首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The term biochar refers to materials with diverse chemical, physical and physicochemical characteristics that have potential as a soil amendment. The purpose of this study was to investigate the P sorption/desorption properties of various slow biochars and one fast pyrolysis biochar and to determine how a fast pyrolysis biochar influences these properties in a degraded tropical soil. The fast pyrolysis biochar was a mixture of three separate biochars: sawdust, elephant grass and sugar cane leaves. Three other biochars were made by slow pyrolysis from three Amazonian tree species (Lacre, Ingá and Embaúba) at three temperatures of formation (400 °C, 500 °C, 600 °C). Inorganic P was added to develop sorption curves and then desorbed to develop desorption curves for all biochar situations. For the slow pyrolysis, the 600 ºC biochar had a reduced capacity to sorb P (4–10 times less) relative to those biochars formed at 400 °C and 500 °C. Conversely, biochar from Ingá desorbed the most P. The fast pyrolysis biochar, when mixed with degraded tropical mineral soil, decreased the soil's P sorption capacity by 55% presumably because of the high soluble, inorganic P prevalent in this biochar (909 mg P/kg of biochar). Phosphorus desorption from the fast pyrolysis biochar/soil mixture not only exhibited a common desorption curve but also buffered the soil solution at a value of ca. 0.2 mg/L. This study shows the diversity in P chemistry that can be expected when biochar is a soil amendment and suggests the potential to develop biochars with properties to meet specific objectives.  相似文献   

2.
Accumulation of microplastics (MPs) in agricultural environments has caused growing concern in recent years because of its detrimental impacts on soil quality, crop productivity and ecosystem function. This study was conducted to assess the impact of biochar on soil chemical and microbial properties in a MP-contaminated soil under two moisture regimes. Soil was contaminated with 1% (w/w) of low-density polyethylene MPs. Four types of standard biochar, that is, oil seed rape (OSR) biochar produced at 550°C (OSR 550) and 700°C (OSR 700) and soft wood pellet (SWP) biochar produced at 550°C (SWP 550) and 700°C (SWP 700), were applied at a rate of 5% (w/w). The control was maintained without MP addition. The samples were incubated in soil with two moisture regimes, that is, at 30% and 70% of the water holding capacity, and the soil chemical and microbiological properties were assessed after 100 days of incubation. OSR biochar application significantly increased soil pH (8.53–8.81) and electrical conductivity (0.51–0.58 dS/m) in both moisture regimes. The effect of biochar application on soil enzyme activity and microbial community composition did not show a clear trend. However, SWP 700 biochar improved soil enzyme activity compared with that of the control and improved bacterial diversity and evenness compared with those of other biochars, which was attributed to the high surface area available for microbial colonization. Low soil moisture content significantly reduced enzyme activity and bacterial richness even with biochar amendment, except for SWP 550 biochar. This study implies the suitability of biochar for improvement of soil quality in MP contaminated soil under both moisture regimes. However, further long-term studies are needed to get a clear understanding on the impact of different types of biochar on MP-contaminated soil.  相似文献   

3.
We developed a rapid-test to screen for effects of biochar on seed germination and soils. Crop seeds were placed in containers and covered with 15 g of soil with 1% biochar by weight. Two agricultural soils from South Carolina USA were used. Eighteen biochars were produced from six primary feedstocks [pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG); and two blends of PC and PL, 50% PC/50% PL (55), and 80% PC/20% PL (82)]. Each feedstock was pyrolyzed at 350, 500 and 700°C. There were few biochar effects on seed germination. Shoot dry weight was increased for carrot, cucumber, lettuce, oat, and tomato; primarily with biochars containing PL. Soil pH, electrical conductivity and extractable phosphorus primarily increased with PL, SS, 55, and 82 treatments for both soil types and across species. This method can be an early indicator of biochar effects on seed germination and soil health.  相似文献   

4.

Purpose

Biochars are a by-product of the biofuel processing of lignocellulosic and manure feedstocks. Because biochars contain an assemblage of organic and inorganic compounds, they can be used as an amendment for C sequestration and soil quality improvement. However, not all biochars are viable soil amendments; this is because their physical and chemical properties vary due to feedstock elemental composition, biofuel processing, and particle size differences. Biochar could deliver a more effective service as a soil amendment if its chemistry was designed ex ante with characteristics that target specific soil quality issues. In this study, we demonstrate how biochars can be designed with relevant properties as successful soil amendments through feedstock selection, pyrolysis conditions, and particle size choices.

