首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The complete carbon budget and the turnover rate of assimilated carbon of ectomycorrhizal Scots pine seedlings growing on natural humus were determined in microcosm conditions. The main aim was to improve understanding of the partitioning of the assimilated carbohydrates within seedlings associated with multiple ectomycorrhizal fungi, and to discover carbon dynamics of the mycorrhizosphere.Plant photosynthesis and below-ground respiration were measured in order to obtain the actual carbon assimilation and respiration rates at the time of measurements. Soon after the photosynthesis and respiration rate measurements the seedlings were pulse-labeled with 14CO2 to follow carbon allocation to different plant, fungal and soil compartments and rhizosphere respiration. Long-term carbon allocation during the entire life span of the seedlings was estimated by measuring plant and mycorrhizal root-tip biomass. The ectomycorrhizal community was analyzed using morphotyping and ITS-sequencing.The 14C label was detected in rhizosphere respiration after 12 h and it peaked between 36 and 60 h after labeling. More than half of the assimilated carbon was allocated below-ground as biomass or respiration and higher mycorrhizal biomass increased the below-ground carbon turnover. The presence of Suillus variegatus affected the plant carbon balance in several ways. When S. variegatus was present, the below-ground respiration increased and this carbon loss was compensated by higher photosynthetic activity. Other fungal species did not differ between each other in their effects on carbon balance. Our findings indicate that some root-associated mycorrhizal fungal symbionts can significantly alter plant CO2 exchange, biomass distribution, and the allocation of recently photosynthesized plant-derived carbon.  相似文献   

2.
Monomethyl-mercury is one of the most toxic compounds. Methylation of Hg usually appears under anoxic conditions. In Swiss forest soils, methyl-Hg concentrations of up to 3 μg kg−1 soil dw have been observed, but the impact of methyl-Hg on soil microorganisms have rarely been examined so far. In this study, we investigated the effect of increasing concentrations of methyl-Hg (0, 5, 20, 90 μg kg−1 soil dw) on the microbial communities in various forest soils differing in their physico-chemical properties. Experiments were conducted in microcosms under controlled conditions and the basal respiration (BR), the microbial biomass carbon (MBC) and the bacterial and fungal community structures using T-RFLP-profiling were investigated. BR was significantly affected by methyl-Hg. In general, the BR increased with increasing methyl-Hg concentrations, whereas the MBC was significantly reduced. Bacterial communities were more sensitive to methyl-Hg than fungal communities. In five out of seven soils, the bacterial community structures differed significantly between the treatments whereas the fungal communities did not. The impact of methyl-Hg on the soil bacterial communities was site specific. In one soil, a methyl-Hg concentration of already 5 μg kg−1 soil dw significantly affected the relative abundance of 13% bacterial operational taxonomic units (OTU), whereas in other soils concentrations of even 90 μg kg−1 soil dw rarely affected the abundance of OTUs. In this study, for the first time, the impact of methyl-Hg on soil bacterial and fungal communities in forest soils was assessed. We showed that its impact strongly depends on the physico-chemical conditions of the soil and that bacterial communities were more sensitive to methyl-Hg than fungi.  相似文献   

3.
Many studies have shown that changes in nitrogen (N) availability affect the diversity and composition of soil microbial community in a variety of terrestrial systems, but less is known about the responses of microbes specific to biological soil crusts (BSCs) to increasing N additions. After seven years of field experiment, the bacterial diversity in lichen-dominated crusts decreased linearly with increasing inorganic N additions (ambient N deposition; low N addition, 3.5 g N m−2 y−1; medium N addition, 7.0 g N m−2 y−1; high N addition, 14.0 g N m−2 y−1), whereas the fungal diversity exhibited a distinctive pattern, with the low N-added crust containing a higher diversity than the other crusts. Pyrosequencing data revealed that the bacterial community shifted to more Cyanobacteria with modest N additions (low N and medium N) and to more Actinobacteria and Proteobacteria and much less Cyanobacteria with excess N addition (high N). Our results suggest that soil pH, together with soil organic carbon (C), structures the bacterial communities with N additions. Among the fungal communities, the relative abundance of Ascomycota increased with modest N but decreased with excess N. However, increasing N additions favored Basidiomycota, which may be ascribed to increases in substrate availability with low lignin and high cellulose contents under elevated N conditions. Bacteria/fungi ratios were higher in the N-added samples than in the control, suggesting that the bacterial biomass tends to dominate over that of fungi in lichen-dominated crusts after N additions, which is especially evident in the excess N condition. Because bacteria and fungi are important components and important decomposers in BSCs, the alterations of the bacterial and fungal communities may have implications in the formation and persistence of BSCs and the cycling and storage of C in desert ecosystems.  相似文献   

