首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrogen (N) leaching from soil into water is a significant concern for intensively grazed forage‐based systems because it can cause a decline in water quality and is a risk to human health. Urine patches from grazing animals are the main source of this N. The objective of this study was to quantify the effect that forage type and gibberellic acid (GA) application had on N leaching and herbage N uptake from urine patches on perennial ryegrass–white clover (RGWC), Italian ryegrass and lucerne. A lysimeter study was conducted over 17 months to measure herbage growth, N uptake and N loss to water beneath each of the three forage types with the following treatments: control, urine (700 kg N/ha) and urine with GA (8 g GA active ingredient/ha). Compared with RGWC (205 kg N/ha), N leaching losses were 35.3% lower from Italian ryegrass (133 kg N/ha) and 98.5% higher from lucerne (407 kg N/ha). These differences in leaching loss are likely to be due to winter plant growth and N uptake. During the winter months, Italian ryegrass had higher N uptake, whereas lucerne had lower N uptake, compared with RGWC. The application of GA had no effect on N leaching losses, DM yield or N uptake of forage treated with 700 kg N/ha urine.  相似文献   

2.
Long‐term conservation tillage can modify vertical distribution of nutrients in soil profiles and alter nutrient availability and yields of crops. This study aimed to evaluate the effect of 14 yr of conventional (CT) and reduced tillage (RT) on soil macronutrient availability (0–5, 5–15, 15–30 cm) and uptake by Italian ryegrass and maize in a forage rotation under a temperate–humid climate (NW Spain). Soil contents of total C, plant available Ca, Mg, Na, K and P and their uptake by plants were evaluated over 2 yr. The three‐way ANOVA showed that tillage and its interactions with soil depth and sampling date have little influence on soil C and macronutrients contents (<13% of variance explained). In the topsoil layer, all studied variables (except K) increased in RT compared with CT, but they remained unchanged (C, Ca and Na) or decreased (Mg, K and P) in deeper layers. Crop yields were greater with RT than CT during the year with soil‐water‐deficit periods, while limited tillage effect was found in the other year. Whereas no differences were obtained for maize, nutrient concentration (Mg, Na, K and P) in ryegrass increased under RT. Conservation tillage improved surface soil fertility, maize yield and ryegrass nutrient content.  相似文献   

3.
Summary The legume Medicago sativa L. was grown in three calcareous soils supplied with increasing amounts of soluble phosphate, or a vesicular-arbuscular mycorrhizal (VAM) inoculum. The three test soils had high concentrations of extractable Ca. Analyses of dry-matter production and of the concentrations and content of the nutrients N, P, K, Ca, and Mg in plant tissues showed that, for each soil, a particular level of P application was able to match the VAM effects on N, P, and K levels. The Ca concentration and content in the VAM inoculated plants were, however, significantly lower than those in the P-supplied non-mycorrhizal treatments that matched the VAM effects. The N:P and the K:P ratios were about the same for mycorrhizal and non-mycorrhizal P-supplied control plants in all the three soils, but VAM inoculation lowered the Ca:P ratio in all soils. The mycorrhizae decreased Mg uptake in one of the soils, where non-mycorrhizal plants had high Mg concentrations in tissues. It is concluded that VAM depress the excessive acquisition of Ca by plants in calcareous soils.  相似文献   

4.
ABSTRACT

Roots of young ‘Golden Delicious’ apple on M9 rootstock were inoculated with four strains of Azotobacter chroococcum, which were isolated from various soils. Effects of these strains in combination with different levels of nitrogen (N) fertilizer and compost on plant growth and nutrient uptake were studied over two seasons. Therefore, a factorial arrangement included four strains of A. chroococcum, two levels of N-fertilizer (0 and 35 mg N kg?1soil of ammonium nitrate) and two levels of compost (0 and 12 g kg?1 soil of air-dried vermicompost). Among the four strains, AFA146 was the most beneficial strain, as it increased leaf area, leaf potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) uptake and root N, phosphorus (P), potassium (K), Mn, and Zn. The combination of AFA146 strain, compost and N fertilizer increased leaf uptake of Ca, Mg, Fe, Mn, Zn, and B, and root uptake of P, K, Ca, Mg, Mn, and copper (Cu), and root dry weight.  相似文献   

