首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 10‐wk feeding trial was conducted to estimate the dietary protein requirements of juvenile Dianchi golden‐line barbell, Sinocyclocheilus grahami (initial average weight 7.55 g). Five isocaloric diets were formulated to contain graded levels of protein (29, 34, 39, 44, and 49%). Each diet was fed to triplicate groups of fish in a recirculating rearing system maintained at 18–22 C. Feed intake of fish fed the diet with 39% protein was significantly higher than those fed the diet with 29, 34, and 49% protein (P < 0.05). Weight gain, specific growth rate (SGR), and protein gain significantly increased with increasing dietary protein levels up to 39% (P < 0.05), whereas no significant differences were observed among fish fed the diet with 39, 44, and 49% protein (P > 0.05). In contrast, feed conversion ratio was significantly decreased with increasing dietary protein levels up to 39%. Maximum protein retention and protein efficiency ratio were observed in fish fed the diet with 39% protein. The regression analysis based on SGR and protein gain showed that the dietary protein requirements of juvenile S. grahami were 38.57% or 41.09% (equivalent to ca. 32.94% or 35.42% estimated digestible protein) of diet with a calculated digestible energy of 3.6 kcal/g.  相似文献   

2.
Protein requirement of juvenile Manchurian trout Brachymystax lenok   总被引:1,自引:0,他引:1  
SUMMARY: This study was conducted to determine the dietary protein requirement for the growth of juvenile Manchurian trout Brachymystax lenok . Three replicate groups of fish weighing 3.44 g were fed the five isocaloric diets containing various protein levels from 29% to 57% for 10 weeks. White fish meal was used as the sole protein source. Weight gain and feed efficiency of fish improved with increasing dietary protein level up to 43% and 49%, respectively, and reached a plateau above these levels. Dietary protein requirement using a broken-line model was estimated at 43.6% for weight gain of the fish. The protein efficiency ratio tended to decrease with increasing dietary protein level, but there was no significant difference among the diets containing 29%, 35% and 43% protein levels ( P > 0.05). The protein content of fish fed the 29% protein diet was significantly lower than that of fish fed the 57% protein diet ( P < 0.05). However, moisture, lipid and ash contents of fish were not significantly affected by dietary protein level ( P > 0.05). These findings indicate that 43–44% dietary protein level with 10% lipid and 19.2 MJ gross energy/kg diet could be recommended for the optimum growth and efficient protein utilization of juvenile Manchurian trout.  相似文献   

3.
为了探讨高脂肪条件下不同的蛋白和能量水平对斑点叉尾鮰生长及体组成的影响,试验设2个蛋白水平(22%,28%),2个脂肪水平(10.0%,14.0%),2个消化能水平(12.56 kJ/g,14.23 kJ/g),共8组,分别为P28L10E14.23,P28L14E14.23,P22L10E14.23,P22L14E14.23,P28L10E12.56,P28L14E12.56,P22L10E12.56和P22L14E12.56。试验饲料配方使用鱼粉和豆粕调节蛋白含量,混合油脂(鱼油∶玉米油=1∶1)调节脂肪含量,α-淀粉、次粉和麸皮调节消化能含量,并以微晶纤维素为填充物,每组3个重复,每个重复20尾鱼(141.5?1.0) g。饲养60 d后,进行生产性能测定,并采集组织样本,测定相关指标。结果表明,鱼体末重(FW)、增重率(WG)、特定生长率(SGR)和饵料系数(FCR)不受饲料蛋白、脂肪和消化能单一营养水平影响(P>0.05);但与饲料蛋白、脂肪和消化能三者的交互作用(P<0.01)有关。胴体蛋白、脂肪含量与饲料脂肪和消化能水平相关(P<0.05)。由此可见,饲料过高脂肪和消化能对斑点叉尾鮰没有额外的促生长作用;饲料蛋白水平达到22%时,即可满足140~300 g斑点叉尾鮰的营养需要;饲料中22%的蛋白、10%的脂肪、12.56 kJ/g的消化能即可满足斑点叉尾鮰仔鱼的生长需要,同时又能保证其正常生理机能,建议可在实际生产配方中作参考值。  相似文献   