4.
《Applied soil ecology》2007,37(2-3):147-155
A number of studies have reported species specific selection of microbial communities in the rhizosphere by plants. It is hypothesised that plants influence microbial community structure in the rhizosphere through rhizodeposition. We examined to what extent the structure of bacterial and fungal communities in the rhizosphere of grasses is determined by the plant species and different soil types. Three grass species were planted in soil from one site, to identify plant-specific influences on rhizosphere microbial communities. To quantify the soil-specific effects on rhizosphere microbial community structure, we planted one grass species (Lolium perenne L.) into soils from three contrasting sites. Rhizosphere, non-rhizosphere (bulk) and control (non-planted) soil samples were collected at regular intervals, to examine the temporal changes in soil microbial communities. Rhizosphere soil samples were collected from both root bases and root tips, to investigate root associated spatial influences. Both fungal and bacterial communities were analysed by terminal restriction fragment length polymorphism (TRFLP). Both bacterial and fungal communities were influenced by the plant growth but there was no evidence for plant species selection of the soil microbial communities in the rhizosphere of the different grass species. For both fungal and bacterial communities, the major determinant of community structure in rhizospheres was soil type. This observation was confirmed by cloning and sequencing analysis of bacterial communities. In control soils, bacterial composition was dominated by Firmicutes and Actinobacteria but in the rhizosphere samples, the majority of bacteria belonged to Proteobacteria and Acidobacteria. Bacterial community compositions of rhizosphere soils from different plants were similar, indicating only a weak influence of plant species on rhizosphere microbial community structure.  相似文献   

5.
The progenitor of maize is Balsas teosinte (Zea mays subsp. parviglumis) which grows as a wild plant in the valley of the Balsas river in Mexico. Domestication, primarily targeting above-ground traits, has led to substantial changes in the plant's morphology and modern maize cultivars poorly resemble their wild ancestor. We examined the hypotheses that Balsas teosinte (accession PI 384071) has a) a different root system architecture and b) a structurally and functionally different rhizosphere microbial community than domesticated cultivars sweet corn (Zea mays subsp. mays accession PI 494083) and popping corn (Zea mays subsp. mays accession PI 542713). In a greenhouse experiment, five plants from each corn variety were grown in individual pots containing a Maury silt loam – perlite (2:1) mixture and grown to the V8 growth stage at which rhizosphere bacterial and fungal community structure was assessed using terminal restriction fragment length polymorphism and fatty acid methyl ester analysis. Functional characteristics of the rhizosphere were assayed by examining the potential activity of seven extracellular enzymes involved in carbon, nitrogen and phosphorus cycling. Root system architecture was characterized by root scans of sand grown plants at the V5 growth stage. Compared to the control the sweet corn rhizosphere had different bacterial and fungal community structure, decreased fungal diversity and increased bacterial abundance. Teosinte caused a significant change in the rhizosphere bacterial and fungal community structure and increased bacterial abundance, but no significant decrease in bacterial or fungal diversity where the former was found to be significantly greater than in the sweet corn rhizosphere. Popping corn did not trigger significant changes in the bacterial or fungal diversity and bacterial abundance in the soil. The individual popping corn plants changed the bacterial and fungal communities in different directions and the overall effect on community structure was significant, but small. Of the enzymes analyzed, potential N-acetylglucosaminidase (NAG) activity was found to contributed most to the differentiation of teosinte rhizosphere samples from the other corn varieties. The teosinte root system had proportionally more very fine (diameter < 0.03 mm) roots than popping corn and sweet corn and it developed the highest root to shoot dry weight ratio, followed by popping corn. Sweet corn had significantly lower average root diameter than popping corn and teosinte and grew proportionally the least below-ground dry mass. The results allude to functional and structural differences in the rhizosphere microbial communities of the corn varieties that, with additional research, could lead to useful discoveries on how corn domestication has altered rhizosphere processes and how plant genotype influences nutrient cycling.  相似文献   