Materials and methods

Biochars were produced by pyrolysis of parent lignocellulosic feedstock sources—peanut hull (PH; Archis hypogaea), pecan shell (PS; Carya illinoensis), switchgrass (SG; Panicum virgatum), pine chips (PC; Pinus taeda), hardwood wastes (wood), and poultry litter manure (PL; Gallus domesticus), as well as blends of these feedstocks at temperatures ranging from 250 to 700 °C. Additionally, blended feedstocks were made into pellets (>2 mm) prior to pyrolysis at 350 °C. Dust-sized (<0.42 mm) biochar was obtained through grinding of pelletized biochars. After chemical characterization, the biochars were evaluated as fertility amendments in a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Kandiudult) during two different pot incubation experiments.

Results and discussion

PL biochars were alkaline and enriched in N and P, whereas biochar from lignocellulosic feedstocks exhibited mixed pH and nutrient contents. Blending PL with PC resulted in lower biochar pH values and nutrient contents. In pot experiment 1, most biochars significantly (P?<?0.05) raised soil pH, soil organic carbon, cation exchange capacity, and Mehlich 1 extractable P and K. PL biochar added at 20 g?kg?1 resulted in excessive soil P concentrations (393 to 714 mg?kg?1) and leachate enriched with dissolved phosphorus (DP, 22 to 70 mg?L?1). In pot experiment 2, blended and pelletized PL with PC feedstock reduced soil pH and extractable soil P and K concentrations compared to pot experiment 1. Water leachate DP concentrations were significantly (P?<?0.05) reduced by pelletized biochar blends.

Conclusions

Short-term laboratory pot experiments revealed that biochars can have different impacts at modifying soil quality characteristics. Keying on these results allowed for creating designer biochars to address specific soil quality limitations. In the process of manufacturing designer biochars, first, it is important to know what soil quality characteristics are in need of change. Second, choices between feedstocks, blends of these feedstocks, and their accompanying particle sizes can be made prior to pyrolysis to create biochars tailored for addressing specific soil quality improvements. Utilization of these principles should allow for effective service of the designed biochar as a soil amendment while minimizing unwanted ex facto soil quality changes and environmental effects.  相似文献   

5.
A glasshouse-based study was conducted to investigate the effect of urease inhibitor N-(n-butyl) thiophosphoric triamide (‘Agrotain’) and irrigation on urea hydrolysis and its movement in a Typic Haplustept silt loam soil (in 72 repacked soil cores). Half (36) of these cores were adjusted to soil moisture contents of 80% field capacity (FC) and the remaining 36 cores to 50% FC. Granular urea with or without Agrotain was applied at a rate equivalent to 100 kg N ha−1. There were three replicates to these two sets of soil cores. After 1 day of treatment application, soil cores of the 50% FC were adjusted to 80% FC by applying surface irrigation. Twelve pots were destructively sampled at each day after 1, 2, 3, 4, 7 and 10 days of treatment application to determine urea hydrolysis and its lateral and vertical movement in different soil layers. Agrotain-treated urea delayed urea hydrolysis during the first 7 days after its application. This delay in urea hydrolysis caused by Agrotain enabled added urea, which is uncharged, to move away from the surface soil layer to the sub-surface soil layer both vertically and laterally. In contrast, most urea hydrolysed to soil NH4+ within 2 days of its application. Irrigation after 1 day resulted in further urea movement both laterally and vertically from the surface soil layer (0–10 mm) to the sub-soil layer (30–50 mm) in Agrotain-treated urea. These results suggest that Agrotain delayed urea hydrolysis and allowed more time for rainfall or irrigation to move added urea from the surface layer to sub-soil layers where it is likely to make good contact with plant roots. This distribution of urea in the rooting zone has the potential to enhance N use efficiency and minimize N losses associated with ammonia volatilization from surface-applied urea.  相似文献   