4.
Cachara, Pseudoplatystoma reticulatum, is a high commercial value carnivorous catfish in Brazil, but whose dietary protein requirement is still unknown. Aiming to determine this requirement, groups of 15 juveniles (16.08 ± 1.13 g) were fed isoenergetic diets (4600 kcal/kg gross energy) with increasing levels of crude protein (30, 35, 40, 45, 50, and 55%). After 60 d, regression analysis revealed a quadratic effect (P < 0.05) of increasing dietary crude protein concentration on growth variables. The highest weight gain and specific growth rate as well as the best feed conversion were shown by fish fed the 50% crude‐protein diet. Similarly, protease activities were significantly higher (P < 0.05) in fish fed 50% crude protein. However, the highest protein retention was observed in fish fed the 45% crude‐protein diet. Protein and dry matter digestibilities did not differ (P > 0.05) for diets containing 40, 45, or 50% crude protein. Therefore, based on weight gain and at a dietary energy concentration of 4600 kcal/kg, the estimated protein requirement for juvenile cachara between 16 and 85 g is 49.25% crude protein. This is equivalent to 44.79% digestible protein and a gross energy to digestible protein ratio of 10.27 kcal/g.  相似文献   

5.
An 8-week feeding experiment was conducted to investigate the effects of different dietary macronutrient level and feeding frequency on the growth, feed utilization, and body composition of juvenile rockfish. Triplicate groups of fish (body weight of 4.1 g) were fed the experimental diets containing either high levels of carbohydrate (HC, 35%), lipid (HL, 13%), or protein (HP, 55%) at different feeding frequencies (twice daily, once daily, and once every 2 days). Weight gain was affected by feeding frequency but not by dietary composition. Weight gain of fish fed the diets once every 2 days was significantly (P < 0.05) lower than that of other groups. Daily feed intake and energy intake were affected by both dietary composition and feeding frequency. Daily feed intake of fish fed the HC diet was significantly (P < 0.05) higher than that of fish fed the HL and HP diets at the same feeding frequency. Feed efficiency and protein efficiency ratio were affected by both dietary composition and feeding frequency and decreased with increasing feeding frequency in the same dietary composition. Feed efficiency and protein efficiency ratio of fish fed the HC diet were significantly (P < 0.05) lower than those of fish fed the HL diet at the same feeding frequency. Whole-body lipid content of fish fed the HL diet was significantly (P < 0.05) higher than that of fish fed the HC and HP diets at the same feeding frequency. These results indicate that an increase of dietary lipid level compared with dietary carbohydrate level may have the advantage of a protein-sparing effect at same feeding frequency, and a once-daily feeding regime is more effective than twice daily or one feeding every 2 days to improve growth performance of juvenile rockfish grown from 4 to 21 g.  相似文献   

6.
An 8‐wk feeding trial was conducted to estimate the optimum dietary protein level and protein‐to‐energy (P/E) ratio in juvenile parrot fish, Oplegnathus fasciatus. Eight experimental diets were formulated with two energy levels and four protein levels for each energy level. Diets containing crude protein (CP) at 35, 40, 45, and 50% had either 12.5 or 14.6 kJ/g of energy. Fish averaging 7.1 ± 0.06 g (mean ± SD) were fed one of the experimental diets for 8 wk. At the end of the feeding trial, weight gain (WG) of fish fed 45 and 50% CP in the 12.5 kJ/g diet was significantly higher than fish fed the 35% CP diet (P < 0.05). WG of the fish fed 45 and 50% CP in the 14.6 kJ/g diet was significantly higher than fish fed the 35 and 40% CP diets (P < 0.05). Fish fed the 14.6 kJ/g diet had a higher WG compared with fish fed the 12.5 kJ/g diet at all CP levels. Feed efficiency (FE) and specific growth rate (SGR) showed a similar trend to the WG. WG, FE, and SGR improved with increasing dietary protein levels up to 45% and remained constant at 50% CP for both energy levels. However, protein efficiency ratio was negatively related to dietary protein levels. The results suggested that the optimum level of protein and the optimum P/E ratio for juvenile parrot fish should be 45% and 31.1 mg protein/kJ, respectively, in a diet containing 14.6 kJ/g energy.  相似文献   