6.
Silver nanoparticles hold great promise as effective anti-microbial compounds in a myriad of applications but may also pose a threat to non-target bacteria and fungi in the environment. Because microorganisms are involved in extensive interactions with many other organisms, these partner species are also prone to indirect negative effects from silver nanoparticles.Here, we focus on the effects of nanosilver exposure in the rhizosphere. Specifically, we evaluate the effect of 100 mg kg−1 silver nanoparticles on maize plants, as well as on the bacteria and fungi in the plant's rhizosphere and the surrounding bulk soil. Maize biomass measurements, microbial community fingerprints, an indicator of microbial enzymatic activity, and carbon use diversity profiles are used. Hereby, it is shown that 100 mg kg−1 silver nanoparticles in soil increases maize biomass, and that this effect coincides with significant alterations of the bacterial communities in the rhizosphere. The bacterial community in nanosilver exposed rhizosphere shows less enzymatic activity and significantly altered carbon use and community composition profiles. Fungal communities are less affected by silver nanoparticles, as their composition is only slightly modified by nanosilver exposure. In addition, the microbial changes noted in the rhizosphere were significantly different from those noted in the bulk soil, indicated by different nanosilver-induced alterations of carbon use and community composition profiles in bulk and rhizosphere soil.Overall, microorganisms in the rhizosphere seem to play an important role when evaluating the fate and effects of silver nanoparticle exposure in soil, and not only is the nanosilver response different for bacteria and fungi, but also for bulk and rhizosphere soil. Consequently, assessment of microbial populations should be considered an essential parameter when investigating the impacts of nanoparticle exposure.  相似文献   

7.
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes β-glucosidase, β-xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (Corg, Nt, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G to a more G+, and from a fungal to a more bacteria-dominated community. Rhizosphere β-xylosidase, N-acetyl-β-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, β-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G, G+/G). The activities of β-glucosidase, β-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microflora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply.  相似文献   

8.
Glasshouse bioassays were conducted to assess the impact of different inputs of oilseed rape plant material on soil and rhizosphere microbial diversity associated with subsequently grown oilseed rape (Brassica napus) plants. The first bioassay focussed on the effect of oilseed rape rhizodeposits and fresh detached root material on microbial communities, in a rapid-cycling experiment in which oilseed rape plants were grown successively in pots of field soil for 4 weeks at a time, with six cycles of repeated vegetative planting in the same pot. Molecular analyses of the microbial communities after each cycle showed that the obligate parasite Olpidium brassicae infected the roots of oilseed rape within 4 weeks after the first planting (irrespective of the influence of rhizodeposits alone or in the presence of fresh detached root material), and consistently dominated the rhizosphere fungal community, ranging in relative abundance from 43 to 88 % when oilseed rape was grown more than once in the same soil. Fresh detached root material also led to a reduction in diversity within the soil fungal community, due to the increased relative abundance of O. brassicae. In addition, rhizosphere bacterial communities were found to have a reduced diversity over time when fresh root material was retained in the soil. In the second glasshouse experiment, the effect of incorporating mature, field-derived oilseed rape crop residues (shoots and root material) on microbial communities associated with subsequently grown oilseed rape was investigated. As before, molecular analyses revealed that O. brassicae dominated the rhizosphere fungal community, despite not being prevalent in either the residue material or soil fungal communities.  相似文献   

9.
The organic compounds released from roots (rhizodeposits) stimulate the growth of the rhizosphere microbial community. They may be responsible for the differences in the structure of the microbial communities commonly observed between the rhizosphere and the bulk soil. Rhizodeposits consists of a broad range of compounds including root mucilage. The aim of this study was to investigate if additions of maize root mucilage, at a rate of 70 μg C g−1 day−1 for 15 days, to an agricultural soil could affect the structure of the bacterial community. Mucilage additions moderately increased microbial C (+23% increase relative to control), which suggests that the turnover rate of microorganisms consuming this substrate was high. Consistent with this, the number of cultivable bacteria was enhanced by +450%. Catabolic (Biolog® GN2) and 16S-23S intergenic spacer fingerprints exhibited significant differences between control and mucilage treatments. These data indicate that mucilage can affect both the metabolic and genetic structure of the bacterial community as shown by a greater catabolic potential for carbohydrates. We concluded that mucilage is likely to significantly contribute to differences in the structure of the bacterial communities present in the rhizosphere compared to the bulk soil.  相似文献   