5.
Abstract

Tall fescue (Festuca arundinacea) is assuming increasing importance as a pasture species in South Africa. Many of the soils on which fescue is grown are inherently high in exchangeable Al and are characterized by high P‐immobilization capacities. The responses of fescue to dolomitic lime and P were examined in a factorial field trial on a red clay (Kandiustalfic Eustrustox) having a pH(KCl) and acid saturation [100(Al+H)/(Al+H+Ca+Mg+K)] in the unlimed state of 4.1 and 48%, respectively. A significant, though very limited, dry‐matter yield response to lime was evident (yields in the absence of lime were approximately 80% of the yields obtained at high lime levels). This pattern in the response to lime remained consistent over the three seasons of experimentation, despite soil acidity levels being substantially increased through the periodic use of ammonium sulphate as the N source in the trial. A significant response to P was evident at the first harvest after establishment; thereafter, P treatments had no effect on yield. The lime and P response data obtained in this investigation indicate that tall fescue is much more tolerant of soil acidity and has substantially lower soil P requirements than other important crop and pasture species in this country, such as maize (Zea mays) and Italian ryegrass (Lolium multiflorum). Lime significantly increased herbage Mg levels yet, in general, did not influence Ca levels in the herbage. Concentrations of Mg in the herbage exceeded Ca concentrations at all lime rates. Luxury uptake of K resulted in the K/(Ca+Mg) equivalents ratio in the herbage frequently exceeding the tetany hazard threshold of 2.2.  相似文献   

6.
Plants in which growth was reduced by low and high Al applications were designated as Al-sensitive plant (Hordeum vulgare) and Al-medium tolerant plants (Leucaena leucocephala, Ischaemum barbatum, Stylosanthes guianensis, and Fagopyrum esculentum), respectively, while plants in which growth was not affected or was stimulated by Al application were designated as Al-tolerant plant (Brachiaria ruziziensis) and Al-stimulated plants (Melastoma malabathricum, Melaleuca cajuputi, Acacia mangium, Hydrangea macrophyila, Vaccinium macrocarpon, Polygonum sachalinense, and Oryza sativa), respectively. Plants tolerant to or stimulated by Al were further classified based on the criteria of Al accumulation: 1) Al-excluders such as M. cajuputi, A. mangium, L. leucocephala, I. barbatum, S. guianensis, and O. sativa, 2) Al root-accumulators such as V. màcrocarpon, B. ruziziensis, and P. sachalinense, and 3) Al-accumulators such as M. malabathricum, H. macrophylla, and F. esculentum. The growth and N, P, and K uptake in M. malabathricum, M. cajuputi, A. mangium, L. leucocephala, H. macrophylla, V. macrocarpon, I. barbatum, P. sachalinense, F. esculentum, and O. sativa were stimulated by Al application, especially P uptake, while in H. vulgare (Al-sensitive plant) they were reduced by Al application. Ca and Mg uptake of many plants was inhibited by Al application, while that of some plants adapted to low pH soils was not affected at all (Ca and Mg: M. cajuputi, H. macrophylla, V. macrocarpon, I. barbatum, and S. guianensis; Mg: B. ruziziensis and P. sachalinense). In M. malabathricum, the relationship between Al and Ca (or Mg) was antagonistic because the Ca and Mg contents decreased by Al application even though dry matter, N, P, and K accumulation was stimulated by Al application. Plants adapted to low pH soils grew poorly in the no-Al treatment. Since the effect of the pH on plant growth was less conspicuous than that of Al, growth stimulation by Al application was ascribed not only to the alleviation of H+ toxicity but also to the increase of root activity such as P uptake.  相似文献   

7.
Abstract

The objective of this work was to appraise the double acid (0.05N HCl+0.025N H2SO4) extraction agent for assessing the availability of Ca, Mg, and K in organic soils. The evaluation was done by determining the relation and interactions between the concentrations of Ca, Mg and K extracted from soils and those found in onion and alfalfa tissues.

The extraction procedure was found to give good relations (r 0.848**) between the concentrations of Ca and Mg extracted from soils and those present in onion and alfalfa tissues, though interactions between the amounts of Ca and Mg extracted from soils were found.

