首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-month microcosm study was carried out in order to evaluate: (i) the capacity of sorghum plants to phytoextract Cd (50 mg kg−1) and Zn (1000 mg kg−1) from artificially polluted soil and (ii) the possibility of biomonitoring the efficiency of phytoremediation using parameters related to the size, activity and functional diversity of the soil microbial community. Apart from plant and soil (total and bioavailable) metal concentrations, the following parameters were determined: soil physicochemical properties (pH, OM content, electrical conductivity, total N, and extractable P and K), dehydrogenase activity, basal- and substrate-induced respiration (with glucose and a model rhizodeposit solution, both adjusted to 800 mg C kg−1 DW soil and 45.2 mg N kg−1 DW soil), microbial respiration quotient, functional diversity through community level physiological profiles and, finally, seed germination toxicity tests with Lepidium sativum. Sorghum plants were highly tolerant to metal pollution and capable of reaching high biomass values in the presence of metals. In the first two harvests, values of shoot Cd concentrations were higher than 100 mg Cd kg−1 DW, the threshold value for hyperaccumulators. Nonetheless, in the third harvest, the bioconcentration factor was 1.34 and 0.35 for Cd and Zn, respectively, well below the threshold value of 10 considered for a phytoextraction process to be feasible. In general, microbial parameters showed lower values in metal polluted than in control non-polluted soils, and higher values in planted than in control unplanted pots. As a result of the phytoextraction process, which includes both plant growth and metal phytoextraction, the functioning of the phytoremediated soil, as reflected by the values of the different microbial parameters here determined, was restored. Most importantly, although the phytoextracted soil recovered its function, it was still more phytotoxic than the control non-polluted soil.  相似文献   

2.
植物吸取修复及钝化处理对后茬水稻镉吸收的影响   总被引:2,自引:0,他引:2  
采集湖南湘潭县某地镉(Cd)污染酸性农田土壤及其经伴矿景天分别吸取修复两季和三季后的土壤,采用盆栽试验研究了经伴矿景天修复及钝化改良与否对土壤pH、有效态Cd、Zn以及水稻生长和稻米Cd、Zn浓度的影响。结果表明:未改良的处理,随着修复次数的增加,土壤pH显著降低,降低幅度为0.26~0.38个单位;且修复两季、三季土壤CaCl_2提取态Cd浓度较未修复土壤分别降低19.4%、24.0%;修复后土壤种植水稻品种W184,其糙米中Cd浓度显著降低,但依然超标;修复三季土壤种植低积累水稻品种IRA7190,其糙米中Cd由0.47 mg/kg降为0.03 mg/kg。施加钝化剂海泡石和石灰(10 g/kg+1 g/kg)后,修复两季、三季土壤的pH显著升高,较未施钝化剂处理土壤pH分别提高0.95、0.72;土壤CaCl_2提取态Cd浓度分别降低79.8%、79.5%;修复两季、三季土壤上水稻W184糙米的Cd浓度与未施加钝化剂相比,分别降低27.3%、44.4%,均降至国家食品安全限值0.2 mg/kg以下;无论是否添加钝化剂,伴矿景天吸取修复三季的土壤上水稻IRA7190糙米中Cd浓度均仅0.03 mg/kg。  相似文献   

