首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysyl residues of rapeseed napin (2S) and cruciferin (12S) were acylated and sulfamidated by means of anhydrides and sulfonyl chlorides, respectively. The secondary and tertiary structures as well as the surface hydrophobicity of the modified proteins were studied using circular dichroism, intrinsic fluorescence, and binding of anilinonaphthalenesulfonic acid. The results showed clearly that grafting of hydrophobic chains induced different structural modifications and surface hydrophobicities on the monomeric (2S) and on the hexameric (12S) proteins. Thus, the original structure of the 2S modified protein seemed to be preserved. Therefore, the surface hydrophobicity increased proportionally with the number of groups grafted. Conversely, after modification, 12S was shown to be expanded. As a result, hydrophobic regions were exposed, leading to a much greater hydrophobization of the protein surface. Acylation and sulfamidation appeared, therefore, to be good methods to hydrophobize efficiently the surface of the two proteins and thus might probably induce new functional properties.  相似文献   

2.
Rapeseeds contain cruciferin (11S globulin), napin (2S albumin), and oleosin (oil body protein) as major seed proteins. The effects of oil expression and drying conditions on the extraction of these proteins from rapeseed meal were examined. The conditions strongly affected the extraction of oleosin and only weakly affected the extraction of cruciferin and napin. The protein chemical and physicochemical properties of cruciferin, the major protein present, were compared with those of glycinin (soybean 11S globulin) under various conditions. In general, cruciferin exhibited higher surface hydrophobicity, lower thermal stability, and lower and higher solubility at mu= 0.5 and mu = 0.08, respectively, than did glycinin. At the pHs (6.0, 7.6, and 9.0) and ionic strengths (mu= 0.08 and 0.5) examined, the emulsifying ability of cruciferin was worse than that of glycinin, except at mu= 0.08 and pH 7.6. The emulsifying abilities of cruciferin and glycinin did not correlate with thermal stability and surface hydrophobicity. Higher protein concentration, higher heating temperature, higher pH, and lower ionic strength were observed to produce harder gels from cruciferin. Gel hardness partly correlated with the structural stability of cruciferin.  相似文献   

3.
土壤腐殖质分组研究   总被引:22,自引:1,他引:22  
采用Pallo法对两种耕地土壤腐殖质进行分组,初步研究了各组分的数量和结构特征。结果表明:焦磷酸钠提取的胡敏酸(HAp)是胡敏酸(HA)的主要组分;游离富里酸(FAf)是富里酸(FA)的主要组分;胡敏素(HM)的主要组分为非溶解性胡敏素(ISHM),而溶解性胡敏素(SHM)含量较低。通常随土层深度增加,HA、HM各组分的绝对数量和相对数量都下降;FA各组分的绝对数量也下降,而相对数量增加;HA/FA比值下降。一般来看,焦磷酸钠提取的富里酸(FAp)、氢氧化钠提取的富里酸(FAs)比相应的HAp、氢氧化钠提取的胡敏酸(HAs)的分子结构简单,铁结合胡敏素(HMi)比粘粒结合胡敏素(HMc)的分子结构简单;随土层深度增加,HAp、HAs的分子结构变简单,而HMi、HMc的分子结构变复杂。  相似文献   

4.
The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.  相似文献   

5.
微波对大豆蛋白氧化聚集体结构及功能特性的影响   总被引:2,自引:2,他引:0  
为了探究不同时间微波处理对大豆蛋白氧化聚集体的结构和功能性质的影响,由偶氮二异丁脒盐酸盐(2,2'-azobis (2-amidinopropane) dihydrochloride,AAPH)诱导构建大豆蛋白氧化反应体系,采用功率为350 W的微波对其照射不同时间(0、10、20、30、40、50、60、70 s),探究微波处理对氧化聚集大豆蛋白的结构特性和加工特性的影响。结果表明,氧化可诱导形成粒径、分子量更大,结构更致密的蛋白质聚集体,同时对加工特性造成损害。适当时间(<30 s)的微波处理会导致氧化聚集体的分子结构打开、粒径降低和浊度降低,无序结构减少,进而改善了起泡性、乳化性和持水、持油性。长处理时间(>30 s)的微波处理导致已解聚的大豆蛋白分子重新形成更大的分子聚集体,降低功能性质。这表明微波物理场可以通过改变大豆蛋白氧化聚集体的结构和聚集行为调节其功能性质,为大豆蛋白功能性质的改善及微波在大豆蛋白氧化聚集体行为调控的应用方面提供参考。  相似文献   

