共查询到20条相似文献,搜索用时 0 毫秒
1.
Tida Ge San’an Nie Jinshui Wu Jianlin Shen He’ai Xiao Chengli Tong Danfeng Huang Yun Hong Kozo Iwasaki 《Journal of Soils and Sediments》2011,11(1):25-36
Purpose
Increasing soil organic matter content is important in improving soil fertility; however, conventional farming practices generally lead to a reduction in such organic material. A comparative study of organic and conventional arable farming systems was conducted in Shanghai, China, to determine the influence of management practices on soil chemistry, microbial activity, and biomass. Soils used in greenhouses and open field cultivation were obtained from plots subjected to organic farming methods for 3 years or from conventionally farmed fields in the same area. 相似文献2.
Tida Ge Hongzhao Yuan Paula Roberts Davey L. Jones Hongling Qin Chengli Tong Danfeng Huang 《Journal of Soils and Sediments》2012,12(3):323-333
Purpose
Free amino acids (FAAs) and peptides, and dissolved organic nitrogen (DON) comprise key pools in terrestrial soil carbon (C) and nitrogen (N) cycles. A comparative study of organic and conventional arable farming systems was conducted in Shanghai, China to determine the influence of management practices on characterization of AA and peptide dynamics. 相似文献3.
Soluble organic nitrogen in agricultural soils 总被引:36,自引:0,他引:36
D. V. Murphy A. J. Macdonald E. A. Stockdale K. W. T. Goulding S. Fortune J. L. Gaunt P. R. Poulton J. A. Wakefield C. P. Webster W. S. Wilmer 《Biology and Fertility of Soils》2000,30(5-6):374-387
The existence of soluble organic forms of N in rain and drainage waters has been known for many years, but these have not
been generally regarded as significant pools of N in agricultural soils. We review the size and function of both soluble organic
N extracted from soils (SON) and dissolved organic N present in soil solution and drainage waters (DON) in arable agricultural
soils. SON is of the same order of magnitude as mineral N and of equal size in many cases; 20–30 kg SON-N ha–1 is present in a wide range of arable agricultural soils from England. Its dynamics are affected by mineralisation, immobilisation,
leaching and plant uptake in the same way as those of mineral N, but its pool size is more constant than that of mineral N.
DON can be sampled from soil solution using suction cups and collected in drainage waters. Significant amounts of DON are
leached, but this comprises only about one-tenth of the SON extracted from the same soil. Leached DON may take with it nutrients,
chelated or complexed metals and pesticides. SON/DON is clearly an important pool in N transformations and plant uptake, but
there are still many gaps in our understanding.
Received: 10 June 1999 相似文献
4.
Very few studies have been related to soluble organic nitrogen (SON) in forest soils. However, this nitrogen pool could be a sensitive indicator to evaluate the soil nitrogen status. The current study was conducted in temperate forests of Thuringia, Germany, where soils had SON (extracted in 0.5 M K2SO4) varying from 0.3 to 2.2% of total N, which was about one-third of the soil microbial biomass N by CFE. SON in study soils were positively correlated to microbial biomass N and soil total N. Multiple regression analysis also showed that mineral N negatively affected SON pool. The dynamics of the SON was significantly affected by mineralization and immobilization. During the 2 months of aerobic incubation, the SON were significantly correlated with net N mineralization and microbial biomass N. SON extracted by two different salt solution (i.e. 1 M KCl and 0.5 M K2SO4) were highly correlated. In mineral soil, SON concentrations extracted by 1 M KCl and 0.5 M K2SO4 solutions were similar. In contrast, in organic soil layer the amount of KCl-extractable SON was about 1.2-1.4 times higher than the K2SO4-extractable SON. Further studies such as the differences of organic N form and pool size between SON and dissolved organic N (DON) are recommended. 相似文献
5.