3.
Bioaugmentation is a promising method for assisting phytoextraction of heavy metals from contaminated soil, and the development of bioaugmentation-assisted phytoextraction requires the understanding of the mechanism involved in the interaction between plants and inocula. In this study, a pot study was conducted to evaluate the effect of bacterial endophyte Pseudomonas sp. Lk9 which can produce biosurfactants, siderophores and organic acids on the growth and metal uptake of Cd-hyperaccumulator Solanum nigrum L. growing in multi-metal-contaminated soil. The results revealed that Lk9 inoculation could improve soil Fe and P mineral nutrition supplies, enhance soil heavy metal availability, and affect host-mediated low-molecular-weight organic acids secretion, thereby significantly increasing S. nigrum shoot dry biomass by 14% and the total of Cd by 46.6%, Zn by 16.4% and Cu by 16.0% accumulated in aerial parts, compared to those of non-inoculated control. The assessment of phytoextraction showed that Lk9 inoculation elevated the bioaccumulation factor of Cd (28.9%) and phytoextraction rates of all metals (17.4%, 48.6% and 104.6% for Cd, Zn and Cu, respectively), while the translocation factors had negligible difference between Lk9 inoculation (3.30, 0.50 and 0.40 for Cd, Zn and Cu, respectively) and non-inoculated control (2.95, 0.53 and 0.42 for Cd, Zn and Cu, respectively). It was also found that the symbiotic association between S. nigrum and Lk9 significantly increased the soil microbial biomass C by 39.2% and acid phosphatase activity by 28.6% compared to those in S. nigrum without Lk9. This study would provide a new insight into the bioaugmentation-assisted phytoextraction of heavy metal-contaminated soils.  相似文献   

4.

Purpose

Effects of phytoextraction by Sedum alfredii H., a native cadmium hyperaccumulator, on metal removal from and microbial property improvement of a multiple heavy metals contaminated soil were studied under greenhouse conditions.

Materials and methods

A rhizobox experiment with an ancient silver-mining ecotype of S. alfredii natively growing in Zhejiang Province, China, was conducted for remediation of a multiple heavy metals contaminated soil. The rhizobox was designed combining the root-shaking method for the separation of rhizospheric vs near-rhizospheric soils and prestratifying method for separation of sublayers rhizospheric soils (0–10 mm from the root) and bulk soil (>10 mm from the root). Soil and plant samplings were carried out after 3 and 6 months of plant growth.

Results and discussion

Cadmium (Cd), zinc (Zn), and lead (Pb) concentrations in shoots were 440.6, 11,893, and 91.2 mg kg?1 after 6 months growth, and Cd, Zn, and Pb removed in the shoots were 0.862, 25.20, and 0.117 mg/plant. Microbial biomass C, basal respiration, urease, acid phosphatase, and invertase activities of the rhizospheric soils were significantly higher than that of unplanted soils after 6 months growth. Microbial biomass carbon (MBC) of 0–2 mm and basal respiration (BR) rate of 0–8 mm sublayer rhizospheric soils were significantly higher than that of bulk soil after 6 months growth. So were the three enzyme activities of 0–4 mm sublayer rhizospheric soils. BR rate and urease were significantly negatively correlated with soluble Cd, so were MBC, acid phosphatase, and intervase activities with soluble Zn, MBC, BR rate, and three enzyme activities with soluble Pb.

Conclusions

Harvesting shoots of S. alfredii could remove remarkable amounts of Cd, Zn, Pb, and lower water-soluble Cd, Zn, and Pb concentrations in the rhizospheric soils. MBC, BR rate, and enzyme activities of the metal polluted soil, especially the rhizospheric soils increased with phytoextraction process, which is attributed to the stimulation of soil microbes by planting as well as the decrease in soil-soluble metal concentration.  相似文献   

5.

Purpose  

Two main pathways of phytoremediation of heavy metal-contaminated soils are phytostabilization and phytoextraction. Some soil amendments can strengthen phytostabilization or phytoextraction through either reducing heavy metal bioavailability in soil or increasing the heavy metal accumulation capacity of the hyperaccumulator (enhancing heavy metal concentration or shoot biomass of the hyperaccumulator). Urea and chicken manure are often used as fertilizers. This research will explore their effects on a newly found hyperaccumulator, Rorippa globosa (Turcz.) Thell., phytoremediating cadmium (Cd).  相似文献   