6.
高静压处理改善白果蛋白致敏性和功能特性   总被引:1,自引:2,他引:1  
为了研究高静压处理对白果蛋白结构、抗原性及功能特性的影响,分别采用100,200,300,400,500,600和700 MPa的压力对白果蛋白进行处理,采用酶联免疫吸附检测法测定蛋白的致敏性,分别采用聚丙烯酰胺凝胶电泳,圆二色谱,荧光光谱和紫外吸收光谱检测白果蛋白分子量和构象的改变,功能特性的检测包括热稳定性和乳化特性。结果表明,高静压处理在300~700 MPa范围内可显著降低白果蛋白的致敏性(P0.05),同时高压处理后,白果蛋白能被分解为分子量为4~30 k Da范围内的小分子蛋白,此外,其二级结构中的α-螺旋和β-折叠结构被大量破坏形成无规则卷曲结构,其紫外吸收强度,表面疏水性和游离巯基含量明显提高(P0.05),高压对白果蛋白的致敏性影响与其结构变化密切相关,另外高压处理(300~700 MPa)可明显改善白果蛋白的热稳定性和乳化性能(P0.05)。因此,高静压技术可以作为一种降低白果蛋白致敏性和改善其功能特性的有效手段。  相似文献   

7.
Pyrazosulfuron ethyl (PE) and halosulfuron methyl (HM) are two new highly active sulfonylurea herbicides that have been widely used for weed control in a variety of vegetables and other crops. These two herbicides have similar molecular structures, differing only in the substitutions on the pyrazole ring. Chemical hydrolysis is a primary process affecting the environmental fate of sulfonylurea pesticides. The hydrolytic transformation kinetics of PE and HM were investigated as a function of pH and temperature. For both herbicides, the hydrolysis rate was pH-dependent and increased with increasing temperature. The hydrolysis of both sulfonylureas was much faster in acidic or basic media than under neutral conditions. Identification of hydrolytic products by liquid chromatography-mass spectrometry (LC-MS) suggested that both PE and HM were subject to cleavage and contraction of the sulfonylurea bridge. The hydrolysis rate of HM was significantly higher than that of PE in alkaline solutions, despite their structural similarity. A chlorine substitution on HM's pyrazole ring makes HM more susceptible to bridge contraction than PE under basic conditions. The hydrolysis of HM and PE was relatively unaffected by the presence of cyclic oligosaccharides (cyclodextrins), indicating that natural OH-containing organic compounds occurring in aquatic environments may have little impact on the transformation of these sulfonylurea herbicides.  相似文献   

8.
The effect of alkaline lignin (AL) and sodium lignosulfonate (LSS) on the structure of thermoplastic zein (TPZ) was studied. Protein structural changes and the nature of the physical interaction between lignin and zein were investigated by means of X-ray diffraction and Fourier transform infrared (FT-IR) spectroscopy and correlated with physical properties. Most relevant protein structural changes were observed at low AL concentration, where strong H-bondings between the functional groups of AL and the amino acids in zein induced a destructuring of inter- and intramolecular interactions in α-helix, β-sheet, and β-turn secondary structures. This destructuring allowed for an extensive protein conformational modification which, in turn, resulted in a strong improvement of the physical properties of the bionanocomposite.  相似文献   

9.
为了探究不同挤压温度(40、60、80、100和120℃)对大豆分离蛋白(Soy Isolate Protein,SPI)与葡萄籽原花青素(Grape Seed Proanthocyanidin Extract,GSPE)复合物功能性质及结构特性的影响。该研究以溶解度、乳化性、乳化稳定性、ζ-电位、粒度为指标,利用荧光光谱、红外光谱分析该复合体系中大豆分离蛋白功能性质及结构的变化。结果表明:相较于挤压SPI,经过挤压处理的SPI-GSPE复合物的溶解度、乳化活性指数、乳化稳定性指数、ζ-电位绝对值及持水性均显著提高(P<0.05),其表面疏水性、持油性显著下降(P<0.05)。随着挤压温度的升高,SPI-GSPE复合物的溶解度、持油性及乳化活性均先增大后减小且在80℃达到最大值,而其表面疏水性先减小后增大且最小值在80℃,ζ-电位绝对值、乳化稳定性及持水性均随温度的升高而降低。粒径分析结果表明,挤压处理后SPI与GSPE形成了更加致密的复合物;荧光光谱及红外光谱结果表明,与GSPE的复合及挤压处理使SPI氨基酸残基所处微环境发生变化,蛋白结构发生变化。以上结果表明挤压温度为80℃时SPI-GSPE复合物功能性质提高幅度最大,为GSPE与SPI复合提高SPI的功能性质提供参考。  相似文献   

10.