An incubation experiment was carried out to investigate the interactions of two straw qualities differing in N content and two soils differently accustomed to straw additions. One soil under conventional farming management (CFM) regularly received straw, the other soil under organic farming management (OFM) only farmyard manure. The soils of the two sites were similar in texture, pH, cation‐exchange capacity, and glucosamine content. The soil from the OFM site had higher contents of organic C, total N, muramic acid, microbial biomass C and N (Cmic and Nmic), but a lower ergosterol content and lower ratios ergosterol to Cmic and fungal C to bacterial C. The straw from the CFM had threefold higher contents of total N, twofold higher contents of ergosterol and glucosamine, a 50% higher content of muramic acid, and a 30% higher fungal C–to–bacterial C ratio. The straw amendments led to significant net increases in Cmic, Nmic, and ergosterol. Microbial biomass C showed on average a 50% higher net increase in the organic than in the CFM soil. In contrast, the net increases in Nmic and ergosterol differed only slightly between the two soils after straw amendment. The CO2 evolution from the CFM soil always exceeded that from the OFM, by 50% or 200 µg (g soil)–1 in the nonamended control soil and by 55% or additional 600 µg (g soil)–1 in the two straw treatments. In both soils, 180 µg g–1 less was evolved as CO2‐C from the OFM straw. The metabolic quotient qCO2 was nearly twice as high in the control and in the straw treatments of the CFM soil compared with that of the OFM. In contrast, the difference in qCO2 was insignificant between the two straw qualities. Differences in the fungal‐community structure may explain to a large extent the difference in the microbial use of straw in the two soils under different managements. 相似文献
6.
Nicole L. Schon Alec D. Mackay Mike J. Hedley Maria A. Minor 《Biology and Fertility of Soils》2012,48(1):31-42
Organic management aims to promote soil biological activity. To test whether organic management stimulates soil biological
activity, invertebrates (macrofauna, mesofauna and microfauna) were collected from four paired commercial organically and
conventionally managed dairy farms on different soil types (Allophanic, Pallic, Recent and flooded Recent). Food webs were
constructed and rates of invertebrate-mediated N mineralisation calculated. The organic dairy operations used fewer nutrient
inputs and had lower stocking rates than their paired conventional farms. This translated into lower calculated pasture production
and less available plant litter entering the soil food web. Despite the lower plant litter inputs into the organic system,
earthworm biomass was higher (particularly in the Recent and flooded Recent soils), suggesting that under conventional management
the physical condition of the soil, as influenced by stock treading pressures, was more important for invertebrate activity
and their influence on N mineralisation than was food supply. Nitrogen mineralisation was higher in organic systems, with
earthworms contributing the most (24–98 kg N/ha/year). As the physical loading on the soil increased under conventional management,
the ability of the soil to provide soil services (i.e. N mineralisation and litter decomposition) became compromised. Organic
management on four soils stimulated biological activity by reducing the treading pressure on the soil and highlights the need
to consider the influence of management practices on the faunal environment (food availability and physical condition) to
understand the impacts of organic management and the role of fauna in N mineralisation. 相似文献
7.
Nitrogen (N)-fixing microorganisms are an important soil component as they help replenish the pool of available N. Organic management can influence the N-fixing community; however, diazotroph community structure and activity in horticultural systems and the impacts of specific cultivation methods (i.e., greenhouse and open field) are unclear. Using the nifH gene, a marker gene for the microbial community involved in N fixation, we investigated the occurrence (DNA) and activity (RNA) of the diazotrophic community in organically and conventionally managed soils in a horticultural system over the course of 1 year. Ordination analysis of DGGE profiles revealed organic management affected the community structure in the greenhouse but not the open field; fertilization intensity may explain this divergent response, as indicated by the relevance of total C content to community structure. Quantitative PCR revealed that organic management increased the abundance and activity of diazotrophs. The soluble organic N concentration was higher in organically managed soils and during warmer months, and correlated with diazotroph abundance. Most identified sequences were from known diazotrophs, predominantly β-, γ- and α-proteobacteria. Twenty-four bands resembled Pseudomonas stutzeri and eight resembled Azoarcus sp. Our results show that the cultivation method controls the extent of the effects of season and organic management on diazotrophs, and that greenhouse cultivation can boost the effects of organic management on this community. Organic management intensified the positive effect of seasonal temperature on diazotroph abundance and activity, which may increase biological nitrogen fixation rates. In tandem, soil DNA and RNA analyses provide a comprehensive picture of the community. 相似文献
8.