6.
Traditionally, three threshold levels have been accepted for heavy metal concentrations in agricultural soils, depending on soil pH. The aim of this work was to ascertain how the three threshold values proposed for Cd (3, 6.5, and 12.5 mg kg?1) and Zn (300, 650, and 1300 mg kg?1) really affect soil microbial activity. Two soils, a scrubland soil and a forest soil, differing widely in their organic C content, were used in this study. Despite the different soil characteristics, the fractions of Cd and Zn extracted with a solution of diethylenetriaminepentaacetic acid (DTPA) showed little difference between soils. Parameters, such as microbial biomass C (Cmic), soil basal respiration (BR), adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), urease activity (UA), alkaline phosphatase activity (APA), and β-glucosidase (β-GA), were less affected by heavy metals in the forest soil than in the scrubland soil. In general, the simultaneous addition of both metals had a synergistic effect on microbial activity, and this treatment produced a significant decrease of microbial activity of both soils with respect to control. The highest level (L3) of Cd, Zn and Cd + Zn treatments produced significant decrease of microbial and biochemical parameters in both soils.  相似文献   

7.
3种有机酸对伴矿景天修复效率及土壤微生物数量的影响   总被引:2,自引:0,他引:2  
伴矿景天(Sedumplumbizincicola)是一种Cd和Zn的超积累植物,常用于Cd污染土壤的植物修复。有机酸能够提高土壤重金属的有效性,促进植物对重金属的积累,对重金属污染土壤的植物修复效率具有强化作用,并对土壤微生物数量有重要影响。以河潮土和红黄泥为供试土壤,探讨了乙二胺四乙酸(EDTA)、柠檬酸、草酸对伴矿景天修复效率和土壤微生物数量的影响。结果表明,有机酸能显著提高土壤有效态Cd含量,柠檬酸处理的效果最好,河潮土和红黄泥中有效态Cd含量较单种伴矿景天分别增加72.73%,12.99%(P<0.05);伴矿景天地上部Cd含量在河潮土和红黄泥中以EDTA处理最高,在河潮土和红黄泥中分别比单种伴矿景天增加99.24%和33.32%;与单种伴矿景天相比,添加有机酸处理河潮土和红黄泥中伴矿景天修复效率显著提高。添加有机酸比单种伴矿景天显著增加土壤中微生物数量,其中柠檬酸处理河潮土中细菌和真菌数量分别增加34.38%和68.42%(P<0.05),草酸处理红黄泥中放线菌数量增加150.00%。研究结果可为重金属污染土壤的植物强化修复提供理论支撑。  相似文献   

8.
Through their effects on microbial metabolism, temperature and moisture affect the rate of decomposition of soil organic matter. Plant roots play an important role in SOM mineralization and nutrient cycling. There are reports that rhizosphere soil exhibits higher sensitivity to temperature than root-free soil, and this can have implications for how soil CO2 efflux may be affected in a warmer world. We tested the effects of 1-week incubation under different combinations of temperature (5, 15, 30 °C) and moisture (15, 50, 100% WHC) on the respiration rate of soil planted with Scots pine and of unplanted soil. Soil respiration in both soils was the highest at moderate moisture (p < 0.0001) and, increased with temperature (p < 0.0001). There was also marginally significant effect of soil kind on respiration rate (p < 0.055), but the significant interaction of temperature effect with soil kind effect, indicated, that soil respiration of planted soil was higher than unplanted soil only at 5 °C (p < 0.05). The soil kind effect was compared also as Q10 coefficients for respiration rate, showing the relative change in microbial activity with increased temperature. However, there was no difference in the thermal sensitivity of soil respiration between planted and unplanted soils (p = 0.99), irrespective of the level of soil moisture. These findings were similar to the latest studies and confirmed, that in various models, being useful tools in studying of soil carbon cycling, there is no need to distinguish between planted and unplanted soil as different soil carbon pools.  相似文献   

9.
The aim of this work was to investigate the response of soil microbial biomass and activity to practices in organic and conventional farming systems. The study was carried out at the Irrigation District of Piauí, Brazil. Five different plots planted with “acerola” orchard (Malpighia glaba) and established at the following management were evaluated: (1) under 12 months of soil conventional management (CNV); (2) under six months of soil organic management (ORG6); (3) under 12 months of soil organic management (ORG12); (4) under 18 months of soil organic management (ORG18); and (5) under 24 months of soil organic management (ORG24). Soil microbial biomass C (Cmic), basal respiration, organic carbon (Corg), Cmic-to-Corg ratio and metabolic quotient (qCO2) were evaluated in soil samples collected at 0–10 cm depth. The highest Corg and Cmic levels occurred in organic system plots ORG18 and ORG24 compared to the conventional system. Soil respiration and Cmic-to-Corg ratio were significantly enhanced by the organic system plots. The qCO2 was greater in conventional than in organic system. These results indicate that the organic practices rapidly improved soil microbial characteristics and slowly increase soil organic C.  相似文献   