6.
Biochar has been widely proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. To quantify the changes in soil microbial biomass and to understand the mechanisms involved, two biochars were prepared at 350 °C (BC350) and 700 °C (BC700) from Miscanthus giganteus, a C4 plant, naturally enriched with 13C. The biochars were added to soils of about pH 4 and 8, which were both sampled from a soil pH gradient of the same soil type. Isotopic (13C) techniques were used to investigate biochar C availability to the biomass. Scanning Electron Microscopy (SEM) was used to observe the microbial colonization, and Attenuated Total Reflectance (ATR) to highlight structural changes at the surface of the biochars. After 90 days incubation, BC350 significantly increased the biomass C concentration relative to the controls in both the low (p < 0.05) and high pH soil (p < 0.01). It declined between day 90 and 180. The same trend occurred with soil microbial ATP. Overall, biomass C and ATP concentrations were closely correlated over all treatments (R2 = 0.87). This indicates that neither the biomass C, nor ATP analyses were affected by the biochars, unless, of course, they were both affected in the same way, which is highly unlikely. About 20% of microbial biomass 13C was derived from BC350 after 90 days of incubation in both low and high pH soils. However, less than 2% of biomass 13C was derived from BC700 in the high pH soil, showing very low biological availability of BC700. After 90 days of incubation, microbial colonization in the charsphere (defined here as the interface between soil and biochar) was more pronounced with the BC350 in the low pH soil. This was consistent with the biomass C and ATP results. The microbial colonization following biochar addition in our study was mainly attributed to biochar C availability and its large surface area. There was a close linear relationship between 13CO2 evolved and biomass 13C, suggesting that biochar mineralization is essentially a biological process. The interactions between non-living and living organic C forms, which are vital in terms of soil fertility and the global C cycle, may be favoured in the charsphere, which has unique properties, distinct from both the internal biochar and the bulk soil.  相似文献   

7.
Changes in the profile distribution of soil C stocks for conventional versus no‐tillage can affect N2O losses. Uncertainty remains whether deep N placement into a wetter layer in humid areas would affect N2O losses. This study evaluated the effects of soil carbon profile distribution (inverted, normal), depth of nitrogen placement (5 cm, 15 cm), temperature (10, 20 and 30 °C) and soil texture (clay loam, loamy sand) on N2O emissions from soil cores in a 216‐h incubation after simulated rainfall. N2O losses were larger from the clay loam than from the loamy sand, and cumulative N2O emissions from the inverted profile, with greater C levels at depth, were more than those from the profile with more C near the upper surface. Cumulative N2O losses from the inverted clay loam profile with deep N placement (1.16 mg N per kg dry soil; 0.71% of applied N) on average were almost double those in the loamy sand (0.62 mg N per kg dry soil; 0.42%). The smallest N2O losses were measured from the profiles with more C close to the upper surface with a shallow placement of N for the clay loam (0.19 mg N per kg dry soil; 0.12%) and loamy sand (0.33 mg N per kg dry soil; 0.23%). An exponential relationship between N2O fluxes and temperature was measured. We conclude that large N2O losses may occur under the combination of greater soil C content at deeper layers (ploughed soils) and moist profiles after N application (humid regions). Deep N placement appears to aggravate rather than ameliorate these concerns.  相似文献   

8.
生物炭对东北黑土持水特性的影响   总被引:2,自引:1,他引:1  
为探究生物炭对东北黑土持水特性的影响,系统研究3种添加比例(2%、5%、10%)、3种粒径(0.25、0.5、1 mm)的杨木炭和竹炭对3种质地东北黑土(壤土、砂壤土、砂土)田间持水量和含水率的影响规律,构建添加生物炭黑土的水分特征曲线,并采用Van-Genuchten和Broods-Corey模型进行拟合。结果表明:生物炭能显著提高不同质地东北黑土的持水能力,黑土的田间持水量与生物炭的添加比例呈显著正相关,而与生物炭的粒径呈负相关,0.5 mm和1 mm粒径的生物炭对黑土田间持水量的影响差异不显著,杨木炭显著优于竹炭,0.25 mm、10%添加比例的杨木炭对东北黑土持水能力的提高效果最优,壤土、砂壤土、砂土3种质地黑土的田间持水量和饱和含水率分别可提高64.97%、66.42%、69.39%和47.60%、38.93%、31.18%;Van-Genuchten模型能更精确的模拟添加生物炭黑土的水分特征曲线,最佳离心时间为100 min,三次函数曲线能够较好的拟合添加生物炭黑土的体积含水率与离心吸力之间的多元动态关系,为生物炭对各种质地东北黑土水分运动规律的深入研究提供理论依据。  相似文献   