A differentiation among soils was found upon relating the amounts of soil extracted K to its concentration in onion and alfalfa tissues. Soil extracted K was shown to be related to its preponderance (K x 100/K Ca Mg) over other extracted bases (r = 0.975**). A critical preponderance of 11% K was identified for alfalfa. The critical preponderance of K in crops appraises some of the interactions among available soil cations and, consequently, is suggested as an improved approach for predicting crop response to potassium fertilization.  相似文献   

8.
Availability and plant uptake of nutrients were evaluated in three tropical acid soils (Kandiudult) amended with paper pulp and lime under greenhouse conditions. Amendments were applied to attain target pH values of 5.5, 6.0, and 6.5. A control treatment (no paper pulp or lime added) was also included. Rye grass (Lolium perenne L.) as a test plant was grown for three successive cycles of 40 days each. Extractable nutrients and cumulative nutrient uptake were determined. The application of paper pulp or lime resulted in a significant increase in exchangeable Ca and K and a decrease in exchangeable Mg and extractable Fe, Mn, and Zn. Amendment of soils with paper pulp or lime increased plant uptake of Ca and Mg and decreased that of K, Mn, and Zn. Both amendments behaved similarly, but the effect of lime seemed generally greater than that of paper pulp. Paper pulp in tropical acid soils behaved as a liming agent rather than an organic amendment. Similar to lime, amendment of soils with paper pulp resulted in an increase in availability of Ca and Mg and in a decrease in availability of K, Mn, and Zn for plants. Soil extractions appeared to be appropriate for assessing the availability of Ca, Mn, and Zn. Soil pH and effective cation exchange capacity positively influenced the availability of Ca and negatively the availability of Mn and Zn. Thus, the precision of predicting nutrient availability in paper pulp amended tropical acid soils could be improved by including soil pH or effective cation exchange capacity in relevant regression equations.  相似文献   

9.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

10.
The effects of lime application with multiple soil management methods and uses on dry matter (DM) yield and crude protein (CP) content of Silage maize cropping in succession with Italian ryegrass (ryegrass) from 2009 to 2014 in a southern Brazilian Oxisol were studied. The experimental design was completely randomized block in split-plot with four replications. The main plot treatments were the four soil management methods: conventional tillage (CT), minimum tillage (MT), no-tillage (NT) and chiseled no-tillage (CNT). The sub-plots treatments were the three uses of Italian ryegrass (ryegrass): cover crop (CC), silage (S), and grazing dairy heifers as part of integrated crop-livestock system (ICL). In all the years, the maize was sown approximately 30 days after the ryegrass desiccation with herbicide. In the medium-term (5 yrs.) after liming, soil management methods did not change DM yield and CP content in silage maize. The use of ryegrass for S and ICL did not change DM yield, but notably maintained or increased CP content in silage maize after liming. The use of ryegrass only as CC provided less measurable benefits than the combined production system of silage maize with ryegrass.  相似文献   

11.
This study evaluated soil health in fields of wheat (Triticum aestivum L. cv Shatabdi) and potatoes (Solanum tuberosum L.) irrigated by different blends of municipal wastewater (hereafter called wastewater). The crops were grown with and without added fertilizers over three consecutive years. The wastewater contained high concentrations of organic carbon (C), nitrogen (N), phosphorus (P), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), zinc (Zn) and boron (B). It also contained negligible concentrations of a few heavy metals. Irrigation by wastewater resulted in an increase in the porosity of the surface soil and thus a reduced bulk density. Wastewater enhanced the saturated hydraulic conductivity and water retention capacity of the soils. The organic carbon, total N, available P and S, and exchangeable Na, K, Ca and Mg of the soils increased proportionately with the quantity of applied wastewater. C, N and K increased significantly (α = 0.05) when fields were irrigated using raw wastewater after applied fertilizers; the other elements accumulated in the soil insignificantly under both fertility levels. Electrical conductivity (EC) and pH of the upper 0–20 and 20–40 cm soil layers increased with the application of wastewater; the increase was significant only under raw wastewater irrigation. In the 40–60 cm soil layer, both EC and pH remained unchanged. The applied inorganic fertilizers raised EC but reduced soil pH. The wastewater contained large counts of total coliform (TC: 17.2 × 106 cfu/100 mL) and faecal coliform (FC: 13.4 × 103 cfu/100 mL). Irrigation using municipal wastewater is proposed for improving soil fertility as well as for alleviating water scarcity with the exception of some crops whose edible parts come in direct contact with wastewater and/or are eaten uncooked.  相似文献   

12.
A greenhouse experiment was conducted to study the effect of mycorrhizal colonization by Gigaspora margarita, Glomus intraradices, and Acaulospora laevis on nutrient uptake of K, Ca, Mg, Cu, Zn, Fe, and Mn by Astragalus sinicus L. in soils spiked with lanthanum at five rates (0, 1, 5, 10, and 20 mg kg−1). Lanthanum application significantly decreased the concentrations of K, Ca, Mg, Cu, Zn, and Fe in shoots and the concentrations of Cu and Zn in roots. Mycorrhizal treatments markedly improved uptake of nutrients, and these results are important since nutrient deficiency often occurs in contaminated sites.  相似文献   