Purpose

Humic matter (HM) is the leftover from life and at the same time the source for new life. The resulting complex system with many interactions has become a crucial part for the anthropocene and by this for the survival of mankind. Based on the results of the application of advanced analytical tools, the structures, reactions and interactions of HM are discussed.

Materials and methods

HM was investigated from different water samples (ground water, bog lake, waste water effluent). Fulvic acids (FA) and humic acids (HA) were isolated from a bog lake and from waste water effluent according to the XAD-method described by the International Humic Substances Society. Parameters like dissolved organic carbon (DOC), spectral absorption coefficient at λ?=?254 nm (SAK), AOX (on activated carbon absorbable organically bound halogen) and THM (trihalomethanes) were determined according to ISO standard methods. For additional characterization, size exclusion chromatography coupled with online DOC detection and solid-state NMR were applied. The degradation of HM was studied by heterogeneous photocatalysis with titanium dioxide. Membrane separation, done as ultra- and nanofiltration, was used to characterize different size fractions of HM.

Results and discussion

The water solubility and hence the omnipresence of HM in aquatic systems opens the door for obtaining well-defined samples for experiments with meaningful results. Information on transport properties and reactivity, derived from the molecular size of HM, was obtained by using membrane filtration at different pore sizes. Photocatalytic degradation of HM was investigated by irradiation of suspensions with TiO2 as catalyst. Small organic acids (e.g. formic acid) were formed before total mineralisation occurred.

Conclusions

It can be concluded that the properties of HM are well derivable from their molecular data. The resulting character of HM with respect of the human environment seems to be obviously ambivalent and asks for a sound understanding and proper management to support life in a sustainable way.
  相似文献   

11.
Biochar, a carbon-rich by-product of biomass pyrolysis, is widely recognized as a potential ingredient for soil amendment, fertility, and carbon sequestration owing to its favorable physicochemical properties. The objective of this study was to investigate the chemical and physical properties of biochars produced through pyrolysis at 450°C from agricultural residues available in Northwest Missouri, namely hardwood (HW), corn stover (CR), miscanthus (MS), and horse manure (HM). These properties were assessed through the analysis of pyrolysis yield, pH, volatile matter, fixed carbon, ash and carbon (C), hydrogen (H), sulfur (S), nitrogen (N) contents, trace metal concentrations, surface morphology, surface functional groups, bulk density, and water holding capacity. The biochars derived from HW, MS and CR materials showed high volatile-matter (33–42%), high fixed carbon contents (42–47%), very low ash contents (6–15%), and low bulk density (0.14–0.28 g cm?3) as compared to that of HM. A wide range of trace elements was observed in biochar samples with significant differences in concentrations. In addition, CR, HW and MS biochars displayed a disordered graphitic-like structure with well-developed pores and surface areas of 23, 70 and 90 m2/g respectively, and high water-holding capacity up to 750%, indicating their potential application as a soil amendment.  相似文献   

12.
13.
The use of organic amendments requires an adequate control of the chemical quality of their humic acid (HA)-like fractions and of the effects that these materials may have on the status, quality, chemistry and functions of native soil HAs. In this work, the compositional, functional and structural properties of the HA-like fractions isolated from a liquid swine manure (LSM), a municipal sewage sludge (SS), and two municipal solid waste composts (MSWCs) were evaluated in comparison to those of HAs isolated from three unamended soils and from the corresponding soils amended with LSW, SS, and MSWC at various rates in three field plot experiments conducted in Minnesota, USA. With respect to the unamended soil HAs, the HA-like fractions of the three amendments featured a greater aliphatic character, a marked presence of proteinaceous, S-containing and polysaccharides-like structures, an extended molecular heterogeneity, small organic free radical contents and a small degree of humification. The MSWC-HAs featured a larger degree of humification than LSM-HA and SS-HA. The three amendments affected in different ways and by various extents the compositional, structural and functional properties of soil HAs depending upon the nature, origin and application rate of the amendment. In general, the data obtained suggested that proteinaceous, S-containing and aliphatic structures contained in HA-like fractions of organic amendments were partially incorporated into native soil HAs.  相似文献   