9.
《Applied soil ecology》2006,32(3):199-210
Common root rot (causal agent Aphanomyes euteiches) is a major disease of commercially grown snap bean (Phaseolus vulgaris L.). Organic amendments hold potential to suppress plant diseases, which may be due to changes in soil biology and other soil properties. The objective of this study was to determine the potential of paper-mill residual by-products to suppress common root rot of snap bean in relation to soil properties. The study was done on soil (Plainfield sandy loam, Hancock, WI) from a field trial comparing annual applications of fresh paper-mill residuals (0, 22 or 33 dry Mg ha−1) or composted paper-mill residuals (0, 38 or 78 dry Mg ha−1). Soil was removed from each treatment that had been in place 3 years in April 2001 (1 year after last amendment) and on September 2001 (4 months after last amendment) and brought to the laboratory. Soils were incubated at field moisture content (25 °C) and periodically bioassayed with bean seedlings (9, 44, 84, 106, 137, 225 or 270 days after removal from the field) for snap bean root rot. Soils were sampled on the same day as the root rot bioassay and assayed for β-glucosidase, arylsulfatase and fluorescein diacetate hydrolysis activities (FDA), microbial biomass-C (MBC) (by chloroform fumigation), water stable aggregation, and total C. There were large differences in snap bean root rot incidence between the field amendment treatments. The unamended field soil had high levels of disease incidence throughout the experiment but disease incidence tended to decrease over time in amended soils. The disease was suppressed by both fresh and composted paper-mill residuals, but the composted residuals at high rates had the lowest disease incidence (<40%) and produced healthiest plants. Root rot severity was strongly negatively correlated with total C (0.001  p) and arylsulfatase activity (0.001  p). β-Glucosidase activity was negatively correlated (0.05  p) with disease severity while soil MBC showed inconsistent negative correlations with disease severity over the incubation sampling periods. Arylsulfatase activity was the best indicator for reflecting disease suppression. The amendments improved soil quality, which was exemplified by improved aggregation.  相似文献   

10.
While a large-scale soil amendment of biochars continues to receive interest for enhancing crop yields and to remediate contaminated sites, systematic study is lacking in how biochar properties translate into purported functions such as heavy metal sequestration. In this study, cottonseed hulls were pyrolyzed at five temperatures (200, 350, 500, 650, and 800 °C) and characterized for the yield, moisture, ash, volatile matter, and fixed carbon contents, elemental composition (CHNSO), BET surface area, pH, pHpzc, and by ATR-FTIR. The characterization results were compared with the literature values for additional source materials: grass, wood, pine needle, and broiler litter-derived biochars with and without post-treatments. At respective pyrolysis temperatures, cottonseed hull chars had ash content in between grass and wood chars, and significantly lower BET surface area in comparison to other plant source materials considered. The N:C ratio reached a maximum between 300 and 400 °C for all biomass sources considered, while the following trend in N:C ratio was maintained at each pyrolysis temperature: wood?cottonseed hull≈grass≈pine needle?broiler litter. To examine how biochar properties translate into its function as a heavy metal (NiII, CuII, PbII, and CdII) sorbent, a soil amendment study was conducted for acidic sandy loam Norfolk soil previously shown to have low heavy metal retention capacity. The results suggest that the properties attributable to the surface functional groups of biochars (volatile matter and oxygen contents and pHpzc) control the heavy metal sequestration ability in Norfolk soil, and biochar selection for soil amendment must be made case-by-case based on the biochar characteristics, soil property, and the target function.  相似文献   

11.
Purpose

The objective of this study was to investigate the effects of amendment of different biochars on the physical and hydraulic properties of desert soil.

Materials and methods

Biochars were produced with woodchip, rice straw, and dairy manure at temperatures of 300 and 700 °C, respectively. Each biochar at 5% (w/w) was mixed with desert soil, and the mixtures were incubated for 120 days.

Results and discussion

The different biochar treatments greatly reduced soil bulk density and saturated hydraulic conductivity. Especially the rice straw biochar addition resulted in the lowest saturated hydraulic conductivities among the treatments. Biochar addition significantly increased water retention of desert soil at any suction. At the same suction and experimental time, the treatment with the rice straw biochar produced at the lower temperature resulted in higher water content than the other treatments. The biochar additions slightly enhanced formation of soil macro-aggregates in the early experimental time. However, the aggregate contents gradually decreased with time due to the lack of effective binding agents (e.g., soil organic matter and clay minerals).