Soil soluble organic nitrogen (SON) can play an important role in soil nitrogen (N) cycling in forest ecosystems. This study examined the effect of land-use change from a native forest (NF) to a first rotation (1R) and subsequent second rotation (2R) hoop pine (Araucaria cunninghamii) plantation on soil SON pools. The impact of residue management on SON pools was also investigated in the 2R forest, where SON was measured in tree rows (2R-T) and windrows (2R-W). Various extraction techniques were used to measure SON pool size in the 0-10, 10-20 and 20-30 cm layers of soil. The results showed that land-use change had a significant impact on soil SON pools. In the 0-10 cm layer, 3.2-8.7, 14-23, 20-28, 60-160 and 127-340 mg SON kg−1 were extracted by water, 0.5 M K2SO4, 2 M KCl, hot water and hot 2 M KCl, respectively. The size of the SON pools and the potential production of SON (PPSON) were generally highest in the NF soil and lowest in the 2R-T soil, and in all forest types decreased with soil depth. The larger SON pools in the NF soil coincided with lower soil, litter and root C:N ratios, suggesting that the difference in the size of SON pools between the NF and 1R soil may be related to differences in the quality of organic matter input under the different forest ecosystems. Differences in the size of SON pools between the 1R soil and the 2R soils and between the 2R-T soil and the 2R-W soil may be related to the quantity of organic matter input and time since disturbance. Significant relationships were found between the SON extracted by 0.5 M K2SO4 (SONps) and 2 M KCl (SONKCl), and also among the SON extracted by hot 2 M KCl (SONhKCl), hot water (SONhw) and water (SONw), suggesting that the organic N released by these groups of extracts may be at least partly from similar pools. 相似文献
9.
A comparative study of the microbiology of soils managed under organic and conventional regimes 总被引:3,自引:0,他引:3
Abstract. Previous studies of the microbial status of soils managed under 'organic' and 'conventional' regimes have produced conflicting evidence of whether there are distinct differences in the size, composition and activity of the soil microbial biomass which may be attributed to management practice. In the present study, we have compared the microbiology of organically- and conventionally-managed soils at (primarily) two farms in England, over a two year period. Differences in microbial communities in soils under different management practice were subtle rather than dramatic. Many of the parameters measured, including total C and microbial biomass C, often showed no consistently significant differences in soils under different management. In soils from one farm, concentrations of ATP in Ringers solution soil extracts were mostly found to be significantly greater in organically-managed than in comparable conventionally-managed soils. While indirect (plate) counts showed that there were similar numbers of cultivable microorganisms present in these soils, total counts of bacteria (via DAPI-staining) were found to parallel the trends found for readily-extractable ATP. Numbers of metabolically-active bacteria, determined by FISH analysis using a EUB338 probe to detect ribosome-rich cells, indicated that the percentage of metabolically-active bacteria present was not determined by management practice. Total and active fungi were also found to be more abundant in organically-managed soils. It was concluded that changes in soil microbiology may occur as a consequence of switching to organic land management, but these may not be detectable by methods used frequently to assess soil biomass. In particular, increased numbers of viable but non-culturable bacteria and fungi in organically-managed soils points to a greater physiological diversity of microorganisms in such situations. 相似文献
10.
Studies were conducted to evaluate the relationships among different active N pools of organic matter in soils at two long-term
cropping systems in Iowa. Results indicated that multi-cropping systems, particularly meadow-based systems, enhanced bioactivities
of soils. Mono-cropping systems, particularly soybean, reduced soil microbial biomass and enzyme activities. The mineralizable
N pool (potential N mineralization;N
o) was more sensitive to changes in the size of the microbial biomass N (Nmic) than to changes in organic N. One unit change in organic N did not lead to substantial changes in N
o, but 1 unit change in Nmic resulted in three or more units change in N
o. The active N pools and turnover rate were more sensitive to changes in organic C than to changes in microbial biomass C
(Cmic). A unit change in organic C resulted in 10.6 units change in N
o, but a unit change in Cmic resulted in only 0.8 unit change in N
o. Cmic or Nmic are better indexes than organic C or N for the estimation of N
o or N availability, because biomass values are more highly correlated with cumulative N mineralized during 24 weeks of incubation,
with r values ranging from 0.57 (P<0.001) to 0.88 (P<0.001).
Received: 18 October 1999 相似文献
11.