14.
We studied the effects of in situ remediation of a heavy metal (HM) contaminated soil on some soil chemical properties, microbial function and microbial structural diversity after 18 months. The experiment was carried out at semifield scale in containers filled with HM contaminated soil from the Aznalcóllar mine accident (Southern Spain, 1998). The remediation measures consisted of the application of different amendments and/or establishment of a plant cover (Agrostis stolonifera L.). Seven treatments were established: four organic treatments (municipal waste compost (MWC), biosolid compost (BC), leonardite (LEO) and litter (LIT)), one inorganic treatment (sugar beet lime (SL)) and two controls (control with plant cover (CTRP) and control without plant cover (CTR)). Several soil chemical (pH, soluble HM, total organic C (TOC), water-soluble C (WSC) and available-P) and biochemical properties (microbial biomass C (MBC), MBC/TOC ratio and enzyme activities) were determined. Microbial community structure was studied by means of ARDRA (amplified ribosomal DNA restriction analysis). The SL, MWC and BC treatments were the most efficient to raise soil pH and decrease soluble HM concentrations. Total organic C was increased in the organic treatments by 2 to 4-fold, whereas water-soluble C was statistically similar in the CTRP, SL and the organic treatments, probably due to the presence of a root system in all these treatments. Available-P was also increased in the BC, SL and MWC treatments due to the higher P content of the amendments applied in these treatments. Soil microbial function was generally enhanced in the amended and CTRP treatments. The MWC, BC and SL treatments were particularly efficient to increase microbial biomass C, the MBC/TOC ratio and the dehydrogenase and aryl-sulphatase enzyme activities. These results could be attributed to the amelioration of some of the soil chemical properties: increase in soil pH and water-soluble C and decrease of HM soluble concentrations. ARDRA analyses showed changes in structural diversity in both the bacterial and fungal community under the different treatments. Fingerprinting patterns of the 16S rDNA obtained with Hinf-I and of the 18S rDNA with Hpa-II revealed higher similarity percentages among samples from the same treatment compared with samples from the other treatments. In addition, a higher similarity was found between samples from all treatments under the Agrostis influence. The use of certain amendments and/or a plant cover is important for in situ remediation of HM contaminated soils, since these practices can affect soil chemical properties, as well as the microbial community function and structure.  相似文献   

15.
Although extrusion technology has contributed much to increasing the effective utilization of whey, the effect of extrusion conditions on the functional properties of the proteins is not well understood. In this work, the impact of extrusion temperature on the physical and chemical properties, molecular structures, and protein quality of texturized whey protein isolate (WPI) was investigated at a constant moisture content and compared with WPI treated with simple heat only. The Bradford assay methods, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and reversed-phase high-performance liquid chromatography techniques were used to determine protein solubility and to analyze compositional changes in the two major whey proteins, α-lactalbumin and β-lactoglobulin. Circular dichroism and intrinsic tryptophan fluorescence spectroscopic techniques were applied to study the secondary and tertiary structures of the proteins. This study demonstrated that extrusion temperature is a critical but not the sole determining factor in affecting the functional properties of extruded WPI.  相似文献   

16.
等离子体对鹰嘴豆分离蛋白溶解性和乳化特性的影响   总被引:1,自引:1,他引:0  
鹰嘴豆作为植物蛋白的优质来源,营养价值高,但功能性质较差无法满足现代食品工业需求。该研究利用介质阻挡放电(Dielectric Barrier Discharge,DBD)等离子体对鹰嘴豆分离蛋白(Chickpea Protein Isolates,CPI)进行改性处理,研究不同处理时间(0、1、2、3、4 min)对CPI溶解性、乳化特性、结构的影响及其之间的相关性。结果表明:经等离子体处理后,鹰嘴豆分离蛋白溶液的pH值降低,电导率增加。溶解性、乳化活性和乳化稳定性得到显著的改善(P < 0.05)。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析表明等离子体处理并未改变CPI的组成成分及种类,但7S和11S等主要亚基条带强度增加。等离子体处理后α-螺旋含量、自由巯基含量和表面疏水性显著增加(P < 0.05),无规卷曲含量降低(P < 0.05),表明蛋白的高级结构发生改变。扫描电镜显示随着处理时间的延长,样品的尺寸减小,表面结构变得更为松散。利用Pearson相关性分析和主成分分析表明,不同处理时间后,蛋白结构的变化与功能性质的改善呈现较强的相关性。等离子体处理4 min后,CPI的溶解性及乳化特性达到较优效果,研究结果可为开发利用鹰嘴豆分离蛋白和指导实际生产实践提供技术支持。  相似文献   