Conclusions

The changes of hydraulic properties of desert soil were attributable to the biochar properties. The higher fine particle content, porosity, and surface hydrophilicity of rice straw biochars were the most beneficial properties to increase soil water retention and to reduce water flow in the desert soil. The improvement of hydraulic properties by biochar addition may provide a potential solution to combat desertification.

  相似文献   

12.

Purpose

Biochar addition to soils potentially affects various soil properties, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and hydraulic properties.

Materials and methods

Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700 °C, respectively. Each biochar was mixed at 5 % (w/w) with a forest soil, and the mixture was incubated for 180 days, during which soil physical and hydraulic properties were measured.

Results and discussion

Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity at the early incubation stage. Saturated hydraulic conductivities of the soil with biochars, especially produced at high pyrolysis temperature, were higher than those without biochars on the sampling days. The treatments with woodchip biochars resulted in higher saturated hydraulic conductivities than the dairy manure biochar treatments. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than that with the dairy manure biochars.

Conclusions

Biochar addition significantly affected the soil physical and hydraulic properties. The effects were different with biochars derived from different feedstock materials and pyrolysis temperatures.  相似文献   

13.
The use of biochar as a soil amendment is gaining interest to mitigate climate change and improve soil fertility and crop productivity. However, studies to date show a great variability in the results depending on raw materials and pyrolysis conditions, soil characteristics, and plant species. In this study, we evaluated the effects of biochars produced from five agricultural and forestry wastes on the properties of an organic‐C‐poor, slightly acidic, and loamy sand soil and on sunflower (Helianthus annuus L.) growth. The addition of biochar, especially at high application rates, decreased soil bulk density and increased soil field capacity, which should impact positively on plant growth and water economy. Furthermore, biochar addition to soil increased dissolved organic C (wheat‐straw and olive‐tree‐pruning biochars), available P (wheat‐straw biochar), and seed germination, and decreased soil nitrate concentration in all cases. The effects of biochar addition on plant dry biomass were greatly dependent upon the biochar‐application rate and biochar type, mainly associated to its nutrient content due to the low fertility of the soil used. As a result, the addition of ash‐rich biochars (produced from wheat straw and olive‐tree pruning) increased total plant dry biomass. On the other hand, the addition of biochar increased the leaf biomass allocation and decreased the stem biomass allocation. Therefore, biochar can improve soil properties and increase crop production with a consequent benefit to agriculture. However, the use of biochar as an amendment to agricultural soils should take into account its high heterogeneity, particularly in terms of nutrient availability.  相似文献   

14.
ABSTRACT

Present study evaluated the influence of slow-pyrolyzed wood-derived and cow manure-derived biochars on growth performance (i.e., yield production, nitrogen use efficiency (NUE), and phosphorus use efficiency (PUE)) of Pisum sativum under groundwater and municipal wastewater irrigation. Biochars were applied at 5, 10, and 15 t ha?1 rates for 2 years. The amendment of biochars did not enhance yield during first year under both irrigation types; rather, small-particle-sized (<0.65 mm) wood-derived biochar reduced significantly yield at higher application rates under groundwater irrigation. During second year, amendment of biochars significantly increased the yield especially at higher application rates under groundwater irrigation while no influence of biochars was observed for wastewater irrigation treatment. The yield was significantly lower under wastewater irrigation for all treatments as compared to first year. The NUE and PUE of pods and stover were not different during first year and second year under both irrigation treatments except for the small-particle-sized wood-derived biochar applied at 10 and 15 t ha?1, which tended to reduce significantly the NUE and PUE of pods and stover under groundwater irrigation during first year of cropping. The NUE and PUE were significantly lower during following year under wastewater irrigation. Our results suggest that amendment of biochars had positive influence on the growth of P. sativum under groundwater irrigation during second year of cropping while these amendments had no influence under wastewater irrigation.  相似文献   

