首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil microarthropod community is an essential functional unit of soil food webs. Fertilizers can induce an alteration of quantity and quality of food for soil fauna and trigger profound changes in soil faunal communities. We initiated this study to examine the influence of organic and inorganic fertilizers on soil microarthropods in poplar plantations (Populus deltoides) in a coastal region of northern Jiangsu, eastern China. We established a control and four fertilizer application treatments: low and high levels of organic fertilizers, low and high levels of inorganic fertilizers. Organic fertilizer amendments increased both soil organic carbon (C) and total nitrogen (N), whereas inorganic fertilizer had a positive significant effect on soil total N. The application of both inorganic and organic fertilizers resulted in significantly reduced soil pH. We found that both inorganic and organic fertilizers increased the abundance of all soil microarthropods, bacterivorous Acari, and hemiedaphic and epedaphic Collembola, but had no influence on the total taxonomic richness, Shannon diversity index and DG diversity index of the microarthropod community. The abundance of soil microarthropods was positively correlated with soil C and N, and negatively with pH. Our results indicate that changes in the quality and quantity of soil organic matter and other immediate chemical properties after fertilizer application can increase the abundance of soil microarthropods, but have a limited influence on their diversity in the coastal alkaline soils of eastern China.  相似文献   

2.
Summary We investigated the effects of pitch pine seedling roots on extractable N, microbial growth rate, biomass C and N, and nematodes and microarthropods in microcosms with either organic (41% C, 1.14% N) or mineral (0.05% C, 0.01% N) horizon soils of a spondosol. Root quantity was manipulated by varying plant density (0, 1, 2, or 4 seedlings) and rhizosphere soil was separated from non-rhizosphere soil by a 1.2 m mesh fabric. In the rhizosphere of organic soil horizons, moisture, microbial growth rate, biomass C and N, and extractable N declined as root density was increased, but there was little effect on nematodes or microarthropods. High levels of extractable N remained after 5 months, suggesting that N mineralization was stimulated during the incubation. In the rhizosphere of mineral soil horizons, microbial growth rate, and nematode and microarthropod abundances increased at higher root density, and in the absence of roots faunal abundance approached zero. Faunal activity was concentrated in the rhizosphere compared to non-rhizosphere soil. In organic soil horizons, roots may limit microbial activity by reducing soil moisture and/or N availability. However, in mineral soil horizons, where nutrient levels are very low, root inputs can stimulate microbial growth and faunal abundance by providing important substrates for microbial growth. Our results demonstrate a rhizosphere effect for soil fauna in the mineral soil, and thus extends the rhizosphere concept to components of the soil community other than microbes for forest ecosystems. Although our results need to be verified by field manipulations, we suggest that the effects of pine roots on nutrient cycling processes in coniferous forests can vary with soil nutrient content and, therefore, position in the soil profile.  相似文献   

3.
We aimed to identify patterns of diversity in a below-ground community of microarthropods (mites and Collembola) after 15 months of a nutrient (calcium and nitrogen) manipulation experiment, located at the Natural Environment Research Council (NERC) Soil Biodiversity Site in Scotland, UK. We found that microarthropod densities increased with elevated soil fertility, but we detected no concurrent change in the diversity of soil microarthropods (mites and Collembola combined). That microarthropod density increased concurrently with improvements in soil fertility and plant productivity suggests that soil microarthropod communities are predominately regulated by bottom-up forces, driven by increased energy transfer via plant inputs to soil, providing increased food resources for fauna. However, that we found no concurrent change in the diversity of soil microarthropods provides little support for the idea that the diversity of soil fauna is positively related to their population density, primary productivity or improvements in soil conditions resulting from nutrient manipulations. However, we did find that microarthropod communities of more fertile sites contained a greater proportion of predators suggesting that more energy was transferred to higher trophic levels under elevated soil fertility. Our findings suggest that unlike plant communities, soil faunal diversity may not be strongly regulated by competition in productive situations, since competitive exclusion might not occur due to increased predation. Whilst we conclude that soil microarthropod diversity at our study site has not been affected by the nutrient additions to date, in the longer term we predict that changes in community composition and diversity could arise, most likely through top-down regulation of the soil food web.  相似文献   

