bioavailability (F) was 95.63 ± 3.54%. The results suggest that most of the administered melamine is favorably absorbed from the alimentary tract and rapidly cleared by the kidneys in broiler chickens.  相似文献   

13.
Procaterol (PCR) is a beta‐2‐adrenergic bronchodilator widely used in Japanese racehorses for treating lower respiratory disease. The pharmacokinetics of PCR following single intravenous (0.5 μg/kg) and oral (2.0 μg/kg) administrations were investigated in six thoroughbred horses. Plasma and urine concentrations of PCR were measured using liquid chromatography–mass spectrometry. Plasma PCR concentration following intravenous administration showed a biphasic elimination pattern. The systemic clearance was 0.47 ± 0.16 L/h/kg, the steady‐state volume of the distribution was 1.21 ± 0.23 L/kg, and the elimination half‐life was 2.85 ± 1.35 h. Heart rate rapidly increased after intravenous administration and gradually decreased thereafter. A strong correlation between heart rate and plasma concentration of PCR was observed. Plasma concentrations of PCR after oral administration were not quantifiable in all horses. Urine concentrations of PCR following intravenous and oral administrations were quantified in all horses until 32 h after administration. Urine PCR concentrations were not significantly different on and after 24 h between intravenous and oral administrations. These results suggest that the bioavailability of orally administrated PCR in horses is very poor, and the drug was eliminated from the body slowly based on urinary concentrations. This report is the first study to demonstrate the pharmacokinetic character of PCR in thoroughbred horses.  相似文献   

14.
The disposition of plasma glycopyrrolate (GLY) is characterized by a three‐compartment pharmacokinetic model after a 1‐mg bolus intravenous dose to Standardbred horses. The median (range) plasma clearance (Clp), volume of distribution of the central compartment (V1), volume of distribution at steady‐state (Vss), and area under the plasma concentration–time curve (AUC0‐inf) were 16.7 (13.6–21.7) mL/min/kg, 0.167 (0.103–0.215) L/kg, 3.69 (0.640–38.73) L/kg, and 2.58 (2.28–2.88) ng*h/mL, respectively. Renal clearance of GLY was characterized by a median (range) of 2.65 (1.92–3.59) mL/min/kg and represented approximately 11.3–24.7% of the total plasma clearance. As a result of these studies, we conclude that the majority of GLY is cleared through hepatic mechanisms because of the limited extent of renal clearance of GLY and absence of plasma esterase activity on GLY metabolism. Although the disposition of GLY after intravenous administration to Standardbred horses was similar to that in Thoroughbred horses, differences in some pharmacokinetic parameter estimates were evident. Such differences could be attributed to breed differences or study conditions. The research could provide valuable data to support regulatory guidelines for GLY in Standardbred horses.  相似文献   

15.
Wright, H. M., Chen, A. V., Martinez, S. E., Davies, N. M. Pharmacokinetics of oral rufinamide in dogs. J. vet. Pharmacol. Therap.  35 , 529–533. The objective of this study was to determine the pharmacokinetic properties and short‐term adverse effect profile of single‐dose oral rufinamide in healthy dogs. Six healthy adult dogs were included in the study. The pharmacokinetics of rufinamide were calculated following administration of a single mean oral dose of 20.0 mg/kg (range 18.6–20.8 mg/kg). Plasma rufinamide concentrations were determined using high‐performance liquid chromatography, and pharmacokinetic data were analyzed using commercial software. No adverse effects were observed. The mean terminal half‐life was 9.86 ± 4.77 h. The mean maximum plasma concentration was 19.6 ± 5.8 μg/mL, and the mean time to maximum plasma concentration was 9.33 ± 4.68 h. Mean clearance was 1.45 ± 0.70 L/h. The area under the curve (to infinity) was 411 ± 176 μg·h/mL. Results of this study suggest that rufinamide given orally at 20 mg/kg every 12 h in healthy dogs should result in a plasma concentration and half‐life sufficient to achieve the therapeutic level extrapolated from humans without short‐term adverse effects. Further investigation into the efficacy and long‐term safety of rufinamide in the treatment of canine epilepsy is warranted.  相似文献   

16.
The aim of this study was to compare the pharmacokinetics of fentanyl, alfentanil, and sufentanil in isoflurane‐anesthetized cats. Six adult cats were used. Anesthesia was induced and maintained with isoflurane in oxygen. End‐tidal isoflurane concentration was set at 2% and adjusted as required due to spontaneous movement. Fentanyl (10 μg/kg), alfentanil (100 μg/kg), or sufentanil (1 μg/kg) was administered intravenously as a bolus, on separate days. Blood samples were collected immediately before and for 8 h following drug administration. Plasma drug concentration was determined using liquid chromatography/mass spectrometry. Compartment models were fitted to concentration–time data. A 3‐compartment model best fitted the concentration–time data for all drugs, except for 1 cat in the sufentanil group (excluded from analysis). The volume of the central compartment and the volume of distribution at steady‐state (L/kg) [mean ± SEM (range)], the clearance (mL/min/kg) [harmonic mean ± pseudo‐SD (range)], and the terminal half‐life (min) [median (range)] were 0.25 ± 0.04 (0.09–0.34), 2.18 ± 0.16 (1.79–2.83), 18.6 ± 5.0 (15–29.8), and 151 (115–211) for fentanyl; 0.10 ± 0.01 (0.07–0.14), 0.89 ± 0.16 (0.68–1.83), 11.6 ± 2.6 (9.2–15.8), and 144 (118–501) for alfentanil; and 0.06 ± 0.01 (0.04–0.10), 0.77 ± 0.07 (0.63–0.99), 17.6 ± 4.3 (13.9–24.3), and 54 (46–76) for sufentanil. Differences in clearance and volume of distribution result in similar terminal half‐lives for fentanyl and alfentanil, longer than for sufentanil.  相似文献   