10.
The addition of small or trace amounts of carbon to soils can result in the release of 2-5 times more C as CO2 than was added in the original solution. The identity of the microorganisms responsible for these so-called trigger effects remains largely unknown. This paper reports on the response of individual bacterial taxa to the addition of a range of 14C-glucose concentrations (150, 50 and 15 and 0 μg C g−1 soil) similar to the low levels of labile C found in soil. Taxon-specific responses were identified using a modification of the stable isotope probing (SIP) protocol and the recovery of [14C] labelled ribosomal RNA using equilibrium density gradient centrifugation. This provided good resolution of the ‘heavy’ fractions ([14C] labelled RNA) from the ‘light’ fractions ([12C] unlabelled RNA). The extent of the separation was verified using autoradiography. The addition of [14C] glucose at all concentrations was characterised by changes in the relative intensity of particular bands. Canonical correspondence analysis (CCA) showed that the rRNA response in both the ‘heavy’ and ‘light’ fractions differed according to the concentration of glucose added but was most pronounced in soils amended with 150 μg C g−1 soil. In the ‘heavy RNA’ fractions there was a clear separation between soils amended with 150 μg C g−1 soil and those receiving 50 and 15 μg C g−1 soil indicating that at low C inputs the microbial community response is quite distinct from that seen at higher concentrations. To investigate these differences further, bands that changed in relative intensity following amendment were excised from the DGGE gels, reamplified and sequenced. Sequence analysis identified 8 taxa that responded to glucose amendment (Bacillus, Pseudomonas, Burkholderia, Bradyrhizobium, Actinobacteria, Nitrosomonas, Acidobacteria and an uncultured β-proteobacteria). These results show that radioisotope probing (RNA-RIP) can be used successfully to study the fate of labile C substrates, such as glucose, in soil.  相似文献   

11.
The growth models, diameter growth rates, biomass yield and Na+ contents of three ectomycorrhizal (ECM) fungi, Suillus bovinus (L. ex Fr.) O. Kuntze, Suillus luteus (L. ex Fr.) Gray, Boletus luridus Schaeff ex Fr., were investigated at nine NaCl levels (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 mol/L). The results showed that the growth models of the three ECM fungal species were not affected by the NaCl concentration, but the growth rates reduced with the increasing NaCl concentration. The growth rates of B. luridus and S. bovinus were significantly higher than that of S. luteus at the same NaCl level; the biomass yields of three ECM fungal species were different, S. bovinus < S. luteus < B. luridus. Of the three species, B. luridus exhibited the highest growth rates, best biomass yield, and greatest Na+ concentration in the mycelia over the NaCl gradient tested, indicating B. luridus has the most tolerance to NaCl stress and assimilation to Na+ under salt stress. The growth rate of S. luteus was the lowest, but the biomass yield and Na+ concentration in the mycelia were only lower than those of B. luridus. S. bovinus was the most sensitive to NaCl stress and its growth rate was faster than that of S. luteus, but the biomass yield and Na+ concentration in the mycelia were the lowest.  相似文献   

12.
The regional scale variability of the bacterial community inhabiting the rhizosphere was studied with soil collected from maize fields located in the Santo Domingo Valley (SDV; Baja California Sur, Mexico), a semi-arid agricultural ecosystem of approximately 200 km2. The bacterial community structure was visualized by single-strand conformation polymorphism (SSCP) profiles of PCR-amplified partial 16S rRNA genes of directly extracted rhizosphere soil DNA. SSCP profiles of different SDV sites and an external field site in Germany were evaluated for their similarities and the contributing bacteria were characterized by DNA sequence analyses. SSCP profiles from each site were significantly different from the others, as revealed by permutation of pairwise similarities (P < 0.05). In comparison to the German site, SSCP profiles from SDV were more similar to each other despite contrasting soil salinity levels. Correspondence analysis revealed that among SDV sites, salinity levels, soil organic carbon and calcium (Ca2+) were most influential on the bacterial community structure. Depending on the phylogenetic group analyzed (Bacteria, Alphaproteobacteria, Pseudomonas), the importance of these soil variables varied. Interestingly, the East–West direction also revealed an effect, suggesting that future explorations of bacterial diversity patterns should also consider landscape topography in search of explaining patterns of bacterial diversity in soils.  相似文献   