7.
The effect of fish meal (FM) substitution with fermented soybean meal (FSBM) in the diets of the carnivorous marine fish, black sea bream, Acanthopagrus schlegelii, was investigated. An 8‐wk feeding trial was conducted with black sea bream (11.82 ± 0.32 g; mean initial weight) in indoor flow‐through fiberglass tanks (25 fish per tank). Six isonitrogenous and isoenergetic diets were formulated, in which FM was replaced by FSBM at 0% (control diet), 10% (FSBM10), 20% (FSBM20), 30% (FSBM30), 40% (FSBM40), or 50% (FSBM50), respectively. Each diet was fed to triplicate groups of fish twice daily to apparent satiation. The results showed that there was no difference in survival of black sea bream during the feeding trial. Fish fed the FSBM10 or FSBM20 diet showed comparable growth performance compared with fish fed the control diet (P > 0.05), whereas more than 30% replacement of FM adversely affected weight gain and specific growth rate (P < 0.05). Feed intake was significantly lower for fish fed the FSBM50 diet compared with fish fed the control diet. Feed conversion ratio (FCR) tended to increase with increasing dietary FSBM with the poorest FCR observed for fish fed the FSBM50 diet. Protein efficiency ratio and protein productive values showed similar patterns. Apparent digestibility of nutrients significantly decreased with increasing dietary FSBM level. With the exception of protein content, no significant differences in whole body and dorsal muscle composition were observed in fish fed the various diets. Fish fed the FSBM50 diet had significantly lower intraperitoneal ratio than fish fed the control or FSBM10 diet. Hepatosomatic index and condition factor were unaffected by dietary treatments. This study showed that up to 20% of dietary FM protein could be replaced by FSBM protein in the diets of juvenile black sea bream.  相似文献   

8.
To allow for the initial identification of practical diet formulations for red snapper culture, the present study was conducted to evaluate the effects of feeding varying levels of dietary protein and lipid on growth and body composition of juvenile and sub‐adult red snapper. Twelve diets were formulated to contain varying levels of dietary protein and lipid. In trial 1, juvenile red snapper (initial mean weight 5.9 g) were offered diets with graded levels of dietary protein (32%, 36%, 40%, 44%) and practical energy to protein ratios. In trial 2, juvenile red snapper (initial mean weight 8.64 g) were offered isonitrogenous diets (44% protein) containing graded levels of dietary lipid (8%, 10%, 12%, 14%). Sub‐adult fish (initial mean weight 151.5 g) were used in trial 3 and maintained on diets similar to those of trial 1 (32–44% protein). Sub‐adult fish (initial mean weight 178.3 g) in trial 4 were offered isonitrogenous diets containing 32% dietary protein and graded levels of dietary lipid (6%, 8%, 10%, 12%). There were no significant differences in growth, feed efficiency ratio (FER) or survival in juvenile fish. Juvenile fish offered 32% dietary protein exhibited a significantly greater (P=0.0497) protein conversion efficiency (PCE) than fish offered a diet containing 44% dietary protein. Juvenile fish in trial 2 also had significantly higher (P=0.005) intraperitoneal fat ratios (IPFRs) at 14% dietary lipid than fish offered diets containing 8–10% dietary lipid, and displayed trends towards greater protein as a percent of whole‐body composition at 8–10% dietary lipid. Sub‐adult snapper in trials 3 and 4 showed no significant differences in growth, FER or survival. However, in trial 4 there was a general trend towards increased % weight gain (P=0.0615), FER (P=0.0601) and final mean weight (P=0.0596) with increasing levels of dietary lipid. Fish in trial 4 offered 6% dietary lipid also had significantly lower (P=0.0439) IPFR and PCE (P=0.0188) than fish offered 12% dietary lipid. Based on data obtained from these trials, inclusion of dietary protein at levels of 32–36% appears sufficient to support growth. For this level of protein, dietary lipid should be ~10% in order to meet the energetic demands of the fish and to spare dietary protein for growth.  相似文献   