13.
The use of biochar in agriculture is a promising management tool to mitigate soil degradation and anthropogenic climate change. However, biochar effects on soil nutrient bioavailability are complex and several concurrent processes affecting nutrient bioavailability can occur in biochar‐amended soils. In a short‐term pot experiment, the concentration of N, P, K, S, Ca, Mg, Cu, Zn, Mn, B, Fe, and Na in the shoots of maize grown in three different soil types [sandy soil (S1), sandy loam (S2), and sandy clay loam (S3)] was investigated. The soils were either unamended or amended with two different biochars [wheat straw biochar (SBC) or pine wood biochar (WBC)] at two P fertilizer regimes (–/+ P). We used three‐way ANOVA and Principal Component Analyses (PCA) of transformed ionomic data to identify the effects of biochar, soil, and P fertilizer on the shoot nutrient concentrations. Three distinct effects of biochar on the shoot ionome were detected: (1) both biochars added excess K to all three soils causing an antagonistic effect on the uptake of Ca and Mg in maize shoots. (2) Mn uptake was affected by biochar with varying effects depending on the combined effect of biochar and soil properties. (3) WBC increased maize uptake of B, despite the fact that WBC increased soil pH and added additional calcite to the soil, which would be expected to reduce B bioavailability. The results of this study highlight the fact that the bioavailability of several macro and micronutrients is affected by biochar application to soil and that these effects depend on the combined effect of biochar and soils with different properties.  相似文献   

14.
Abstract

Most agricultural soils in the Indian River area, South Florida, are sandy with minimal holding capacity for moisture and nutrients. Phosphorus (P) leaching from these soils has been suspected of contributing to the eutrophication of surface waters in this region. Dolomite phosphate rock (DPR) and N‐viro soil are promising amendments to increase crop production and reduce P loss from sandy soils. Soil incubation and greenhouse pot experiments were conducted to examine the effects of Florida DPR–N‐viro soil mixtures on the growth of a horticultural crop in an acidic sandy soil and to generate information for developing a desired formula of soil amendments. Dolomite phosphate rock and N–viro soil application increased soil pH, electrical conductivity (EC), extractable P, calcium (Ca), and magnesium (Mg). N–viro soil had greater effect on soil pH, organic matter content, and microbial biomass than the DPR. Comparatively higher nitrification rates were found in the N–viro soil treatment than the DPR treatment. A systematic decrease in soil‐extractable P was found with increasing proportions of N‐viro soil from the combined amendments. Greenhouse study demonstrated that the application of DPR and N‐viro soil significantly improved dry‐matter yield and increased plant P, Ca, and Mg concentrations of radish (Raphanus sativus L.). Based on dry‐matter yield and plant N uptake, the combined amendments that contained 30% or 20% of DPR materials appear to be optimal but remain to be confirmed by field trials.  相似文献   

15.
Rock fragments (particles > 2 mm) are usually considered chemically inert for plant growth. In this paper, the potential fertility in terms of exchangeable Ca, Mg, and K of rock fragments from sandstone and siltstone derived soils from northern Apennines (Italy) is reported and contrasted with that of the fine earth (particles < 2 mm). The results show that rock fragments are a source of Ca, Mg, and K. When expressed on a volume basis, the abundance of these exchangeable nutrients sometimes may equal or surpass that of the fine earth. The plant uptake of Mg and K has been demonstrated in growth experiments with Agrostis under controlled conditions.  相似文献   

16.
天鹰椒施用氮肥 ,增加了干物质中N ,Mg的百分含量 ,但减少了P和K的百分含量 ;施N情况下 ,N ,P ,Ca,Mg的吸收总量增加。施用磷肥 ,增加了干物质中P的百分含量 ,减少了Ca ,Mg的百分含量 ;N ,P ,K ,Ca的吸收总量增加 ,Mg的吸收总量减少。施用钾肥 ,增加了干物质中K的百分含量 ,减少了Ca ,Mg的百分含量 ,K ,P的吸收总量增加 ,N ,Ca ,Mg的吸收总量减少  相似文献   