13.
Despite an increase in the understanding of the soybean isoflavones involved in root-colonizing symbioses, relatively little is known about their levels in the rhizosphere and their interactions with the soil microbial community. Based on a 13-year experiment of continuous soybean monocultures, in the present study we quantified isoflavones in the soybean rhizosphere and analyzed the soil microbial community structure by examining its phospholipid fatty acid (PLFA) profile. Two isoflavones, daidzein (7, 4′-dihydroxyisoflavone) and genistein (5,7,4′- trihydroxyisoflavone), were detected in the rhizosphere soil of soybean plants, with the concentrations in the field varying with duration of mono-cropping. Genistein concentrations ranged from 0.4 to 1.2 μg g−1 dry soil over different years, while daidzein concentrations rarely exceeded 0.6 μg g−1 dry soil. PLFA profiling showed that the signature lipid biomarkers of bacteria and fungi varied throughout the years of the study, particularly in mono-cropping year 2, and mono-cropping years 6-8. Principal component analysis clearly identified differences in the composition of PLFA during different years under mono-cropping. There was a positive correlation between the daidzein concentrations and soil fungi, whereas the genistein concentration showed a correlation with the total PLFA, fungi, bacteria, Gram (+) bacteria and aerobic bacteria in the soil microbial community. Both isoflavones were easily degraded in soil, resulting in short half-lives. Concentrations as small as 1 μg g−1 dry soil were sufficient to elicit changes in microbial community structure. A discriminant analysis of PLFA patterns showed that changes in microbial community structures were induced by both the addition of daidzein or genistein and incubation time. We conclude that daidzein and genistein released into the soybean rhizosphere may act as allelochemicals in the interactions between root and soil microbial community in a long-term mono-cropped soybean field.  相似文献   

14.
Phenolics from root exudates or decaying residues are usually referred as autotoxins of several plant species. However, how phenolics affect soil microbial communities and their functional significances are poorly understood. Rhizosphere bacterial and fungal communities from cucumber (Cucumis sativus L.) seedlings treated with p-coumaric acid, an autotoxin of cucumber, were analyzed by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer amplicons. Then, feedback effects of the rhizosphere biota on cucumber seedlings were evaluated by inoculating non-sterilized and sterilized rhizosphere soils to sterilized background soils. p-Coumaric acid decreased the bacterial diversity of rhizosphere but increased fungal diversity and altered the compositions of both the bacterial and fungal communities. p-Coumaric acid increased the relative abundances of microbial taxa with phenol-degrading capability (such as Chaetomium, Humicola, and Mortierella spp.) and microbial taxa which contained plant pathogens (such as Fusarium spp.). However, p-coumaric acid inhibited the relative abundances of Lysobacter, Haliangium, and Gymnoascus spp., whose species can have pathogen-antagonistic and/or plant-growth-promoting effects. The positive effect of cucumber rhizosphere microbiota on cucumber seedling growth was reduced by p-coumaric acid. Overall, our results showed that, besides its direct phytotoxicity, p-coumaric acid can inhibit cucumber seedling growth through generating negative plant-soil microbial interactions.  相似文献   

15.
This study aimed to evaluate the interaction between filter cake (FC), and phosphorus fertilizers with differing solubility on the growth and P nutrition of sugarcane. Effects of soil amendment with FC on different soil P fractions and influence on microbial community structure in the rhizosphere were also assessed. Two glasshouse experiments were conducted with completely randomized block designs. The first experiment evaluated rates of FC using a factorial design (5 × 2): 0, 2.5, 5, 10 and 15 g FC kg?1 soil applied as either broadcast in bulk soil or in the planting furrow. The second experiment used a factorial design (2 × 3): without and with FC (5 g kg?1 soil, dry basis), both without P (NP) and with P supplied as either triple superphosphate (TSP) or as rock phosphate (RP), both at the rate of 78.4 mg kg?1 based on total P. Microbial community structure was determined using TRFLP and dynamics of soil P by Hedley fractionation. Filter cake applied at increasing rates in the absence of P was effective in increasing shoot growth and P uptake by plant, particularly when applied to bulk soil as compared to furrow application. Also, FC improved P uptake and increased the availability of labile inorganic P in the rhizosphere and modified the structure of fungal and bacterial communities, whereas only bacterial and archaea communities were influenced by P fertilizer use. Filter cake was more effective when combined with RP, with increased growth and P utilization and thus can be considered as a feasible and practical option for farmer use in substitution to TSP, a more expensive source.  相似文献   