17.
为改善大豆分离蛋白膜的性能,将纳米氧化锌(ZnO Nanoparticles,ZnO NPs)和葡萄皮红(Grape-Skin Red,GSR)加入大豆分离蛋白(Soy Protein Isolate,SPI)中制备SPI/ZnO NPs/GSR复合膜,对复合膜的性能进行表征。结果表明当葡萄皮红、ZnO NPs和大豆分离蛋白以1∶2∶25的质量比制备复合膜时,相对于SPI/ZnO NPs膜,葡萄皮红可提高ZnO NPs和大豆分离蛋白的相容性,改善ZnO NPs在SPI膜中的分散性,并与ZnO NPs发挥协同作用提高SPI膜的机械性能、耐水性能和热稳定性(P<0.05)。SPI/ZnO NPs/GSR复合膜相比较于SPI膜,拉伸强度从1.37 MPa升至3.28 MPa,熔点从194 ℃升至231 ℃,含水率从34.41%降至25.37%,水蒸气透过系数从5.57×?10-12 (g·cm)/(cm2·s·Pa)降至4.74 × 10-12 (g·cm)/(cm2·s·Pa)。此外,复合膜对金黄色葡萄球菌和大肠杆菌表现出优异的抗菌性能,抑菌圈直径随着活性成分的添加呈上升趋势(大肠杆菌:SPI膜无,SPI/ZnO NPs膜2.29 cm,SPI/ZnO NPs/GSR膜2.36 cm;金黄色葡萄球菌:SPI膜无,SPI/ZnO NPs膜2.32 cm,SPI/ZnO NPs/GSR膜2.42 cm),在活性包装应用中具有极大潜力。研究结果为大豆分离蛋白基薄膜的生产应用提供参考。  相似文献   

18.
19.
The effects of enzymatic deamidation by protein-glutaminase (PG) on the functional properties of soy protein isolate (SPI) were studied. Conditions for the deamidation were evaluated by means of response surface methodology (RSM). Optimal conditions based on achieving a high degree of deamidation (DD) with a concurrently low degree of hydrolysis (DH) were 44 °C, enzyme:substrate ratio (E/S) of 40 U/g protein and pH 7.0. Under optimal conditions, both DD and DH increased over time. SDS-PAGE results indicated that lower molecular mass subunits were produced with increasing DD. Far-UV circular dichroism spectra revealed that the α-helix structure decreased with higher DD, while the β-sheet structure increased until 15 min of deamidation (32.9% DD), but then decreased at higher DD. The solubility of deamidated SPI was enhanced under both acidic and neutral conditions. SPI with higher DD showed better emulsifying properties and greater foaming capacity than SPI, while foaming stability was decreased. It is possible to modify and potentially improve the functional properties of SPI by enzymatic deamidation using PG.  相似文献   

20.
Defatted sesame meal ( approximately 40-50% protein content) is very important as a protein source for human consumption due to the presence of sulfur-containing amino acids, mainly methionine. Sesame protein isolate (SPI) is produced from dehulled, defatted sesame meal and used as a starting material to produce protein hydrolysate by papain. Protein solubility at different pH values, emulsifying properties in terms of emulsion activity index (EAI) and emulsion stability index (ESI), foaming properties in terms of foam capacity (FC) and foam stability (FS), and molecular weight distribution of the SPI hydrolysates were investigated. Within 10 min of hydrolysis, the maximum cleavage of peptide bonds occurred as observed from the degree of hydrolysis. Protein hydrolysates have better functional properties than the original SPI. Significant increase in protein solubility, EAI, and ESI were observed. The greatest increase in solubility was observed between pH 5.0 and 7.0. The molecular weight of the hydrolysates was also reduced significantly during hydrolysis. These improved functional properties of different protein hydrolysates would make them useful products, especially in the food, pharmaceutical, and related industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号