10.
A glasshouse pot experiment was conducted to study the effects of liming on plant growth and zinc (Zn) and cadmium (Cd) accumulation by Sedum plumbizincicola in a heavy-metal-contaminated acidified paddy soil. Lime application significantly increased the soil pH, which reached a maximum of 5.53 after addition of 4.0 g kg?1 lime to soil, about 1.4 units more than that of the control. Sedum plumbizincicola grew larger after lime application but aboveground biomass did not increase significantly with increasing soil pH. Liming significantly reduced shoot Zn and Cd concentrations and uptake except at the lowest lime application rate (0.5 g kg?1 lime to soil). This indicates that S. plumbizincicola can grow well in acidic soil at a soil pH of 4.15, and application of lime did not increase plant heavy-metal extraction. Consequently, it is promising to use this plant for Cd and Zn phytoextraction from agricultural soils polluted with acid and metals.  相似文献   

11.
Alkaline and acid phosphomonoesterase, β-glucosidase, arylsulfatase, protease and urease activities, CO2-C evolution and ATP content were monitored in long-term Cd-contaminated (0-40 mg Cd kg−1 dry weight soil) sandy soils, kept under maize or ‘set aside’ regimes, amended with plant residues. The organic matter input increased soil respiration, ATP contents and hydrolase activities in all soils. However, the Cd-contaminated soils had significantly higher metabolic quotients (qCO2), as calculated by the CO2-to-ATP ratio, and significantly lower hydrolase activities and hydrolase activity-to-ATP ratios for alkaline phosphomonoesterase, arylsulfatase and protease activities, compared with the respective uncontaminated soils. The ratios between acid phosphomonoesterase, β-glucosidase and urease activities and ATP were unaffected. A significantly higher qCO2/μ ratio, an expression of maintenance energy, was observed in most of the contaminated soils, indicating that more energy was required for microbial synthesis in the presence of high Cd concentrations. It was concluded that exposure to high Cd concentrations led to a less efficient metabolism, which was responsible for lower enzyme activity and synthesis and lower hydrolase activity-to-ATP ratios observed in these Cd-contaminated soils.  相似文献   

12.
The aim of this study was to determine the effects of plant absence or presence on microbial properties and enzyme activities at different levels of salinity in a sandy clay soil. The treatments involved five salinity levels—0.5 (control), 2.5, 5, 7.5, and 10 dS m?1 which were prepared using a mixture of chloride salts—and three soil environments (unplanted soil, and soils planted with either wheat or clover) under greenhouse conditions. Each treatment was replicated three times. At the end of the experiment, soil microbial respiration, substrate-induced respiration (SIR), microbial biomass C (MBC), and enzyme activities were determined after plant harvest. Increasing salinity decreased soil microbial properties and enzyme activities, but increased the metabolic quotient (qCO2) in both unplanted and planted soils. Most microbial properties of planted soils were greater than those of unplanted soils at low to moderate salinity levels, depending upon plant species. There was a small or no difference in soil properties between the unplanted and planted treatments at the highest salinity level, indicating that the indirect effects of plant presence might be less important due to significant reduction of plant growth. The lowered microbial activity and biomass, and enzyme activities were due to the reduction of root activity and biomass in salinized soils. The lower values of qCO2 in planted than unplanted soils support the positive influence of plant root and its exudates on soil microbial activity and biomass in saline soils. Nonetheless, the role of plants in alleviating salinity influence on soil microbial activities decreases at high salinity levels and depends on plant type. In conclusion, cultivation and growing plant in abandoned saline environments with moderate salinity would improve soil microbial properties and functions by reducing salinity effect, in particular planting moderately tolerant crops. This helps to maintain or increase the fertility and quality of abandoned saline soils in arid regions.  相似文献   