4.
《Applied soil ecology》2007,37(2-3):136-146
The effect of temperature changes on soil communities is an important aspect when estimating the effects of a predicted climate change. The aim of this investigation was to increase knowledge on how freeze-thaw cycles alter the soil microarthropod community in the sub-arctic. The abundance of springtails and mites was investigated after three seasons of prolonged periods of freeze-thaw cycles in the field, and the presence or absence of migration barriers, at two different field sites. Dome shaped transparent plastic greenhouses were successfully used as a novel method to increase freeze-thaw cycle frequencies in the soil. At a fellfield site, freeze-thaw treatment did not lead to significant differences in the five main soil faunal groups, but increased abundance were seen in a number of separate taxa. There was no freeze-thaw treatment effect on soil microbial biomass or soil nutrients, although treatments interacted as inorganic N increased in the separate freeze-thaw and migration barrier treatments. By contrast, at a glade site responses were strong due to more pronounced increases in the number of freeze-thaw cycles. The highest numbers of Collembola after 2 years of treatment were found in the freeze-thaw plots, in combination with migration barriers. The freeze-thaw treatment here also resulted in more Oribatida, microbial biomass C and dissolved organic C. A common hypothesis is that an increased number of freeze-thaw cycles would result in elevated winter mortality in microarthropods due to increased risk of inoculative freezing. However, we observed no increased mortality due to freeze-thaw events. Rather, there was a stimulation of soil microarthropods and microbial biomass, perhaps due to a prolonged period of microbial and faunal activity when the soil is repeatedly frozen and thawed compared to a constantly frozen soil.  相似文献   

5.
Soil microarthropods are an important component in soil food webs and their responses to climate change could have profound impacts on ecosystem functions. As part of a long-term manipulative experiment, with increased temperature and precipitation in a semiarid temperate steppe in the Mongolian Plateau which started in 2005, this study was conducted to examine effects of climate change on the abundance of soil microarthropods. Experimental warming had slightly negative but insignificant effects on the abundance of mites (−14.6%) and Collembola (−11.7%). Increased precipitation greatly enhanced the abundance of mites and Collembola by 117 and 45.3%, respectively. The response direction and magnitude of mites to warming and increased precipitation varied with suborder, leading to shifts in community structure. The positive relationships of mite abundance with plant cover, plant species richness, and soil microbial biomass nitrogen suggest that the responses of soil microarthropods to climate change are largely regulated by food resource availability. The findings of positive dependence of soil respiration upon mite abundance indicate that the potential contribution of soil fauna to soil CO2 efflux should be considered when assessing carbon cycling of semiarid grassland ecosystems under climate change scenarios.  相似文献   

6.
Non-trophic interactions are shaping soil food web structure and functions. Particularly, the action of ecosystem engineers, such as earthworms, are likely to fundamentally impact the abiotic and biotic properties of their environment. The present study aimed to identify the main mechanisms through which earthworms belonging to varying ecological groups - epigeic, endogeic and anecic species - affect soil microarthropods by reviewing the literature on this topic and by performing meta-analyses.Earthworm ecological groups differed considerably in their impacts on microarthropods, whereas effects did not vary significantly between microarthropod taxa at the habitat scale. Inconsistent impacts of epigeic species on soil microarthropods are most likely due to differences in earthworm densities. Effects can thus be positive in the case of moderate densities or negative in the case of high densities and associated distinct changes in the physical structure of the upper soil organic layers. By contrast, impacts of endogeic earthworms appeared to be mainly negative and were primarily due to competition with microarthropods for food resources. Consequently, negative impacts on soil microarthropods intensified with increasing earthworm density and biomass. This interaction between endogeic earthworms and microarthropods is better referred to as amensalism due to the competitive predominance of earthworms. Impacts of anecic earthworm species differed significantly from that of endogeic ones; they were neutral at the habitat scale and positive on the microhabitat scale. Moreover, impacts were independent of earthworm densities due to the quasi-territorial behaviour of anecic earthworms. Positive effects were mainly attributed to the formation of stable microhabitats by anecic species; namely burrows/middens, rich in nutrients and microorganisms.The present study points to the relevance of the non-trophic biotic interactions that drive the composition of belowground food webs by identifying the most essential mechanisms underlying the impacts of animal ecosystem engineers on soil microarthropods. Moreover, as earthworms emerge as important biological invaders, the results of the present study may help to fully appreciate, estimate and model the consequences of this momentous global change phenomenon. Particularly, the spread of exotic epigeic and endogeic earthworm species likely threatens soil microarthropod density, diversity and functions.  相似文献   