Xiao Pu Yushu Shan Siyang Chen Zhaoliang Ding Fanghua Hao 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(8):749-764
Abstract Limited information is available for understanding factors controlled dynamics of soil organic carbon (SOC) and total nitrogen (TN) affected by long-term conventional cultivation in seasonally frozen soils. A 19-year observation in this study was conducted in north-eastern China to evaluate effects and relative importance of potential factors. SOC variation extent was greater relative to global average as per unit of annual mean air temperature and precipitation changed. Increased carbon sequestration was observed in meadow lessive, while slight to moderate declines occurred in meadow-boggy soil and meadow soil. However, no differences in TN were found across soil types. At sites with low slope, carbon and nitrogen sequestration increased, largely due to water movement. Increased biomass with introducing 1-year oilseed rape/fallow in crop rotations could promote SOC and TN accumulation in the long run. Planting proportion of crops could also regulate carbon and nitrogen levels at a farm scale; the optimal ratio was observed in the range of 0.8–1.4. High crop yield was associated with lower carbon and nitrogen levels, and nutrient thresholds of yielding increment were observed as 25.7 g kg?1 for carbon and 2.6 g kg?1 for nitrogen. The length of frost-free period or cultivation period could not help sequestrating carbon and nitrogen. Chemical fertilizer with crop residues provoked SOC and TN increments compared with no chemical fertilizer plus little organic manure. Different factors exerted different tendentious influences, leading to subtle differences in SOC and TN variation rates. Accordingly, optimal cultivation strategies could be developed to reduce nutrient losses and mitigate greenhouse gas emissions. 相似文献
12.
Wei Gong Xiaoyuan Yan Jingyan Wang Tingxing Hu Yuanbo Gong 《Biology and Fertility of Soils》2011,47(7):767-775
The objective of this study was to evaluate plant-available N pools and the role of N management index (NMI) in the surface
(0–20 cm) of a fluvo-aquic soil after 18 years of fertilization treatments under a wheat–maize cropping system in the North
China Plain. The experiment included seven treatments: (1) NPK, balanced application of chemical fertilizer NPK; (2) OM, application
of organic manure; (3) 1/2OMN, application of half organic manure plus chemical fertilizer NPK; (4) NP, application of chemical
fertilizer NP; (5) PK, application of chemical fertilizer PK; (6) NK, application of chemical fertilizer NK; and (7) CK, unfertilized
control. Total organic N (TON), microbial biomass N (MBN), labile N (LN), inorganic N (ION, including ammonium (NH4+)–N and nitrate (NO3−)–N) contents, net ammonification rate (NAR), net nitrification rate (NNR), net N mineralization rate (NNMR), and NMI in the
fertilized treatments were higher than in the unfertilized treatment. Application of chemical fertilizer N (NPK, NP, and NK)
increased ION in soils, compared with application of organic N or control. Nitrate N prevailed over exchangeable NH4+–N in all treatments. Nitrogen storage of the OM- and 1/2OMN-treated soils increased by 50.0% and 24.3%, respectively, over
the NPK-treated soil, which had 5.4–22.5% more N than NP-, PK-, and NK-treated soils. The MBN, LN, and ION accounted for 1.7–2.4%,
25.7–34.2%, and 1.4–2.9% of TON, respectively, in different fertilization treatments. The surface soils (0–20-cm layer) in
all treatments mineralized 43.6–152.9 kg N ha–1 year–1 for crop growth. Microbial biomass N was probably the better predictor of N mineralization, as it was correlated significantly
(P < 0.01) with NNMR. The OM and 1/2OMN treatments were not an optimal option for farmers when the crop yield and labor cost
were taken into consideration but an optimal option for increasing soil N supply capacity and N sequestration in soil. The
NPK treatment showed the highest crop yields and increased soil N fractions through crop residues and exudates input, and
thus, it may be considered as a sustainable system in the North China Plain. 相似文献
13.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming. 相似文献
14.