9.
A 9‐week feeding trial was conducted to investigate the effect of dietary carbohydrate level on the growth performance, body composition and apparent digestibility coefficient and digestive enzyme activities of juvenile cobia. Six isonitrogenous and isolipidic diets containing graded levels of starch (1.3%, 6.5%, 12.5%, 18.4%, 24.2% and 30.4%) were fed to juvenile cobia. Specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) increased with increasing dietary starch up to 18.4% (P<0.05), and thereafter SGR declined but FER and PER remained nearly the same. Apparent digestibility coefficient of starch reduced significantly when dietary starch up to 30.4%. Fish fed the diets with starch from 18.4% to 30.4% showed higher amylase activities in intestinal tract than those fed diets containing starch 1.3% and 6.5% (P<0.05). Significantly higher whole‐body lipid contents were observed in fish fed the diets containing higher starch. Whole‐body moisture content was inversely correlated with whole‐body lipid content, while protein and ash showed no significant differences. Plasma glucose, hepatosomatic index, liver glycogen and liver lipid increased with an increasing dietary starch. Based on SGR and FER, the appropriate dietary starch supplementations of juvenile cobia were estimated to be 21.1% and 18.0 % of diet respectively.  相似文献   

10.
An 8‐week feeding trial was conducted to estimate the optimum dietary protein to energy (P/E) ratio in juvenile olive flounder Paralichthys olivaceus. Eight experimental diets were formulated with two energy levels and four protein levels at each energy level. Two energy levels of 12.5 and 16.7 kJ g?1 diets were included at crude protein (CP) levels of 25%, 30%, 35% and 45% with 12.5 kJ g?1, and CP levels of 35%, 45%, 50% and 60% with 16.7 kJ g?1. After 1 week of the conditioning period, fish initially averaging 8.1±0.08 g (mean±SD) were randomly distributed into the aquarium as groups of 15 fish. Each diet was fed on a dry‐matter basis to fish in three randomly selected aquariums at a rate of 3–5% of total wet body weight per day for 8 weeks. After 8 weeks of the feeding trial, weight gain (WG), feed efficiency ratio and specific growth rate of fish fed 45% CP with 16.7 kJ g?1 energy diet were significantly higher than those from the other dietary treatments (P<0.05). WG of fish fed 12.5 kJ g?1 energy diets increased with the increase of dietary protein levels. However, WG of fish fed 16.7 kJ g?1 energy diets increased with the increase of dietary protein levels up to 45% CP and then decreased when fish fed 50% and 60% CP diets. Both dietary protein and energy affected protein retention efficiency and energy retention efficiency. Haemoglobin (Hb) of fish fed 35% and 45% CP diets with 12.5 kJ g?1 energy were significantly high and not different from Hb of fish fed 45% and 50% CP diets with 16.7 kJ g?1 energy. Haematocrit of fish fed 45% CP diet with 16.7 kJ g?1 energy was significantly higher than those from fish fed 25% and 30% CP diets with 12.5 kJ g?1 energy (P< 0.05). Based on the results of this experiment, we concluded that the optimum dietary P/E ratio was 27.5 mg protein kJ?1 with diet containing 45% CP and 16.7 kJ g?1 energy in juvenile olive flounder.  相似文献   