15.
Biochar application to soil has significant potential as a climate change mitigation strategy, due to its recalcitrant C content and observed effect to suppress soil greenhouse gas emissions such as nitrous oxide (N2O). Increased soil aeration following biochar amendment may contribute to this suppression.Soil cores from a Miscanthus X. giganteus plantation were amended with hardwood biochar at a rate of 2% dry soil weight (22 t ha−1). The cores were incubated at three different temperatures (4, 10 and 16 °C) for 126 days, maintained field moist and half subjected to periodic wetting events. Cumulative N2O production was consistently suppressed by at least 49% with biochar amendment within 48 h of wetting at 10 and 16 °C. We concluded that hardwood biochar suppressed soil N2O emissions following wetting at a range of field-relevant temperatures over four months. We hypothesised that this was due to biochar increasing soil aeration at relatively high moisture contents by increasing the water holding capacity (WHC) of the soil; however, this hypothesis was rejected.We found that 5% and 10% biochar amendment increased soil WHC. Also, 10% biochar amendment decreased bulk density of the soil. Sealed incubations were performed with biochar added at 0–10 % of dry soil weight and wetted to a uniform 87% WHC (78% WFPS). Cumulative N2O production within 60 h of wetting was 19, 19, 73 and 98% lower than the biochar-free control in the 1, 2, 5 and 10% biochar treatments respectively. We conclude that high levels of biochar amendment may change soil physical properties, but that the enhancement of soil aeration by biochar incorporation makes only a minimal contribution to the suppression of N2O emissions from a sandy loam soil. We suggest that microbial or physical immobilisation of NO3 in soil following biochar addition may significantly contribute to the suppression of soil N2O emissions.  相似文献   

16.
The aim of this study was to investigate the effect of biochar addition on the denitrification process and N2O emission in Cd-contaminated soil. Four different biochars, i.e., dairy manure and rice straw pyrolyzed at 350 and 550 °C, respectively, were added into a Cd-contaminated soil and incubation experiments were conducted for 8 weeks. Results showed that Cd had an inhibitory effect on denitrifying reductase enzymes and reduced the abundance of functional genes. On the contrary, amendment with the biochars increased denitrifying enzyme activity and gene abundance, and thus, enhanced the denitrification process. Labile carbon (C) in the biochar-amended soil, which was calculated based on the two-pool exponential model, was the key factor to facilitate this process. As a less important factor, elevated soil pH by biochar addition also increased denitrifying activity as well as the nosZ abundance. Decrease of Cd bioavailability by the biochar addition was beneficial to the denitrification process. Addition of the biochars with higher amount of NO3 ?-N, especially the rice straw-derived biochars, increased cumulative N2O emission by more than ten times relative to the Cd-contaminated soil. With the great amount of labile C and NO3 ?-N, the treatment of biochars prepared at 350 °C released the larger amount of CO2 and N2O than other treatments. The biochar addition could totally release the heavy metal stress and restore the Cd-contaminated soil in terms of bacterial community.  相似文献   

17.
Incidental losses of dissolved reactive phosphorus (DRP) to a surface waterbody originate from direct losses during land application of fertilizer, or where a rainfall event occurs immediately thereafter. Another source is the soil. One way of immobilising DRP in runoff before discharge to a surface waterbody, is to amend soil within the edge of field area with a high phosphorus (P) sequestration material. One such amendment is iron ochre, a by-product of acid mine drainage. Batch experiments utilising two grassland soils at two depths (topsoil and sub-soil), six ochre amendment rates (0, 0.15, 1.5, 7.5, 15 and 30 g kg−1 mass per dry weight of soil) and five P concentrations (0, 5, 10, 20 and 40 mg L−1) were carried out. A proportional equation, which incorporated P sources and losses, was developed and used to form a statistical model. Back calculation identified optimal rates of ochre amendment to soil to ameliorate a specific DRP concentration in runoff. Ochre amendment of soils (with no further P inputs) was effective at decreasing DRP concentrations to acceptable levels. A rate of 30 g ochre kg−1 soil was needed to decrease DRP concentrations to acceptable levels for P inputs of ≤10 mg L−1, which represents the vast majority of cases in grassland runoff experiments. However, although very quick and sustained metal release above environmental limits occurred, which makes it unfeasible for use as a soil amendment to control P release to a waterbody, the methodology developed within this paper may be used to test the effectiveness and feasibility of other amendments.  相似文献   