13.
We investigated Cd, Zn, and Cd + Zn toxicity to soil microbial biomass and activity, and indigenous Rhizobium leguminosarum biovar trifolii, in two near neutral pH clay loam soils, under long-term arable and grassland management, in a 6-month laboratory incubation, with a view to determining the causative metal. Both soils were amended with Cd- or Zn-enriched sewage sludge, to produce soils with total Cd concentrations at four times (12 mg Cd g−1 soil), and total Zn concentrations (300 mg Zn kg−1 soil) at the EU upper permitted limit. The additive effects of Cd plus Zn at these soil concentrations were also investigated. There were no significant differences in microbial biomass C (B C), biomass ninhydrin N (B N), ATP, or microbial respiration between the different treatments. Microbial metabolic quotient (defined as qCO2 = units of CO2–C evolved unit−1 biomass C unit−1 time) also did not differ significantly between treatments. However, the microbial maintenance energy (in this study defined as qCO2-to-μ ratio value, where μ is the growth rate) indicated that more energy was required for microbial synthesis in metal-rich sludge-treated soils (especially Zn) than in control sludge-treated soils. Indigenous R. leguminosarum bv. trifolii numbers were not significantly different between untreated and sludge-treated grassland soils after 24 weeks regardless of metal or metal concentrations. However, rhizobial numbers in the arable soils treated with metal-contaminated sludges decreased significantly (P < 0.05) compared to the untreated control and uncontaminated sludge-treated soils after 24 weeks. The order of decreasing toxicity to rhizobia in the arable soils was Zn > Cd > Cd + Zn.  相似文献   

14.
The ultimate goal of soil remediation is to restore soil health. Soil microbial parameters are considered to be effective indicators of soil health. The aim of this study was to determine the effects of phytoextraction on microbial properties through the measurement of soil microbial biomass carbon, soil basal respiration and enzyme activities. For this purpose, a pre-stratified rhizobox experiment was conducted with the Cd hyperaccumulator Sedum alfredii H. for phytoextraction Cd from an artificial contaminated soil (15.81 mg kg−1) under greenhouse conditions. The plant and soil samples were collected after growing the plant for three and six months with three replications. The results indicated that the ecotype of S. alfredii H. originating from an ancient silver mining site was a Cd-hyperaccumulator as it showed high tolerance to Cd stress, the shoot Cd concentration were as high as 922.6 mg kg−1 and 581.9 mg kg−1 at the two samplings, and it also showed high BF (58.4 and 36.8 after 3 and 6 months growth), and TF (5.8 and 5.1 after 3 and 6 months growth). The amounts of Cd accumulated in the shoots of S. alfredii reached to an average of 1206 μg plant−1 after 6 months growth. Basal respiration, invertase and acid phosphatase activities of the rhizosphere soil separated by the shaking method were significantly higher (P < 0.01) than that of the near-rhizosphere soil and the unplanted soil after 3 months growth, so were microbial biomass carbon, urease, invertase and acid phosphatase activities of the rhizosphere soil after 6 months growth. Acid phosphatase activity of the 0–2 mm sub-layer rhizosphere soil collected by the pre-stratified method after 3 months growth was significantly higher (P < 0.05) than that of other sub-layer rhizosphere soils and bulk soil, and so were microbial biomass carbon, basal respiration, urease, invertase and acid phosphatase activities of the 0–2 mm sub-layer rhizosphere soil after 6 months growth. It was concluded that phytoextraction by S. alfredii could improve soil microbial properties, especially in rhizosphere, and this plant poses a great potential for the remediation of Cd contaminated soil.  相似文献   