11.
Quantitative l-lysine requirement of juvenile grouper Epinephelus coioides   总被引:3,自引:0,他引:3  
An 8‐week feeding trial was conducted to determine the quantitative lysine requirement of juvenile grouper Epinephelus coioides (initial mean weight: 15.84 ± 0.23 g, mean ± SD) in eighteen 500‐L indoors flow‐through circular fibreglass tanks provided with sand‐filtered aerated seawater by feeding diets containing six levels of l ‐lysine ranging from 19.2 to 39.5 g kg?1 dry diet in 4 g kg?1 increments. The diets, in which 250 g crude protein kg?1 diet came from fish meal and soybean protein concentrate, and 230 g kg?1 from crystalline amino acids, were formulated to simulate the amino acid profile of 480 g kg?1 whole chicken egg protein except for lysine. Each diet was assigned to three tanks in a completely randomized design. Grouper were fed to apparent satiation twice daily during the week and once daily on weekends. Weight gain and specific growth rate increased with increasing levels of dietary lysine up to 27.2 g kg?1 (P < 0.05) and remained nearly the same thereafter (P > 0.05). Feed efficiency was the poorest for fish fed the lowest lysine diet (P < 0.05) and showed no significant differences among other treatments (P > 0.05). Survival could not be related to dietary treatments. Body composition remained relatively constant except for lipid contents in muscle and liver. Total essential amino acid contents in liver increased with dietary lysine level although there was a slight decline for fish fed the highest lysine level of diet. Plasma protein content increased with increasing dietary lysine level (P < 0.05), but cholesterol, triacylglycerol and glucose contents were more variable and could not be related to dietary treatments. Dietary lysine level significantly influenced morphometrical parameters (condition factor, hepatosomatic index and intraperitoneal fat ratio) of juvenile grouper (P > 0.05). Broken‐line analysis of weight gain indicated the dietary lysine requirement of juvenile grouper to be 28.3 g kg?1 diet or 55.6 g kg?1 dietary protein.  相似文献   

12.
The approximate levels of dietary protein and energy that would sustain good growth and survival of the mangrove red snapper Lutjanus argentimaculatus (Forsskal) were determined in two feeding experiments. In the preliminary experiment, six fish meal‐based diets were formulated to contain three protein levels (35%, 42.5% and 50%) and two lipid levels (6% and 12%) for each protein, with dietary energy ranging from 14.6 MJ kg?1 to 20.5 MJ kg?1. The protein to energy (P/E) ratios of diets ranged from 20.6 mg protein kJ?1 to 27.5 mg protein kJ?1. Diets were fed for 100 days to triplicate groups of snappers with an average initial weight of 24.8 ± 0.4 g. No significant interaction between different levels of protein and lipid was observed. Survival rates (93.8% to 100%), feed conversion ratios (FCR) (2.61–3.06) and condition factors (K) were not affected by different dietary treatments. Regardless of lipid level, fish fed 50% protein diets had a significantly higher specific growth rate (SGR) than fish fed the 35% protein diets, but not compared with the 42.5% diets (P < 0.05). Increasing lipid to 12% in all protein levels resulted in no improvement in growth over the 6% level. Fish body moisture did not vary while lipid levels based on dry matter were high (27.9% to 33.7%). Snapper appear to require more than 40% dietary protein and a high dietary energy level for good growth. In the second experiment, fish (21.1 ± 0.1 g) in four replicate groups were fed for 94 days with three diets (39%, 44% and 49% protein with P/E ratios of 21.1, 23.3 and 25.5 mg protein kJ?1 respectively) containing similar dietary energy levels of about 19 MJ kg?1. Average final weight, SGR and FCR were significantly higher in diets containing 44% and 49% protein diets (P > 0.05). There were no differences in survival rates, protein efficiency ratio (PER) and nutrient composition of snapper flesh. All fish had fatty livers. Results indicated that the diet containing 44% protein with a P/E ratio of 23.3 mg protein kJ?1 was optimum for snapper growth under the experimental conditions used in the study.  相似文献   