7.
Two key determinants of biological diversity that have been examined in aboveground and aquatic systems are productivity, or resource supply, and physical disturbance. In this study, we examined how these factors interact under field conditions to determine belowground diversity using microarthropods (mites and Collembola) as our test community. To do this, we established a field manipulation experiment consisting of crossed, continuous gradients of nitrogenous (N) fertilizer addition (up to 240 kg N ha?1) and disturbance (imitated trampling by cattle) to produce a gradient of soil nutrient availability and disturbance. Due to the relatively short-term nature of our study (i.e. 2 years), we only detected minimal changes in plant diversity due to the experimental manipulations; in the longer term we would expect to detect changes in plant diversity that could potentially impact on soil fauna. However, disturbance reduced, and additions of N increased, aboveground biomass, reflecting the potential effects of these manipulations on resource availability for soil fauna. We found that disturbance strongly reduced the abundance, diversity, and species richness of oribatid mites and Collembola, but had little effect on predatory mites (Mesostigmata). In contrast, N addition, and therefore resource availability, had little effect on microarthropod community structure, but did increase mesostigmatan mite richness and collembolan abundance at high levels of disturbance. Oribatid community structure was mostly influenced by disturbance, whereas collembolan and mesostigmatan diversity were responsive to N addition, suggesting bottom-up control. That maximal species richness of microarthropod groups overall occurred in undisturbed plots, suggests that the microarthropod community was negatively affected by disturbance. We found no change in microarthropod species richness with high N additions, where plant productivity was greatest, indicating that soil biotic communities are unlikely to be strongly regulated by competition. We conclude that the diversity of soil animals is best explained as a combination of their many varied life history tactics, phenology and the heterogeneity of soils that enable so many species to co-exist.  相似文献   

8.
Succession of microarthropods during the decomposition of organic matter is an important concept in soil biology. However, few studies have tested whether the pattern of microarthropod colonisation during decomposition is independent of season. We investigated the pattern of colonisation and dominance of microarthropods on decomposing organic matter placed at two different times. Litterbags containing canola leaf or stem material were placed on the soil surface of a Western Australian agricultural field in July and September 1999. They were collected weekly to fortnightly until November. A final set of bags was collected in May 2000. Mass loss and nutrient contents (C, N, Ca, K, P and S) were measured at each sample time. Microarthropods were sorted to order and the mites to species level. Nematode abundance was determined at each sample time. Mass loss of the leaf and stem material was similar between the two placement times (33% and 15% ash-free dry mass lost over 33 days from leaf and stem material, respectively), although the dynamics of nutrient loss for some elements was different between the two placements. However, over the dry summer, material placed in September continued to lose nutrients whilst there was little additional loss from the material placed in July. A similar pattern of dominance of microarthropod and mite species was found on the leaf and stem material placed in July with the succession of dominant animals more rapid on the stem material. Nematode abundance appeared to increase as populations of microarthropods declined over time. Populations of microarthropods on the material placed in the September samples never achieved similar levels of abundance to that of the July samples, and the dominant fauna groups were dissimilar to those in the July samples for the same degree of decomposition. Our data indicate that the early phase of surface litter decomposition is not a successional process in terms of the microarthropod community irrespective of season and, that abiotic factors are more likely to be determining nutrient loss from organic matter within particular seasons.  相似文献   

9.
10.
The aim of this study was to test the relative importance of changes in density and species richness of soil mesofauna as determinants of nutrient mineralisation and plant growth. The experiment was carried out using microcosms containing a mixture of plant litter and soil in which seedlings of Lolium perenne were planted, and a range of combinations of levels of density and species richness of microarthropods added. Over the duration of the experiment, nutrient release, measured as concentrations of NO3 --N and total N in leachates, increased significantly with increasing microarthropod density, but decreased with increasing species richness. Leachate concentrations of NH4 +-N, dissolved organic N and C (DON and DOC) were not affected by the faunal treatments. Soil respiration, a measure of microbial activity, decreased with increasing density of microarthropods, whereas microbial biomass was not affected by microarthropods. Increasing density of soil animals had a negative effect on the shoot biomass of L. perenne while the effect of species richness was positive. Neither the species richness nor density of soil microarthropods was found to significantly influence root biomass. We conclude that variations in animal density had a greater influence on soil nutrient mineralisation processes than did species richness. Possible reasons for these opposing effects of animal density and diversity on soil N mobilization are discussed.  相似文献   