16.
The microbial loop is thought to play a major role in the mineralization of nutrients such as nitrogen (N) and phosphorus (P) in terrestrial ecosystems. This microbial loop is based on the grazing of bacteria by predators such as bacterial-feeding nematodes. However, little is known about the impact of grazing by nematodes on the mineral nutrition of woody plants. This study was undertaken to quantify the effect of nematode grazing on bacteria in the rhizosphere on the root architecture, growth and mineral nutrition (N and P) of a woody species (Pinus pinaster). Young P. pinaster seedlings were cultivated for 35 days in a simplified sterile experimental system with bacteria (Bacillus subtilis) and bacterivorous nematodes (Rhabditis sp.) isolated from soil samples collected from a 15-year old stand of maritime pine. To check the hypothesis that bacteria could be a source of nutrients, especially N, two N sources were supplied in the medium: (i) bacterial N labeled with 15N and (ii) nitrate. Phosphorus was supplied as insoluble inorganic tri-calcium phosphate (TCP). The results showed that the 15N flow from the bacteria to the plant shoots was only significant when nematodes were present, with an average accumulation of 14 ± 5 μg plant−1 of 15N. Plants cultivated with nematodes also accumulated significantly more total N in their shoots than sterile ones or inoculated with bacteria, resulting in a net average increase in N of 700 μg plant−1. The same result was observed for the total P accumulation in the shoots, as plants with nematodes accumulated an average of 300 μg plant−1 more P than sterile ones or inoculated with bacteria. However, the presence of bacteria, whether alone or with nematodes, did not modify the root architecture. These results demonstrated that the presence of bacterial-feeding nematodes significantly enhanced N and P availability to P. pinaster seedlings, probably by improving plant use of nitrate and insoluble P supplied in the medium.  相似文献   

17.
The increase in soybean productivity has contributed to a greater use of agrochemicals, which cause major problems, such as soil and water pollution and reduction of biodiversity, and have a negative impact on non-target species. The development of microbial biocontrol agents for soybean diseases can help to reduce pesticide abuse. Bacillus amyloliquefaciens BNM122 is a potential microbial biocontrol agent able to control the damping-off caused by Rhizoctonia solani when inoculated in soybean seeds, both in a plant growth chamber and in a greenhouse. In this study, we report the effect of soybean seed treatments with strain BNM122 or with two fungicides (thiram and carbendazim) on the structure and function of the bacterial community that colonizes the soybean rhizosphere. Also, soybean root nodulation by Bradyrhizobium japonicum, mycorrhization by arbuscular mycorrhizal fungi and plant growth were evaluated. We used the r- and K-strategist concept to evaluate the ecophysiological structure of the culturable bacterial community, community-level physiological profiles (CLPP) in Biolog? EcoPlates to study bacterial functionality, and the patterns of 16S RNA genes amplified by PCR and separated by denaturing gradient gel electrophoresis (PCR–DGGE) to assess the genetic structure of the bacterial community. Neither the ecophysiological structure nor the physiological profiles of the soybean rhizosphere bacterial community showed important changes after seed inoculation with strain BNM122. On the contrary, seed treatment with fungicides increased the proportions of r-strategists and altered the metabolic profiles of the rhizosphere culturable bacterial community. The genetic structure of the rhizosphere bacterial community did not show perceptible changes between treated and non-treated seeds. Regarding the bacterial and fungal symbioses, seed treatments did not affect soybean nodulation, whereas soybean mycorrhization significantly decreased (P < 0.05) in plants obtained from seeds treated with strain BNM122 or with the fungicides. However, a higher negative effect was observed in plants which seeds were treated with the fungicides. Plant growth was not affected by seed treatments.It can be concluded that soybean seed treatment with B. amyloliquefaciens BNM122 had a lesser effect on soil microbial community than that with the fungicides, and that these differences may be attributed to the less environmental persistence and toxic effects of the strain, which deserve further studies in order to develop commercial formulations.  相似文献   

