首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对渗油醋胶囊具有与合格醋胶囊相似颜色,难以用肉眼或者计算机视觉进行快速检测的问题,利用高光谱图像信息对化学成分的敏感性,采用高光谱图像技术捕捉渗油醋胶囊在430~960 nm波段下的特征信息,结合线性判别分析(LDA)、K最近邻判别法(KNN)建立渗油醋胶囊的判别模型。在K值为3、主成分因子数为2时,KNN模型对应的校正集识别率和预测集识别率分别达到100%。研究表明,高光谱图像技术可以有效表征渗油醋胶囊表面外渗成分的光谱特征,实现对渗油醋胶囊的快速检测。  相似文献   

2.
为了快速准确地检测油茶籽含油率、解决传统检测手段费时费力等问题,提出了一种基于高光谱成像技术的油茶籽含油率检测方法.应用光谱集I (400~1000nm)和光谱集Ⅱ(900 ~1700 nm)两组高光谱成像系统采集油茶籽的漫反射高光谱图像,并结合化学计量学方法建立油茶籽含油率的回归预测模型.结果 显示,在不经预处理的情...  相似文献   

3.
基于高光谱图像技术的农产品品质无损检测   总被引:2,自引:0,他引:2  
高光谱图像技术结合了计算机图像与光谱技术两者的优点,是农产品品质无损检测技术的发展趋势.为此,阐述了农产品品质检测中高光谱图像技术的基本原理;介绍了高光谱图像技术在农产品外部品质和内部品质检测中的应用现状及信息处理方法;并对高光谱图像技术应用于农产品品质检测技术的发展提出了建议.  相似文献   

4.
为了提高红枣相关产业的经济效益,增强其市场竞争力。针对红枣品种无损鉴别的社会需求,文章采用高光谱图像技术获取多个品种红枣高光谱图像,获取光谱数据并提取特征光谱波段,构建红枣品种的检测模型。实验结果表明,高光谱图像技术结合竞争自适应重加权抽样和支持向量机模型(CARS-SVM)可实现对红枣品种的无损、快速、准确鉴别,分类的准确率达到了91.2%。  相似文献   

5.
基于高光谱成像技术的柑橘缺陷无损检测   总被引:5,自引:0,他引:5  
应用高光谱成像技术无损检测柑橘的缺陷。选取蒂腐、黑斑、褐腐、结痂缺陷果和正常果各30个,提取并分析了5类果皮感兴趣区域光谱曲线并结合主成分分析法确定2个最佳波长(615nm和680nm),然后基于特征波长作主成分分析,选取第2主成分作为分类识别图像,提出采用特征波长主成分分析法与波段比算法相结合的方法,识别率达到94%。试验结果表明,高光谱成像技术可以有效地对带有蒂腐、黑斑、褐腐、结痂缺陷的柑橘进行分类识别。  相似文献   

6.
油桃外部缺陷的高光谱成像检测   总被引:2,自引:0,他引:2  
采用高光谱(420~1 000 nm)成像技术对中油9号油桃的4种外部缺陷(裂纹果、锈病果、异形果和暗伤果)进行检测判别。对400个样本(4种外部缺陷样本和完好样本)运用偏最小二乘回归(PLSR)从全波段中分别提取了10条特征波长,分别为497、534、657、677、696、709、745、823、868、943 nm。缺陷样本的高光谱图像经过主成分分析后,对876 nm下的单波段图像通过掩膜、Sobel算子处理,并对主成分图像经过区域生长算法实现缺陷样本的缺陷区域分割。对光谱数据进行主成分分析得到前10个主成分值,并对图像数据采用灰度共生矩阵(GLCM)提取得到6项图像纹理指标(均值、对比度、相关性、能量、同质性、熵值)。将主成分值和纹理值融合建立极限学习机(ELM)模型对油桃外部缺陷进行检测判别。结果表明,该模型对缺陷样本的判别正确率为91.67%,完好样本的正确率为100%。  相似文献   

7.
脐橙糖度的高光谱图像无损检测技术   总被引:8,自引:0,他引:8  
提出了利用高光谱图像系统来检测脐橙糖度的方法.由脐橙反射光谱图像获取反映脐橙糖度的光谱特征波长;应用人工神经网络系统建立了脐橙糖度的预测模型.结果表明,脐橙糖度预测模型相关系数R为0.831,采用高光谱图像无损检测脐橙糖度是可行的.  相似文献   