15.
Urban soils (constructozems) were studied in Moscow and several cities (Dubna, Pushchino, and Serebryanye Prudy) of Moscow oblast. The soil sampling from the upper 10-cm-thick layer was performed in the industrial, residential, and recreational functional zones of these cities. The biological (the carbon of the microbial biomass carbon, Cmic and the microbial (basal) respiration, BR) and chemical (pHwater and the contents of Corg, heavy metals, and NPK) indices were determined in the samples. The ratios of BR to Cmic (the microbial respiration quotient, qCO2) and of Cmic to Corg were calculated. The Cmic varied from 120 to 738 μg C/g soil; the BR, from 0.39 to 1.94 μg CO2-C/g soil per hour; the Corg, from 2.52 to 5.67%; the qCO2, from 1.24 to 5.28 μg CO2-C/mg Cmic/g soil per h; and the Cmic/Corg, from 0.40 to 1.55%. Reliable positive correlations were found between the Cmic and BR, the Cmic and Cmic/Corg, and the Cmic and Corg values (r = 0.75, 0.95, and 0.61, respectively), as well as between the BR and Cmic/Corg values (r = 0.68). The correlation between the Cmic/Corg and qCO2 values was negative (r = −0.70). The values of Cmic, BR, Corg, and Cmic/Corg were found to correlate with the ammonium nitrogen content. No correlative relationships were revealed between the determined indices and the climatic characteristics. The principal component analysis described 86% of the variances for all the experimental data and clearly subdivided the locations of the studied soil objects. The ANOVA showed that the variances of Cmic, Corg, and BR are controlled by the site location factor by 66, 63, and 35%, respectively. The specificity of the functioning of the anthropogenic soils as compared with their natural analogues was clearly demonstrated. As shown in this study, measurable biological indices might be applied to characterize the ecological, environmental-regulating, and productive functions of soils, including urban soils.  相似文献   

16.
The application of chelating agents can be associated with phytoremediation in order to reduce the time required for remediation of heavy metal contaminated soils. The present work has the purpose to test the use of easily biodegradable chelating agents in the assisted phytoextraction process and to evaluate their effect on soil and Mirabilis jalapa plant associated bacteria. Two easily biodegradable chelating agents were used (EDDS and MGDA) in two different dosages (4 and 8 mmol/kg of soil). Metal concentration in soil solution, in leaves and in leachate were determined during the phytoextraction process, while at the end of the experiment metal concentration was evaluated separately in roots, stalk and leaves. In untreated reactors Zn and Pb were accumulated in the roots, but only Zn was translocated to the shoots. Both chelating agents demonstrated to be very effective in Pb and Zn mobilization in soil solution. After chelate treatment, accumulation and translocation of the two metals was different: unaffected with regard to Zn and enhanced with regard to Pb. The chelating agents seem to have a positive influence on bacterial communities of bulk soil and rhizosphere by mitigating the selective pressure caused by Pb and Zn, whereas the endophytes are less affected.  相似文献   

17.

Purpose  

Successful phytoremediation depends mainly on the bioavailability of heavy metals in the soil. Recently, soil microbes possess several mechanisms that are able to change metal bioavailability in the soil, which provides a new strategy for investigating biogeochemical cycling of metals in contaminated soils. Three metal mines soils with elevated concentrations of Cd, Pb, and Zn from China were applied in this column study to (1) evaluate the effects of metal tolerant bacterial inoculation (Burkholderia cepacia, accession number: AB051408) on metal release, (2) monitor the migration of metals in the rhizospheric horizon (0–20 cm), and (3) investigate metal speciation and sequential fractions in soil.  相似文献   