17.
Abstract

Quantifying the effects of soil acidity on plant growth remains a challenging research topic as numerous soil and plant growth factors are influenced by pH and lime. In the field, annual ryegrass (Lolium multiflorum Lam. ‘Marshall') responded positively to the application of 3.8 Mg lime/ha on a strongly acid (pH 4.7) Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult) over three growing seasons. Dry matter yield in some cuttings, however, was better correlated with soil Al, P, Ca, Mg, and K than with pH. A greenhouse study was undertaken to quantitatively determine the effects of these five minerals plus Mo on ryegrass yield in limed and unlimed Lilbert soil material. Three ryegrass cuttings were obtained from unlimed (pH 4.8) or limed (1000 mg CaCO3/kg) Lilbert soil which was also amended with five rates of Ca, K, Mg, Al, P, and Mo in combinations stipulated by central composite design methodology. Response surface models that fit yield to the applied treatments and soil test data were complex because all factors and many interactions were significant. Furthermore, the models were transformed as the plants matured and element availability changed due to mineral uptake. Most yield improvement derived from liming occurred as a result of the elimination of exchangeable Al with a concomitant increase in P efficiency. Applied Ca did not alleviate Al toxicity in unlimed soil. Chlorotic plants developed in all pots where Mg was excluded. Yield was increased by applied Mg and Mo in unlimed soil, but not in limed soil. Applied K improved yield only in limed soil. Although regression accounted for a large portion of the yield variability (R2 values ranged from 0.75 to 0.95), these models were unable to accurately predict yield in control treatments.  相似文献   

18.
Direct use of poultry manure on agricultural lands may cause environmental concerns, so there is a need to establish the suitability of the application of biochar derived from poultry manure for calcareous soil chemical properties and plant growth. The purpose of this study was to evaluate the effects of processed poultry manure (0, 5, 10 and 20 g/kg) and its biochar (0, 2.5, 5, 10 and 20 g/kg) on soil chemical properties of a calcareous soil and growth of bean (Phaseolus vulgaris) and maize (Zea mays) plants. In the incubation experiment, both processed poultry manure (PPM) and biochar decreased pH and the concentration of plant‐available Fe of soil but increased plant‐available P, Zn, Cu and Mn concentrations. PPM and biochar increased the concentrations of exchangeable cations (K, Ca and Mg) in soil. PPM and biochar applications increased the growth of maize and bean plants. PPM and biochar resulted in increased concentrations of N, P, K, Ca, Fe, Zn, Cu and Mn in bean plants. In maize plants, PPM and biochar applications increased the N, P, K, Zn, Cu and Mn but decreased the Ca and Mg concentrations. Results of this study reveal that poultry manure biochar can be used effectively for agricultural purposes.  相似文献   

19.
A greenhouse experiment was conducted to evaluate the effect of six rates of filter cake and bagasse ash each separately (0, 20, 40, 60, 80, and 100 ton ha?1) on nutrients uptake and utilization efficiency of wheat in nitisol. Filter cake application was found to better increase in nitrogen (N), sodium (Na), calcium (Ca), potassium (K), and magnesium (Mg) uptake and utilization efficiency while bagasse ash influenced zinc (Zn) and copper (Cu) uptake. Bagasse ash application also reduced the uptake of iron (Fe) and manganese (Mn) by wheat. Multiple regression analysis showed that the soil properties explained selected macronutrients and micronutrients uptake. Exchangeable acidity negatively explained some of the nutrient uptakes. In general, filter cake and bagasse ash were found effective in enhancing the nutrient uptake and utilization efficiency by wheat cultivated in acidic soils such as nitisol.  相似文献   

20.
Abstract

Forage intake with potassium/(calcium + magnesium) [K/(Mg + Ca)] values in excess of 2.2 are associated with grass tetany and Mg deficiencies in ruminants. This study was conducted to determine the degree to which forage K and Mg concentrations and K/(Ca + Mg) ratios could be predicted from soil bicarbonate (HCO3) extractable phosphate‐phosphorus (PO4‐P), and saturation extract Ca, Mg, K, sodium (Na), and nitrate‐nitrogen (NO3‐N) concentrations. Crested wheatgrass (Agropyron spp) strains and cultivars representing four ploidy levels were grown in the greenhouse on eight calcareous soils with different saturation extract Ca, Mg, K and K/Mg ratios. The plants were harvested three times. Soil solution K/(Ca + Mg) and K/Mg ratios were the only measured soil parameters that showed a consistent correlation with plant K/(Ca + Mg) ratios. Bicarbonate extractable soil P was positively related to plant P and K uptake in the first harvest, but was not related in the second and third harvests nor was soil P related to plant Ca or Mg content. There was a tendency for the higher ploidy level entries to have higher plant K/(Ca + Mg) ratios. It was concluded that soil K/(Ca + Mg) ratios can be used to predict relative forage K/(Ca + Mg) ratios for grasses grown under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号