《Applied soil ecology》2008,38(3):256-266
Dynamics of soil bulk density, organic matter, microbial biomass, nitrogen, and nematode communities were assessed for a period of 4 years in field plots transitioning from conventional to organic farming practices. A rotation of soybeans, corn, oats and hay was used as an organic transitioning strategy and the conventional farming system had a corn and soybean rotation for comparison. Organic corn received raw straw pack beef manure and poultry compost at the rate of 27 and 28 Mg/h, respectively, and organic oats received raw straw pack beef manure and poultry compost at the rate of 18 and 1.8 Mg/h, respectively, while conventional plots received synthetic fertilizers. All crops in the organic system received primary tillage (chisel plow, disked and tined) whereas only corn received primary tillage in the conventional system but soybeans were no-till. Weed control was mechanical (twice diskings, rotary hoeings and row cultivation) in the organic system whereas herbicides were used in the conventional system. Soil bulk density did not differ in the two systems over a 4-year period but organic farming had slightly higher organic matter, mineral associated organic matter and particulate organic matter. Conventional system had more N in the mineral pools as indicated by higher NO3−-N whereas organic system had higher N in the microbial biomass indicating shifts in nitrogen pools between the two systems. Bacterivore nematodes were more abundant in the organic than the conventional system for most of the study period. In contrast, the conventional system had significantly higher populations of the root lesion nematode, Pratylenchus crenatus, than the organic system after completion of the rotation cycle (transition period) in spring 2004. The organic hay plots had the lowest populations of P. crenatus compared to corn, soybeans and oats. Nematode faunal profile estimates showed that the food webs were highly enriched and moderately to highly structured and the decomposition channels were bacterial in both systems. The lack of differences in structure index between the organic and conventional systems is probably due to the excessive tillage in the organic farming system, which may have prevented the build up of tillage-sensitive omnivorous and predatory nematodes that contribute to the structure index. We conclude that transition from conventional to organic farming can increase soil microbial biomass-N and populations of beneficial bacterivore nematodes while simultaneously reducing the populations of predominant plant-parasitic nematode, P. crenatus. Our findings also underscore the potential benefits of reducing tillage for the development of a more mature soil food web. 相似文献
15.
Yufei Li Chunyan Zheng Zhiping Cao 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(4):360-371
A comparative study of organic, low input, conventional vegetable greenhouse systems was conducted to assess the effect of management practices on the soil nematode community. Bacterivores were the most dominant trophic group in all three systems with a mean proportion of over 80%, followed by omnivore-carnivores. In general, organic management practices increased the abundance of total nematodes, bacterivores, fungivores, and omnivore-carnivores in comparison with low input and conventional management practices. Though inhibitory effects of plant feeders were found in organic and low input systems, these effects were more evident in organic systems. However, small differences were observed in the composition of trophic groups and fauna analysis. All three systems displayed enriched soil conditions and structured food webs. We inferred that the bottom-up effect resulting from organic input in the soil food web may play a more important role than the disruption effects under our high input greenhouse conditions. The Shannon index (H′) and genus dominance (λ) suggested that in greenhouse conditions, excessive manure input would cause a decrease in nematode diversity but increase the dominance, particularly for enrichment opportunists. We concluded that management practices under greenhouse conditions were more influential on nematode biomass (including trophic groups) than community structure. 相似文献
16.
《Applied soil ecology》2007,35(2-3):160-167
Soluble organic N and C were extracted from soils under long-term kikuyu grass pasture, annual ryegrass pasture and annual maize production using water, 0.5 M K2SO4 and 2 M KCl. Quantities extracted with K2SO4 were more than double those extracted with water while those extracted with KCl exceeded those using K2SO4. Differences in soluble organic C and N between land uses were much more obvious when water rather than salt solutions were used. It was suggested that water extracts give more realistic values than salt solutions. Regardless of the extractant used, the proportion of total N present as soluble N was considerably greater than the equivalent proportion of organic C present as soluble C. While the percentage of soil organic C and total N present in the light fraction and microbial biomass was lower in the kikuyu than ryegrass and maize soils, the equivalent values for water soluble C and N were, in fact, greatest in the kikuyu soil.The leaching of organic C, N and NO3− from these soils was also measured over a 6-month period in a greenhouse lysimeter study. The soils were either left undisturbed or were disturbed (broken into clods <50 mm diameter) to simulate tillage and stimulate microbial activity. Quantities of organic C and N leached were greater from the kikuyu than other treatments and tended to be greatest from the disturbed kikuyu soil. The percentage of total soil N leached as organic N was considerably greater than that of total organic C leached as soluble C. Leaching of NO3− was greatest from the disturbed kikuyu soil and least from the undisturbed kikuyu soil. The mean percentage of total soluble N present in organic form in leachates ranged from 17 to 32% confirming the importance of this form of N to leaching losses of N from agricultural soils. 相似文献
17.