8.
基于光谱指数的绿洲农田土壤含水率无人机高光谱检测   总被引:1,自引:0,他引:1  
土壤含水率(Soil moisture content,SMC)是发展精细灌溉农业的重要参数,因此对其进行精确估测十分必要。选取新疆阜康绿洲小块农田为研究对象,基于无人机(Unmanned aerial vehicle,UAV)平台搭载的高光谱传感器获取的影像数据,基于Savitzky-Golay(SG)平滑后的一阶微分(First derivative,FD)、吸光度(Absorbance,Abs),连续统去除(Continuum removal,CR)3种不同预处理方法,共获取了SG、SG-FD、CR、Abs及Abs-FD共计5种预处理后的高光谱影像,探索不同预处理下的差值指数(Difference index,DI)、比值指数(Ratio index,RI)、归一化指数(Normalization index,NDI)及垂直植被指数(Perpendicular vegetation index,PVI)与SMC的关系,并在遴选出最优指数及预处理方案的基础上构建干旱区绿洲农田SMC高光谱定量估算模型。结果表明:预处理在不同程度上提高了光谱指数与SMC的相关性,其中基于Abs-SG预处理的PVI_((R644,R651))表现最优,相关系数为0.788,据此构建的三次拟合函数表现最优。基于不同预处理方案下多变量SMC估算模型效果在消噪的基础上,更为深度地挖掘了光谱信息,减少了单一光谱指数造成的误差,提升了模型的定量估测效果。Abs模型预测精度亦最为突出,其建模集R_c~2和RMSE为0.80、2.42%,验证集R_p~2与RMSE为0.91、1.71%,RPD为2.41。本研究构建的SMC估算模型减少了单一变量模型的误差;在规避过拟合现象的同时,提升了模型的定量估测效果,为土壤水分状况天地空一体化遥感监测提供了崭新的视角和方案。  相似文献   

9.
梳棉内层杂质高光谱图像检测   总被引:2,自引:0,他引:2  
以梳棉内部深度1 ~6 mm处的多种杂质为研究对象,研究了高光谱成像技术检测效果和可行性.在波长460~900 nm范围内,提取高光谱图像中杂质和棉花的像素光谱.采用二次判别分析分类像素,构造分割二值图像,使用面积过滤器和形态学组合方法剔除二值图像中的噪声点和伪目标,统计杂质检测效果.结果表明可以检测棉网内一定深度的普通杂质(植物性杂质)、彩色丙纶丝、有色线和有色布块,能够检测部分黑色毛发和灰色丙纶丝.其中,普通杂质的检测效果最佳,正确检测率超过80%.  相似文献   

10.
采用高光谱成像技术(450~1 000 nm)对壶瓶枣的5种自然损伤(缩果病、裂纹、虫害、黑斑病、鸟啄伤)进行识别研究。利用高光谱成像系统采集了5种自然损伤及完好枣一共663个壶瓶枣样本的高光谱图像,并提取相应的感兴趣区域(ROI),得到了样本的光谱数据。应用偏最小二乘回归(PLSR)、连续投影算法(SPA)从全波段中分别提取了9条、10条特征波长,利用Kennard-Stone算法将各类样本按照3∶1的比例随机分成训练集(500个)和测试集(163个),并对其建立最小二乘支持向量机(LS-SVM)判别模型,结果表明使用SPA-LS-SVM建立的壶瓶枣自然损伤模型的整体判别正确识别率为93.2%。运用主成分分析(PCA)对由SPA提取出的10条特征波长(535、595、657、672、685、749、826、898、964、999 nm)所对应的单波段图像进行数据压缩,分别采用Sobel算子、区域生长算法Regiongrow并结合主成分图像识别出163个壶瓶枣样本的边缘与自然损伤特征区域,得出平均正确识别率达到90.8%。研究结果表明:采用高光谱成像技术可以对壶瓶枣的自然损伤进行光谱判别和图像识别。  相似文献   

11.
生物质鼓泡流化床和循环流化床气化对比试验   总被引:2,自引:0,他引:2  
在内径为φ0.2 m、高6 m的流化床装置上,利用两种不同粒径的石英砂,分别进行了高速鼓泡流化床(BFB)和循环流化床(CFB)的冷态压力分布试验和热态气化试验.结果表明:冷态试验中,鼓泡流化床压力分布主要集中在底部的密相区,循环流化床压力分布更趋均匀.热态稳定气化阶段,循环流化床轴向温差只有40℃,气化的燃气热值、碳...  相似文献   

12.
厌氧流化床生物膜形成及脱落研究进展   总被引:3,自引:0,他引:3  
本文综述了最近几年有关厌氧流化床反应器中生物膜的固定化及脱落方面的研究进展,以及生物膜的形成机理和脱落方式,并对厌氧流化床反应器的研究发展趋势进行了展望.  相似文献   

13.
双流化床物料循环系统的试验研究   总被引:2,自引:0,他引:2  
设计了一种利用生物质气化生产民用煤气的双流化床物料循环系统,在小型试验台上就运行参数和结构尺寸对物料循环的影响进行了试验,提出了合理的运行参数。在试验基础上,建立了颗粒通过水平孔口的物料循环模型,可很好预测颗粒通过孔口的流动。  相似文献   

14.
针对任意放置姿态下的轻微绿皮马铃薯难以检测的问题,进行了半透射与反射高光谱成像方式的不同检测方法比较研究,最终确定较优高光谱成像方式的检测方法。分别以半透射与反射高光谱成像方式对图像维提取RGB、HSV和Lab空间颜色信息,并采用等距映射、最大方差展开、拉普拉斯特征映射进行图像信息降维;分别以半透射与反射高光谱成像方式对光谱维提取感兴趣区域的平均光谱数据,并采用局部保持投影、局部切空间排列、局部线性协调进行光谱信息降维;然后分别建立不同高光谱成像方式下的图像与光谱信息的深度信念网络模型;对识别率良好的模型采用多源信息融合技术进一步优化,并建立基于图像和光谱融合或不同成像方式融合的模型。结果表明,基于半透射和反射高光谱的光谱信息融合模型最优,校正集和测试集识别率均达到100%,可实现轻微绿皮马铃薯的无损检测。  相似文献   