18.
Earthworm growth is affected by fluctuations in soil temperature and moisture and hence, may be used as an indicator of earthworm activity under field conditions. There is no standard methodology for measuring earthworm growth and results obtained in the laboratory with a variety of food sources, soil quantities and container shapes cannot easily be compared or used to estimate earthworm growth in the field. The objective of this experiment was to determine growth rates of the endogeic earthworm Aporrectodea caliginosa (Savigny) over a range of temperatures (5–20 °C) and soil water potentials (−5 to−54 kPa) in disturbed and undisturbed soil columns in the laboratory. We used PVC cores (6 cm diameter, 15 cm height) containing undisturbed and disturbed soil, and 1 l cylindrical pots (11 cm diameter, 14 cm height) with disturbed soil. All containers contained about 500 g of moist soil. The growth rates of juvenile A. caliginosa were determined after 14–28 days. The instantaneous growth rate (IGR) was affected significantly by soil moisture, temperature, and the temperature×moisture interaction, ranging from −0.092 to 0.037 d−1. Optimum growth conditions for A. caliginosa were at 20 °C and −5 kPa water potential, and they lost weight when the soil water potential was −54 kPa for all temperatures and also when the temperature was 5 °C for all water potentials. Growth rates were significantly greater in pots than in cores, but the growth rates of earthworms in cores with undisturbed or disturbed soil did not differ significantly. The feeding and burrowing habits of earthworms should be considered when choosing the container for growth experiments in order to improve our ability to extrapolate earthworm growth rates from the laboratory to the field.  相似文献   

19.
Pyrogenic carbon (biochar) amendment is increasingly discussed as a method to increase soil fertility while sequestering atmospheric carbon (C). However, both increased and decreased C mineralization has been observed following biochar additions to soils. In an effort to better understand the interaction of pyrogenic C and soil organic matter (OM), a range of Florida soils were incubated with a range of laboratory-produced biochars and CO2 evolution was measured over more than one year. More C was released from biochar-amended than from non-amended soils and cumulative mineralized C generally increased with decreasing biomass combustion temperature and from hardwood to grass biochars, similar to the pattern of biochar lability previously determined from separate incubations of biochar alone.The interactive effects of biochar addition to soil on CO2 evolution (priming) were evaluated by comparing the additive CO2 release expected from separate incubations of soil and biochar with that actually measured from corresponding biochar and soil mixtures. Priming direction (positive or negative for C mineralization stimulation or suppression, respectively) and magnitude varied with soil and biochar type, ranging from −52 to 89% at the end of 1 year. In general, C mineralization was greater than expected (positive priming) for soils combined with biochars produced at low temperatures (250 and 400 °C) and from grasses, particularly during the early incubation stage (first 90 d) and in soils of lower organic C content. It contrast, C mineralization was generally less than expected (negative priming) for soils combined with biochars produced at high temperatures (525 and 650 °C) and from hard woods, particularly during the later incubation stage (250-500 d). Measurements of the stable isotopic signature of respired CO2 indicated that, for grass biochars at least, it was predominantly pyrogenic C mineralization that was stimulated during early incubation and soil C mineralization that was suppressed during later incubation stages. It is hypothesized that the presence of soil OM stimulated the co-mineralization of the more labile components of biochar over the short term. The data strongly suggests, however, that over the long term, biochar-soil interaction will enhance soil C storage via the processes of OM sorption to biochar and physical protection.  相似文献   

20.
生活污水灌溉小白菜的盆栽试验研究   总被引:2,自引:1,他引:1  
污水水质及灌溉制度是影响污水灌溉安全性的主要因素.盆栽试验设置了两种水质(清水和污水)和4个灌水下限(60?,70?,80?,90?),共8个处理,研究了污灌条件下不同灌水下限对小白菜生长及品质的影响.试验结果表明:生活污水灌溉会造成小白菜轻度减产,植株的硝酸盐含量和叶片叶绿素含量增加,植株重金属累积增加;灌水下限对小白菜生长状况和品质均有较大影响,污水灌溉条件下各项指标随灌水下限变化的变化规律不同于清水灌溉条件,表明污水灌溉的灌水下限不能直接移用清水灌溉的控制指标.综合分析表明污水灌溉80? 灌水下限条件下小白菜有较高的产量、水分利用效率和叶绿素含量,较低的硝酸盐含量和重金属富集,因此选择土壤相对含水率80?以及与此相对应的叶片细胞液浓度9.3%作为污水灌溉的灌水下限指标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号