17.
The anti‐anxiety and calming effects following activation of the GABA receptor have been exploited in performance horses by administering products containing GABA. The primary goal of the study reported here was to describe endogenous concentrations of GABA in horses and the pharmacokinetics, selected pharmacodynamic effects, and CSF concentrations following administration of a GABA‐containing product. The mean (±SD) endogenous GABA level was 36.4 ± 12.5 ng/mL (n = 147). Sixteen of these horses received a single intravenous and oral dose of GABA (1650 mg). Blood, urine, and cerebrospinal fluid (n = 2) samples were collected at time 0 and at various times for up to 48 h and analyzed using LC‐MS. Plasma clearance and volume of distribution was 155.6 and 147.6 L/h and 0.154 and 7.39 L for the central and peripheral compartments, respectively. Terminal elimination half‐life was 22.1 (intravenous) and 25.1 (oral) min. Oral bioavailability was 9.81%. Urine GABA concentrations peaked rapidly returning to baseline levels by 3 h. Horses appeared behaviorally unaffected following oral administration, while sedative‐like changes following intravenous administration were transient. Heart rate was increased for 1 h postintravenous administration, and gastrointestinal sounds decreased for approximately 30 min following both intravenous and oral administration. Based on a limited number of horses and time points, exogenously administered GABA does not appear to enter the CSF to an appreciable extent.  相似文献   

18.
Flunixin meglumine is commonly used in horses for the treatment of musculoskeletal injuries. The current ARCI threshold recommendation is 20 ng/mL when administered at least 24 h prior to race time. In light of samples exceeding the regulatory threshold at 24 h postadministration, the primary goal of the study reported here was to update the pharmacokinetics of flunixin following intravenous administration, utilizing a highly sensitive liquid chromatography–mass spectrometry (LC‐MS). An additional objective was to characterize the effects of flunixin on COX‐1 and COX‐2 inhibition when drug concentrations reached the recommended regulatory threshold. Sixteen exercised adult horses received a single intravenous dose of 1.1 mg/kg. Blood samples were collected up to 72 h postadministration and analyzed using LC‐MS. Blood samples were collected from 8 horses for determination of TxB2 and PGE2 concentrations prior to and up to 96 h postflunixin administration. Mean systemic clearance, steady‐state volume of distribution and terminal elimination half‐life was 0.767 ± 0.098 mL/min/kg, 0.137 ± 0.12 L/kg, and 4.8 ± 1.59 h, respectively. Four of the 16 horses had serum concentrations in excess of the current ARCI recommended regulatory threshold at 24 h postadministration. TxB2 suppression was significant for up to 24 h postadministration.  相似文献   

19.
The aim of this research had been to determine the pharmacokinetics of tigecycline (TIG) in turkey after intravenous (i.v.), intramuscular (i.m.), subcutaneous (s.c.), and oral (p.o.) administration at a dose of 10 mg/kg. TIG concentrations in plasma were determined using high‐performance liquid chromatography with tandem mass spectrometry. Mean concentrations of TIG in turkey plasma in the i.v. group were significantly higher than concentrations of this drug obtained after using the other administration routes. No significant differences were demonstrated in respect to the concentrations achieved after i.m. and s.c. administration. The bioavailability of TIG after i.m., s.c., and p.o. administration was 32.59 ± 5.99%, 34.91 ± 9.62%, and 0.97 ± 0.57%, respectively. Values of half‐life in the elimination phase were 23.49 ± 6.51 hr, 25.42 ± 4.42 hr, and 26.62 ± 5.19 hr in i.v., i.m., and s.c. groups, respectively, values of mean residence time were 7.92 ± 1.41 hr, 19.62 ± 2.82 hr, and 17.55 ± 2.59 hr in i.v., i.m., and s.c. groups, respectively, whereas the volume of distribution was 14.85 ± 5.71 L/kg, 14.68 ± 2.56 L/kg, and 15.37 ± 3.00 L/kg in i.v., i.m., and s.c. groups, respectively. Because TIG is not absorbed from the gastrointestinal tract in turkeys to a clinically significant degree, this drug given p.o. could find application in commercial turkey farms only to treat gastrointestinal tract infections.  相似文献   

20.
The neurokinin‐1 (NK) receptor antagonist, maropitant citrate, mitigates nausea and vomiting in dogs and cats. Nausea is poorly understood and likely under‐recognized in horses. Use of NK‐1 receptor antagonists in horses has not been reported. The purpose of this study was to determine the pharmacokinetic profile of maropitant in seven adult horses after single intravenous (IV; 1 mg/kg) and intragastric (IG; 2 mg/kg) doses. A randomized, crossover design was performed. Serial blood samples were collected after dosing; maropitant concentrations were measured using LC‐MS/MS. Pharmacokinetic parameters were determined using noncompartmental analysis. The mean plasma maropitant concentration 3 min after IV administration was 800 ± 140 ng/ml, elimination half‐life was 10.37 ± 2.07 h, and volume of distribution was 6.54 ± 1.84 L/kg. The maximum concentration following IG administration was 80 ± 40 ng/ml, and elimination half‐life was 9.64 ± 1.27 hr. Oral bioavailability was variable at 13.3 ± 5.3%. Maropitant concentrations achieved after IG administration were comparable to those in small animals. Concentrations after IV administration were lower than in dogs and cats. Elimination half‐life was longer than in dogs and shorter than in cats. This study is the basis for further investigations into using maropitant in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号