13.
This study evaluated the effects of dietary fermented tuna by‐product meal (FTBM) in juvenile olive flounder, Paralichthys olivaceus. Five diets were formulated to replace fishmeal (FM) with FTBM at 0% (FTBM0), 12.5% (FTBM12.5), 25.0% (FTBM25), 37.5% (FTBM37.5), or 50% (FTBM50). After 8 wk, weight gain, specific growth rate, and feed efficiency of fish fed FTBM0 and FTBM12.5 diets were significantly higher than fish fed the other diets (P < 0.05). Also, mean cumulative survival rates (%) of fish fed the FTBM0 and FTBM12.5 diets were significantly higher than those fed FTBM50 diet at Day 9 postchallenge with Edwardsiella tarda (P < 0.05). Protein efficiency ratio of fish fed FTBM0 and FTBM12.5 diets was significantly higher (P < 0.05) than fish fed diets FTBM37.5 and FTBM50. Broken‐line regression analysis of weight gain showed an optimal FM replacement level of 10.65% with FTBM. Therefore, the optimal dietary inclusion of FTBM in juvenile olive flounder diets could be greater than 10.65% but less than 12.5% without any adverse physiological effects on fish health.  相似文献   

14.
A feeding trial was conducted to investigate the influence of dietary protein levels on growth performance, carcass proximate composition and liver lipid classes of juvenile Spinibarbus hollandi (Oshima), a cyprinid fish. White fish meal was the primary protein source in the study. Eight experimental diets containing 13–55% crude protein were fed to three replicate groups of six fish weighing nearly 8.5 g each for 10 weeks. Both percentage weight gain and feed efficiency ratio increased significantly with increasing dietary protein levels up to 31%, but there was no further increase for protein levels from 31% to 55%. Application of broken‐line regression analysis to the percentage weight gain provided an estimate of 32.7±1.5% dietary protein for maximum growth. The protein efficiency ratio and productive lipid value were inversely correlated with dietary protein level. The hepatosomatic index and the viscerosomatic index were also inversely related to dietary protein level. The carcass protein of fish fed lower protein diets was significantly lower than that of the fish fed higher protein diets. Carcass lipid content decreased with increasing dietary protein levels, whereas moisture was inversely related to lipid content. Both liver glycogen and liver lipid contents decreased with increasing dietary protein levels. Triglyceride was the major component in the liver lipid, and the amount of triglyceride deposited in the liver also decreased with dietary protein levels. The results indicated that both carcass proximate composition and liver lipid class of juvenile Spinibarbus hollandi were affected by dietary treatments.  相似文献   

15.
Two feeding trials were conducted to determine the optimal dietary carbohydrate to lipid (CHO:L) ratio for juvenile and grower rockfish. Triplicate groups of juvenile (initial mean weight 3.6 g) and duplicate groups of grower (initial mean weight 166 g) were fed the five isonitrogenous (51% CP) and isoenergetic (4.0 kcal g?1) diets with the different CHO:L ratios (0.4–5.6 g:g) for 8 weeks respectively. The survival of juvenile and grower was above 93% and was not affected by the dietary CHO:L ratios. Weight gain of juvenile fed the diets with CHO:L ratios of 0.8 and 1.6 was significantly higher than that of the fish fed diets with CHO:L ratios of 2.8 and 5.6 (P<0.05). The feed efficiency and protein efficiency ratio of juvenile fed the diet with CHO:L ratio of 5.6 were the lowest among all groups (P<0.05). The daily feed intake of juvenile fed the diet with a CHO:L ratio of 5.6 was significantly higher than that of the other groups (P<0.05). The condition factors of juvenile fed the diets with CHO:L ratios of 0.8 and 1.6 were significantly higher than that of 5.6 (P<0.05). The crude lipid content of whole body, liver and viscera of juvenile decreased as the dietary CHO:L ratio increased, and the opposite was found for the moisture content. Weight gain, feed efficiency, daily feed intake, protein efficiency ratio and condition factor of grower were not affected by the dietary CHO:L ratio. Hepatosomatic and viscerasomatic indexes of grower were significantly influenced by dietary CHO:L ratio (P<0.05). Significant differences were observed in the lipid content of whole body and viscera of grower. Dietary CHO:L ratios significantly affected the major fatty acid composition of whole body in both juvenile and grower. The contents of 18:2n‐6 and 18:3n‐3 linearly decreased as the dietary CHO:L ratio increased, whereas the 20:4n‐6, 20:5n‐3 and 22:6n‐3 contents increased. Based on growth, feed efficiency and body composition, the optimal dietary CHO:L ratio was 1.6 for juvenile rockfish fed isonitrogenous (51% CP) and isoenergetic (4.0 kcal g?1) diets, and starch could partially replace lipids in the diets with CHO:L ratios ranging from 0.4 to 5.6 for grower.  相似文献   