18.
Soil samples from the upper 10-cm-thick layer of the humus horizon (without forest litter) were taken in Podol’sk and Serpukhov districts (1130 and 1080 km2, respectively) of Moscow oblast. At each sampling site, ecosystem (forest, plowland, or fallow), soil (soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, gray forest, and anthropogenically transformed soils of lawns and industrial zones), predominant vegetation, and topography (floodplain and low, medium, and upper parts of watersheds) were determined. The carbon content of the microbial biomass (Cmic) was determined by the method of substrate-induced respiration; we also determined the rate of basal (microbial) respiration (BR) and the organic carbon content, pH, and particle-size distribution. Overall, 237 samples from Serpukhov district and 45 samples from Podol’sk district were analyzed. The BR/Cmic ratios (respiration quotient qCO2) and Cmic/Corg ratios were calculated. The Cmic content in the soils ranged from 43 to 1394 μg C/kg; the BR varied from 0.06 to 25 μg CO2-C/g per h, qCO2, from 0.34 to 6.52 μg CO2-C/mg Cmic per h; and the Cmic/Corg ratio, from 0.19 to 10.65%. It was found that the most significant factors affecting the variability of the Cmic and BR are the parameters of ecosystem (50% and 80%, respectively) and soil (30% and 9%, respectively). The most significant variability of these indices was found in forest soils; it was mainly controlled by the soil texture (33 and 23%) and the Corg content (19 and 24%). The Cmic parameter made it possible to differentiate the soils of the territory for the purposes of their evaluation, monitoring, and biological assessment more clearly than the BR value and the soil chemical characteristics.  相似文献   

19.
The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain a reliable estimate of the phytoextraction duration. To simulate the decrease in the HM content in soil and to assess the resulting decrease in the uptake of HMs by plants, contaminated soil was mixed with uncontaminated, but otherwise similar soil. Uptake of Cd, Pb, and Zn by the indicator plant Lupinus hartwegii and the Zn hyperaccumulator Thlaspi caerulescens (La Calamine ecotype) was a log-linear function of the in-situ measured HM soil solution concentrations. Over a wide range in dissolved Cd and Zn concentrations, uptake of these HMs by T. caerulescens was (much) greater than by L. hartwegii. Experimentally derived regression models describing the relationships between soil, soil solution, and plant were implemented in a HM mass balance model used to obtain estimates of the phytoextraction duration. For our target soils, estimates of the Cd phytoextraction duration using L. hartwegii or T. caerulescens increased significantly by more than 100 or 50 years when experimental soil—soil solution—plant relationships were used instead of the assumption of constant plant uptake of Cd. The two approaches gave similar results for phytoextraction of Zn by T. caerulescens.  相似文献   

20.
Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective  The objectives of this research were to: i) develop LD50s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD50 for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods  Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. Results and Discussion  Lethal CBRs inducing 50% mortality (LD50, 95% CI) were calculated to be 5.72 (3.54-7.31), 3.33 (2.97-3.69), and 8.19 (4.78-11.6) mmol/kg for Cd, Pb, and Zn, respectively. Zn concentrations of dead earthworms exposed to a lethal remediated Zn-smelter soil were 3-fold above the LD50 for Zn and comparable to earthworm concentrations in lethal Zn-spiked artificial soils, despite a 14-fold difference in total soil Zn concentration between lethal field and artificial soils. An evaluation of the acute mixture toxicity of Cd, Pb, and Zn in artificial soils using the Toxic Unit (TU) approach revealed an LD50 (95% CI) of 0.99 (0.57-1.41) TU, indicating additive toxicity. Conclusions  Total Cd, Pb, and Zn concentrations in earthworms were good indicators of lethal metal exposure, and enabled the calculation at LD50s for lethality. The Zn-LD50 developed in artificial soil was applicable to earthworms exposed to remediated Zn-smelter soil, despite a 14-fold difference in total soil Zn concentrations. Mixture toxicity evaluated using LD50s from each single metal test indicated additive mixture toxicity among Cd, Pb, and Zn. Fractionation of earth worm tissues into cytosolic and pellet digests yielded mixed results for detecting differences in exposure at the sublethal level Recommendation and Outlook  CBRs are useful in describing acute Cd, Pb, and Zn toxicity in earthworms, but linking sublethal exposure to total and/or fractionated residues may be more difficult. More research on detoxification, regulation, and tissue and subcellular partitioning of heavy metals in earthworms and other invertebrates is needed to establish the link between body residue and sublethal exposure and toxicity. Keywords: Bioavailability; Cd; critical body residues; earthworms; metals; Pb; soil; Zn An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号