18.
The rhizosphere and the detritusphere are hot spots of microbial activity, but little is known about the interface between rhizosphere and detritusphere. We used a three-compartment pot design to study microbial community structure and enzyme activity in this interface. All three compartments were filled with soil from a long-term field trial. The two outer compartments were planted with maize (root compartment) or amended with mature wheat shoot residues from a free air CO2 enrichment experiment (residue compartment) and were separated by a 50 μm mesh from the inner compartment. Soil, residues and maize differed in 13C signature (δ13C soil −26.5‰, maize roots −14.1‰ and wheat residues −44.1‰) which allowed tracking of root- and residue-derived C into microbial phospholipid fatty acids (PLFA). The abundance of bacterial and fungal PLFAs showed clear gradients with highest abundance in the first 1–2 mm of the root and residue compartment, and generally higher values in the vicinity of the residue compartment. The δ13C of the PLFAs indicated that soil microorganisms incorporated more carbon from the residues than from the rhizodeposits and that the microbial use of wheat residue carbon was restricted to 1 mm from the residue compartment. Carbon incorporation into soil microorganisms in the interface was accompanied by strong microbial N immobilisation evident from the depletion of inorganic N in the rhizosphere and detritusphere. Extracellular enzyme activities involved in the degradation of organic C, N and P compounds (β-glucosidase, xylosidase, acid phosphatase and leucin peptidase) did not show distinct gradients in rhizosphere or detritusphere. Our microscale study showed that rhizosphere and detritusphere differentially influenced microbial C cycling and that the zone of influence depended on the parameter assessed. These results are highly relevant for defining the size of different microbial hot spots and understanding microbial ecology in soils.  相似文献   

19.
The main goal of this study was to expand our knowledge of what happens to the soil bacterial community in an eroded desert soil when improvement of soil fertility is derived from the application of debris of tertiary wastewater treatment containing immobilized microalgae Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense. We hypothesized that an “improved” non-agricultural desert soil will exhibit substantial changes in the structure of the bacterial community in a relatively short time after amendment. To assess the effect of the amendments, microalgae and PGPB alone or combined, on the structure of the rhizosphere bacterial community, changes in species richness and bacterial diversity over time were based on sequence differences in the 16S rRNA gene, performed with PCR–denaturing gradient gel electrophoresis (DGGE) and then analyzed by similarity test and non-metric multidimensional scaling analysis. Root surface colonization and persistence in the rhizosphere of A. brasilense was monitored by fluorescent in situ hybridization and sequencing of DGGE bands. Application of waste debris significantly changed the rhizosphere bacterial population structure, whether comparisons were made over time, between inoculated and non-inoculated soil, and among different inoculated microorganisms. Species richness and diversity increased when the waste debris contained the microalgae–bacteria association and also over time. Even as its secondary role as an inoculant after wastewater treatment, A. brasilense colonized the root surface profusely and persisted within the rhizosphere bacterial community. This study demonstrated that small organic amendment to desert soil significantly changed soil bacterial community compared to the original soil and also 2 months after amendments were added.  相似文献   

20.
The influence of plant-growth-promoting rhizobacteria (PGPR) and spruce seedlings on the composition and activity of forest soil microbial communities was studied in a microcosm experiment in which sterile, sand-filled 25mm×150mm glass tubes were treated with a forest soil suspension containing Bacillus or Pseudomonas PGPR and 2-week-old spruce seedlings. Eighteen weeks after treatments were established, bacterial, actinomycete and fungal population sizes were determined by dilution plating, as were seedling dry weights and soil carbon substrate utilization profiles using Biolog plates. PGPR inoculation had little influence on the population sizes of actinomycetes or fungi. However, significant effects were detected on the total bacterial population size, primarily in microcosms without seedlings. Euclidean distances between treatments plotted on two dimensions by multidimensional scaling showed that the introduction of PGPR strains changed the type of microbial community, particularly when inoculated into soil without seedlings. Significant changes were also detected in one soil type in the presence of seedlings. Our results suggest that the type of soil community and the presence of seedlings are significant factors influencing the responses of soil communities to bacterial inoculation, and that for some soil communities, the presence of seedlings may mitigate perturbations caused by the introduction of PGPR. Received: 24 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号