16.
A feeding trial was conducted to determine the dietary threonine requirement of juvenile large yellow croaker (Larmichthys crocea). Six diets were formulated containing 45% crude protein with six graded levels of threonine (0.71–2.46% in about 0.35% increment). Each diet was randomly assigned to triplicate groups of 60 juvenile fish (initial body weight 6.00 ± 0.10 g). Fish were fed twice daily (05:00 and 16:30) to apparent satiation for 8 weeks. The result indicated that significant difference was observed in the weight gain among all treatments. Specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER) and nitrogen retention (NR) increased with increasing levels of threonine up to 1.75% diet (P < 0.05), and thereafter, declined. No significant differences in body dry matter, crude protein, crude lipid or ash content were found among dietary treatments. Theronine contents of fish muscle were significantly affected by dietary threonine levels (P < 0.05). Fish fed the diet with 0.71% threonine showed the lowest threonine content (2.94%) in fish muscle, while fish fed the diet with 1.75% threonine had the highest value (3.16%). Other essential amino acid contents of muscle were not significantly different among the dietary treatments. On the basis of SGR, FE or NR, the optimum dietary threonine requirements of juvenile L. crocea were estimated to be 1.86% of diet (4.13% of dietary protein), 1.90% of diet (4.22% of dietary protein) and 2.06% of diet (4.58% of dietary protein), respectively, using second‐order polynomial regression analysis.  相似文献   

17.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

18.
Abstract.— A 12‐wk feeding trial was conducted in cages with juvenile Nile tilapia Oreochromis niloticus to evaluate distillers grains with solubles (DDGS) as a direct feed, the effects of pelleting on its utilization, and the compatibility of caged tilapia and prawns in polyculture. Nine 1.0‐m3 cages were stocked with 200 juvenile (26 ± 0.9 g) tilapia. Cages were suspended in a 0.2‐ha pond stocked with juvenile freshwater prawns Macrobrachium rosenbergii at 40,000/ha. Three replicate cages were randomly assigned to each dietary treatment. In one dietary treatment DDGS was fed as an unpelleted loose grain ration (26% protein). In a second dietary treatment fish were fed DDGS that had been steam‐pelleted (23% protein). Fish in a third dietary treatment were fed a commercial catfish diet (31% protein) for comparison. After 12 wk, individual weight, individual length, and specific growth rate were significantly higher (P < 0.05) and feed conversion ratio was significantly lower (P < 0.05) for fish fed the commercial catfish diet than for fish fed either unpelleted or pelleted DDGS. Specific growth rate was significantly higher (P < 0.05) for fish fed pelleted DDGS than for fish fed unpelleted DDGS. Survival did not differ significantly (P > 0.05) among treatments (>95%). Although growth was increased in fish fed the commercial diet, their cost of production (<0.66/kg gain) was significantly higher (P < 0.05) than in fish fed unpelleted and pelleted DDGS (<0.26/ kg gain and <0.37/kg gain, respectively). The costs of gain in fish fed unpelleted DDGS was significantly lower (P < 0.05) than in fish fed the pelleted DDGS. Prawn production was 1,449 kg/ha and addition of tilapia in polyculture increased total pond productivity approximately 81 %. These data suggest that DDGS provides economical growth in tilapia when fed as a direct feed and that polyculture of tilapia may improve overall pond efficiency in freshwater prawn production ponds, even at temperate latitudes.  相似文献   