《Applied soil ecology》2005,28(1):1-13
Legume-based pastures generally rely on soil biological activity to provide nitrogen (N) for plants. This study examined seasonal pasture growth in nine adjacent hill pastures, under sheep or beef, with different long-term managements, including certified organic, no fertilizer, and conventional fertilizer application, that formed a soil-fertility sequence. We determined relationships between net N mineralization, as a measure of soil biological activity and N availability, and microbial biomass, soil organic matter, and fauna. Net N mineralization generally explained differences in pasture production (r = 0.87). On an areal basis, net N mineralization was strongly related (r = 0.93) to total soil N (0–200 mm depth) and negatively related (r = −0.92) to soil C:N ratio, but not to soil C. Total N and C:N ratios were related to soil phosphorus (P) status and probably past N fixation by legumes. Where labile P was low, the N:P ratios of both soil microbes and enchytraeids were wide, and the organisms appeared to be P limited, possibly competing with plants for P. Faunal grazing on soil micro-organisms appeared to release P. We could find no convincing evidence that net N mineralization, pasture growth or soil biological diversity increased under organic farming. Rather, the data from organic pastures followed similar trend lines to data from pastures under conventional management. 相似文献
18.
Razzaghi Somayyeh Islam Khandakar Rafiq Ahmed Ibrahim Abdelmalik Mohamed 《Journal of Soils and Sediments》2022,22(9):2381-2391
Journal of Soils and Sediments - Deforestation is one of the ecosystem disservices associated with accelerated loss of soil organic carbon (SOC) and nitrogen (TN). The objective of our study was to... 相似文献
19.
Active fractions of soil carbon (C) and nitrogen (N) can undergo seasonal changes due to environmental and cultural factors, thereby influencing plant N availability and soil organic matter (SOM) conservation. Our objective was to determine the effect of tillage (conventional and none) on the seasonal dynamics of potential C and N mineralization, soil microbial biomass C (SMBC), specific respiratory activity of SMBC(SRAC), and inorganic soil N in a sorghum [Sorghum bicolor (L.) Moench]-wheat (Triticum aestivum L.)/soybean [Glycine max (L.) Merr.] rotation and in a wheat/soybean double crop. A Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas was sampled to 200 mm depth 57 times during a 2-yr period. Potential C mineralization was lowest (≈?2 to 3 g · m?2 · d?1) midway during the sorghum and soybean growing seasons and highest (≈?3 to 4 g · m?2 · d?1) at the end of the wheat growing season and following harvest of all crops. Addition of crop residues increased SMBC for one to three months. Potential N mineralization was coupled with potential C mineralization, SRAC, and changes in SMBC at most times, except during the wheat growing season and shortly after sorghum and soybean residue addition when increased N immobilization was probably caused by rhizodeposition and residues with low N concentration. Seasonal variation of inorganic soil N was 19 to 27%, of potential C and N mineralization and SRAC was 8 to 23%, and of SMBC was 7 to 10%. Soil under conventional tillage experienced greater seasonal variation in potential C and N mineralization, SRAC, bulk density, and water-filled pore space than under no tillage. High residue input with intensive cropping and surface placement of residues were necessary to increase the long-term level of active C and N properties of this thermic-region soil due to rapid turnover of C input. 相似文献
20.
《Applied soil ecology》2006,31(1-2):120-135
A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring farms were analyzed using a polyphasic approach combining traditional soil analysis, culture-dependent and independent microbiological analyses, a nematode community analysis and an enquiry about different management practices among the farmers. Organic management, known primarily for the abstinence of artificial fertilizers and pesticides, resulted in significantly lower levels of both nitrate and total soluble nitrogen in the soil, higher numbers of bacteria of different trophic groups, as well as larger species richness in both bacteria and nematode communities and more resilience to a drying–rewetting disturbance in the soil. The organic farmers plough their fields less deeply and tend to apply more organic carbon to their fields, but this did not result in a significantly higher organic carbon content in their soils. The levels of ammonium, organic nitrogen, phosphate and total phosphorus did not differ, significantly between the soils under different management. Fifty percent of the conventional Dutch farmers also used organic fertilizers and the numbers of farmers using a green crop fertilizer did not differ between the two management types. Soil type – clayey or sandy soil – in general had a much stronger effect on the soil characteristics than management type. The soil type influenced pH, nitrate, ammonium, phosphate and organic carbon levels as well as numbers of oligotrophic bacteria and of different groups of nematodes, and different diversity indices. With the collected data set certain soil characteristics could also be attributed to the use of different management practices like plow depth, crop or cover crop type or to the management history of the soil. 相似文献