11.
 Changes in precipitation and soil water availability predicted to accompany global climate change would impact grasslands, where many ecosystem processes are influenced by water availability. Soil biota, including microarthropods, also are affected by soil water content, although little is known about how climate change might affect their abundance and distribution. The goal of this study was to examine soil microarthropod responses to altered soil water availability in tallgrass prairie ecosystems. Two separate experiments were done. The first utilized control and irrigated plots along a topographic gradient to examine the effects of soil water content on microarthropod densities. Microarthropods, mainly Acari, were significantly less abundant in irrigated plots and were generally less abundant at the wetter lowland sites. The second study utilized reciprocal core transplants across an east-west regional precipitation gradient. Large, intact cores were transplanted between a more mesic tallgrass site (Konza Prairie) and a more arid mixed-grass site (Hays) to determine the effects of different soil water regimes on microarthropod abundance and vertical distribution. Data from non-transplanted cores indicated greater total microarthropod densities at the drier Hays site, relative to the wetter Konza Prairie site. Data from the transplanted cores indicated significant effects of location on Acari densities in cores originating from Hays, with higher densities in cores remaining at Hays, relative to those transplanted to Konza. Acari densities in cores originating from Konza were not affected by location; however, oribatid mite densities generally were greater in cores remaining at Konza Prairie. These results confirm the importance of soil water content in affecting microarthropod densities and distributions in grasslands, and suggest complex, non-linear responses to changes in water availability. Received: 14 April 1998  相似文献   

12.
土壤质量生物学指标研究进展   总被引:52,自引:7,他引:52  
唐玉姝  魏朝富  颜廷梅  杨林章  慈恩 《土壤》2007,39(2):157-163
本文对近年土壤微生物、土壤酶活性和土壤动物等土壤质量生物学指标研究成果进行了综合评述。土壤微生物是土壤有机组分和生态系统中最活跃的部分,被认为是最敏感的土壤质量生物学指标:微生物生物量代表参与调控土壤中能量和养分循环及有机物质转化所对应微生物的数量,但须结合多样性研究以弥补其无法反映土壤微生物组成和区系变化的缺陷;微生物群落组成和多样性动态反映土壤中生物类群的多变性和土壤质量在微生物数量和功能上的差异;土壤微生物活性体现在土壤微生物商、微生物呼吸和代谢商等方面,应考虑生物量大小与微生物种群活性间的相关关系以反映微生物种群内的差异。土壤酶活性具有极高时效性,在较短时间内就能反映出土壤质量的变化。土壤动物通常以种类的组成和数量,土壤动物区系的相对丰度、多样性或活性作为评价土壤生物质量的敏感指标。与土壤理化指标相比,土壤生物学指标更能对土壤质量的变化做出灵敏迅速的响应,因而被广泛地用于评价土壤质量。  相似文献   

13.
The relationships between roots and soil communities are not well understood. We used the ingrowth-core method with L-, FH-, and M-layer substrates to investigate the relationships among soil organic carbon, fine root biomass, hyphal length and the numbers of soil microarthropods. The study was carried out in a temperate forest of the arbuscular mycorrhizal conifer, Chamaecyparis obtusa. The relationships among fine roots, fungi and soil microarthropods were different among soil substrates and faunal taxa. Soil carbon contents, fine root biomass, hyphal length and soil-microarthropod numbers were the highest in the FH-substrate, and the lowest in the M-substrate. For each substrate, the total numbers of soil microarthropods did not positively correlated with soil organic carbon. A positive correlation between fine root biomass and the soil microarthropod numbers was significant only in the M-substrate, but not in the L- and FH-substrates. In M-substrates, strong positive correlations were found between fine root biomass or hyphal length and Mesostigmata or Oribatida numbers, but Collembola numbers were not corelated. Further studies of the regulation mechanism of soil food web structures should note that the soil microarthropods have different responses to C sources according to soil conditions and trophic interactions.  相似文献   