19.
A 12‐wk experiment was conducted to determine the dietary biotin requirement of the fingerling Catla catla (7.9 ± 0.37 cm; 3.5 ± 0.12 g). Eight diets (35% crude protein, 16.72 kJ/g gross energy) with different levels of biotin (0, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) were fed to triplicate groups of fish to apparent satiation. Highest percent weight gain, protein retention efficiency, and best feed conversion ratio were observed in fish fed 0.5 mg biotin per kg diet. However, fish fed diets containing dietary biotin of 1.0, 1.5, 2.0, and 2.5 mg/kg did not show significant (P > 0.05) differences compared to those fed on dietary biotin of 0.5 mg/kg. Hematological indices, including hematocrit value, hemoglobin content, and red blood cell counts were found to be directly proportional (P < 0.05) to the dietary biotin levels up to 0.5 mg/kg, beyond which a plateau was recorded. Pyruvate carboxylase activity (PCA) was also found to increase with the incremental levels of dietary biotin up to 0.5 mg/kg and further increasing dietary biotin concentration led to stagnation in PCA of fish. Liver biotin concentrations responded positively (P < 0.05) until saturation, which occurred at 1.0 mg/kg diet. Broken‐line analysis of percent weight gain, protein retention efficiency, PCA, and liver biotin concentrations demonstrated that fingerling C. catla require biotin in the range of 0.41–0.87 mg/kg diet.  相似文献   

20.
A study was undertaken to determine the dietary protein level for optimal growth performance and body composition of juvenile Senegalese sole. Five experimental extruded diets were formulated to contain increasing levels of protein [430, 480, 530, 570 and 600 g kg?1 dry matter (DM)] and a constant lipid level, ranging from 100 to 130 g kg?1 DM. Triplicate groups of 35 sole (initial body weight: 11.9 ± 0.5 g) were grown over 84 days in 60‐L tanks supplied with recirculated seawater. Fish were fed by means of automatic feeders in eight meals per day. At the start and end of the trial, whole‐body samples were withdrawn for proximate composition analysis. At the end of 84 days of experimental feeding, daily weight gain and specific growth rate in fish fed diets P43 and P48 were significantly lower than those found in fish fed higher protein level diets (P53, P57 and P59). Similarly, feed efficiency was also significantly lower in fish fed diet P43 than in fish fed all other dietary treatments. Sole juveniles fed lower protein level diets (P43 and P48) showed a significantly lower protein content than fish fed the higher dietary protein level treatments (P53, P57 and P60). Changes within the tested dietary protein levels did not affect significantly protein productive value or total nitrogen (N) losses in fish. However, daily N gain was significantly higher (P < 0.05) in fish fed diets P53 and P60 than in fish fed the lowest protein level diet (P43). Data from the present study indicate that diets for juvenile Senegalese sole should include at least 53% crude protein to maintain a good overall growth performance. Based on a second‐order polynomial regression model, the daily crude protein requirement for maximum whole‐body N gain as estimated here for Senegalese sole juveniles was 6.43 g kg?1 body weight day?1 which corresponds to a value of 1.03 g N intake kg?1 body weight day?1. If the present data are expressed on a dietary crude protein concentration basis, the allowance for maximum protein accretion (N gain) would be met by a diet containing a crude protein level of 600 g kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号