15.
基于高光谱成像技术的生菜冠层含水率检测   总被引:2,自引:0,他引:2  
李红  张凯  陈超  张志洋  刘振鹏 《农业机械学报》2021,52(2):211-217,274
为实现作物含水率的无损检测,以6种水分胁迫水平的生菜为研究对象,利用高光谱成像技术和特征波长选取方法对生菜冠层含水率进行检测研究。采用掩模法去除高光谱图像的背景噪声,并对生菜冠层光谱图像进行光强校正。利用标准正态变量变换法(SNV)去除原始平均光谱数据的噪声,采用蒙特卡罗无信息变量消除法(MCUVE)剔除无关变量,结合基于最小绝对收缩和选择算法(LASSO)、连续投影法(SPA)、LASSO与SPA算法组合(LASSO SPA)筛选特征变量,对数据进行降维处理,采用偏最小二乘法(PLS)建立5个生菜冠层含水率检测模型。经对比发现,全光谱中存在很多冗余信息变量和无关变量,采用全光谱建立的PLS模型复杂度最高,且预测能力最差;以MCUVE LASSO SPA筛选变量后的PLS模型效果最优,其中建模集相关系数R c和预测集相关系数R p分别为0.8827和0.9015,均方根误差分别为1.0662和0.9287。择优选取MCUVE LASSO SPA PLS模型计算生菜冠层每个像素点的干基含水率,生成可视化分布图,实现了生菜冠层叶片干基含水率可视化检测。本研究可为生菜冠层含水率快速无损检测提供参考。  相似文献   

16.
刘燕德  邓清 《农机化研究》2015,(7):227-231,235
高光谱成像技术结合了光谱学和成像技术的主要优势,可以同时获得一个样本的空间分布及物理和化学性能,是水果无损检测的发展趋势。为此,主要介绍了高光谱成像原理、装置、数据处理方法,以及国内外水果内外品质无损检测的应用,并对高光谱成像技术在水果无损检测中的不足及未来趋势进行了分析。  相似文献   

17.
基于CIELAB色空间的红葡萄酒颜色直观表征   总被引:4,自引:0,他引:4  
现有红葡萄酒颜色特征的表征方法,很难形象地描述和传递葡萄酒颜色信息。基于CIELAB色空间,构建了高清色彩平面(L*=60),以红葡萄酒颜色的彩度分布图、明度分布图和特征颜色图,并结合可见吸收光谱图,直观地表征红葡萄酒的颜色特征。采用该方法和传统的CIELAB参数分析法,对我国各产区10款陈酿型赤霞珠干红葡萄酒颜色特征的研究表明,该方法可以完整而直观地呈现CIELAB参数信息,并可给出具体的酒样特征颜色;供试酒样间颜色特征差异显著,但都存在颜色过快老化的问题。  相似文献   

18.
生物质热裂解产生的生物油是一种含氧量极高的复杂有机成分混合物,在流化床热解实验台上使用玉米秸秆粉为原料来制取生物油。为此,对生物油进行预处理并利用气质联用仪对生物油成分进行了定性分析,初步鉴定出醛、酮、酸、酯、醇、呋喃和酚类等17种主要化合物。这些有机物对生物油的特性有一定影响,分析结果为有效地进一步利用生物油提供了一定的科学依据。  相似文献   

19.
针对蓝莓果蝇虫害分类识别存在效率低、准确度差等问题,采用深度学习方法对采集的蓝莓高光谱图像进行数据处理与分析,以实现蓝莓果蝇虫害的无损检测。首先蓝莓高光谱图像采用PCA进行降维,优选数据集PC2与PC3并进行拼接得到最佳数据集PC23,对数据集中图像进行旋转90°、旋转180°、模糊、高亮、低亮、镜像和高斯噪声共7种增强操作,使各数据集容量扩增为原始容量的18倍。然后采用VGG16、InceptionV3与ResNet50深度学习模型对蓝莓果蝇虫害图像进行检测,均取得了较高的识别准确率。其中ResNet50模型效率最高,且ResNet50模型的准确率最高,达到92.92%,损失率最低,仅有3.08%,因此ResNet50模型在蓝莓果蝇虫害无损检测方面整体识别效果最佳。为了进一步提高蓝莓果蝇虫害无损检测性能,从ECA注意力模块、Focal Loss损失函数与Mish激活函数3方面对ResNet50模型进行了改进,构建了改进的im-ResNet50模型。得出im-ResNet50模型识别准确率达95.69%,损失率为1.52%。试验结果表明, im-ResNet50模型有效提升了蓝莓果蝇虫害识别能力。采用Grad-CAM分析了im-ResNet50模型可解释性,能够快速、准确地无损检测蓝莓果蝇虫害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号