14.
Global increases in temperature and atmospheric CO2, coupled with increasingly sporadic and intense precipitation regimes, may affect the biodiversity of boreal forest communities, potentially leading to shifts in functional process rates such as decomposition. However, the effects of these factors on microarthropod community composition have not been thoroughly studied in combination in controlled settings. We conducted a full factorial experiment exposing moss/soil mesocosms to three temperatures (11.5, 15.5, and 19.5 °C), two CO2 levels (430 ppm and 750 ppm), and three moisture levels (drought, intermediate, and saturated conditions) for 18 weeks. Following treatment, we quantified effects on species diversity of a representative group of mesofaunal microarthropods, the Collembola. We also quantified the effects of these factors on the distribution of collembolan body sizes as an indicator of functional changes in the community. We found that moisture regime was a dominant factor, with increased precipitation leading to decreased collembolan abundance and richness. The mechanisms of these detrimental effects are unclear but may be due to the saturation of air-filled soil pore space or competition with moisture-tolerant species. Severe precipitation regimes caused a general loss of abundance in species of all sizes, which may have long term effects on boreal forest soil food webs.  相似文献   

15.
Desert ecosystems are characterized by sparse vegetation that affects both abiotic parameters and soil biota along the soil profile.This study was conducted in 2010–2011 in a loess plain in the northern Negev Desert highlands, Israel, to test two main hypotheses:1) the abundance and diversity of microarthropods would vary seasonally in the top 30-cm soil layer, but would be relatively stable at soil depths between 30 and 50 cm and 2) soil microarthropods would be more abundant in soils under shrubs with large litter accumulations than under shrubs with less litter or bare soil. Soil samples were collected each season from the 0–50 cm profile at10-cm intervals under the canopies of Hammada scoparia and Zygophyllum dumosum and from the bare interspaces between them.Soil moisture and soil organic carbon in the top 30-cm layers varied seasonally, but there was little variation in the soil layers deeper than 30 cm. Soil mites were most abundant in the top 30-cm soil layer in autumn and winter, with the highest number of families found in winter. There were no differences in soil microarthropod abundance attributable to the presence or absence of shrubs of either species. The microarthropod communities of the microhabitats studied consisted of Acari, Psocoptera, and Collembola. The Acari were mostly identified to the family level and were dominated by Oribatida(55%) and Prostigmata(41%) in all seasons and microhabitats, while the psocopterans were most abundant in summer. These results are opposite to those obtained in other studies in similar xeric environments. Moreover, our findings were not in line with our hypothesis that a better microhabitat played a major role in microarthropod community composition, diversity, and density.  相似文献   

16.
Our study compared decomposition and litter microarthropod abundance among five plant communities in a mountain floodplain/fen complex located in the southern Appalachian Mountains, USA. We found that the least disturbed plant communities, red maple in particular, have the quickest decomposition, the greatest number of litter microarthropods, the highest soil organic carbon, and the lowest soil pH. Positive correlations were shown between soil organic carbon and total microarthropods; negative correlations were found between soil pH and total microarthropods. No correlations were found between soil moisture and decomposition or total microarthropod numbers. We conclude that soil characteristics related to disturbance, rather than to the presence of a closed canopy, are the main influences on decomposition and litter microarthropods.  相似文献   

17.
The interactions between fungi and soil fauna are not well known. Some studies suggest that soil microarthropods play an important role in fungi dispersion, but little is still known about the interaction between truffle and soil microarthropods. The aim of this study was to investigate the ability of the truffle Tuber aestivum to modify soil biogeochemistry (i.e. create a zone of scarce vegetation around the host plant, called a burn or brûlé) and to highlight the effects of the brûlé on the soil fauna community. We compared soil microarthropod communities found in the soil inside versus outside the T. aestivum brûlé with the chemistry of soil collected inside versus outside the brûlé. The study was carried out in three Mediterranean areas, two in Italy and one in Spain. The results confirmed the ability of T. aestivum to modify soil biogeochemistry in the brûlé: pH was higher and total organic carbon tended to be lower inside the brûlé compared to outside. Soil fauna communities showed some interesting differences. Some groups, such as Symphyla and Pauropoda, adapted well to the soil; some Collembolan families, and biodiversity and soil quality indices were generally higher outside the brûlé. Folsomia sp. showed higher abundance in the soil of the brûlé compared to outside. The results suggest that some Collembola groups may be attracted by the fungal metabolites produced by T. aestivum, while other Collembola and other microarthropods may find an unfavourable environment in the soil of the brûlé. The next steps will be to confirm this hypothesis and to extend the study to other keys groups such as nematodes and earthworms and to link fluctuations of soil communities with the biological phases of truffle growth.  相似文献   

18.
《Applied soil ecology》2001,16(2):131-139
The variation in bacterial, fungal and total microbial biomass and activity was studied together with the abundance of soil nematodes and microarthropods after the addition of substrates differing in nitrogen availability to a soddy-podzolic soil. The experiments were carried out in microcosms with native and defaunated soil to evaluate stimulatory and suppressive effects of the microfauna on soil micro-organisms. Predation by microfauna (nematodes) and mesofauna (microarthropods) reduced the microbial biomass and microbial respiration by approximately 25% after addition of nitrogen rich alfalfa meal. When starch and wheat straw were supplied, the microbial biomass and activity were stimulated by up to 30% by grazing. Thus, the effect of predation on the microbiota depended on the composition of the available substrates and available nitrogen seems to be an important factor controlling stimulation or suppression of soil micro-organisms by the soil fauna when fresh organic compounds are accessible. The presence of soil fauna stimulated bacteria and, thus, reduced the fungal/bacterial ratio during the course of decomposition. In contrast, the fungal/bacterial ratio declined due to decreasing fungal biomass in defaunated soil.  相似文献   

19.
The aim of this field experiment was to explore the combined effects of two factors potentially affecting the local composition of soil decomposer community: resource quality and habitat fragmentation. We created humus (habitat) patches with three different resource quality: (1) pure homogenised humus; (2) humus enriched with needle litter; and (3) humus enriched with needle and leaf litter. These patches were embedded either in a mineral soil matrix, thus representing fragmented habitat, or in natural forest soil, representing continuous (non-fragmented) habitat. The development of faunal (colonisations/extinctions of soil animal populations) and microbial communities in the patches was followed for 12 months. Our results partly supported the hypothesized strong influence of resource quality on the structure of local soil food webs: the abundances of practically all groups of soil fauna, together with biomass of fungi, were higher in the litter-enriched patches than in the pure humus patches. The manifestation and magnitude of the responses of fauna were, however, strongly affected by complex interactions between the characteristics (especially colonisation capacity) of the faunal group in question, habitat quality and time of sampling. In microarthropods and nematodes, the effect of resource quality cascaded up to the predatory level, rendering further support to the existence of strong bottom-up control in soil food webs. Contrary to our expectations, species richness of the communities was not unanimously affected by resource quality. Habitat fragmentation affected the communities only through different number and identity of patch-colonising species in the fragmented and continuous habitat: fragmentation induced no extinctions of species during the experiment at any resource quality level. Consequently, the results indicate that resource quality is more important factor than habitat fragmentation in determining the local structure of communities in soils. On the other hand, colonisation capacities of soil organisms appear to set limits to the exploitation of local resources.  相似文献   

20.
We investigated the effects of nitramine explosive CL-20 (China Lake compound 20) on the indigenous soil invertebrate community in Sassafras sandy loam (SSL) soil using a 12-week soil microcosm assay. Freshly collected SSL soil was amended with CL-20 to prepare multiple treatment concentrations ranging from 0 (acetone control) to 10,300 mg kg−1. The selected concentration range of CL-20 adequately assessed the concentration–response relationships for total microarthropods, and for individual microarthropod groups. The overall composition of microarthropod community in SSL soil was not affected by exposure to CL-20, based on the number of taxonomic groups present in the individual treatments after 12 weeks. However, community structure analysis revealed greater sensitivity to CL-20 by predatory mesostigmatid mites. Microarthropod and nematode communities showed contrasting sensitivities to CL-20 in SSL soil. Total numbers of nematodes were either unaffected or significantly (p < 0.05) increased in CL-20 treatments compared with control. Only predator group among nematodes was consistently adversely affected by exposure to CL-20. The abundance of predatory nematodes decreased in a concentration-dependent manner throughout the 12-week exposure. Microcosm assay with corresponding community structure analysis can provide the means for validating the ecotoxicity data from standardized laboratory tests, both complimenting and expanding upon the ecotoxicological significance of data from standardized single-species toxicity tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号