首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Present paper reports a method of preparing polymer composite electrolyte nanofiber mat using polyvinyl alcohol (PVA), ammonium thiocynate (NH4SCN) salt, and aluminium oxide (Al2O3) nano particles based on electrospinning technique. Two-stage process of preparation of nanofibers, namely, preparation of nano particles filled PVA electrolyte gel solution followed by its electrospinning has been used. The so obtained nanofibers have been characterized by XRD, DSC, SEM, and Conductivity measurements. XRD patterns affirm the formation of nanocomposite while SEM pictures reveal formation of fibers on a nano scale format (300–800 nm). Fibers of the electrolytes are seen to be thermally stable. Ionic conductivity of electrolyte fiber is seen to improve in the presence of nano filler at room temperature with a maximum at 5.31×10−3 Scm−1 for 4 wt% filler concentration, which is comparable to that for corresponding dried gel electrolyte films.  相似文献   

2.
Titanium dioxide/polyvinylidene fluoride (TiO2/PVDF) composite was prepared by electrospinning process to enhance the dielectric properties for application as a gate insulator in organic thin-film transistors (OTFTs). Scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction were employed to characterize the as-prepared samples, and then their dielectric constants were investigated by impedance analysis. The impedance results show that the dielectric constant of the electrospun TiO2/PVDF nanofibers is higher than those of other samples, demonstrating that electrospun TiO2/PVDF composite can be a proper candidate for gate insulators in OTFTs.  相似文献   

3.
In this paper, we report on the fabrication and characterization of poly(sulfone amide)/graphene (PSA/G) nonwoven based nanocomposite mat assembled via electrospinning technique. Different types of nanocomposite mats were electrospun by varying the weight percentage of graphene in the polymer solution. The surface morphologies, chemical structural, thermal, and electrical properties of the nanocomposites were evaluated systematically. The morphology of the PSA/G nanocomposites exhibited that mesh-like ultrafine nanofibers were densely aligned. Thermal stability and electrical properties of the PSA/G composites could be improved obviously with the addition of graphene. And the thickness uniformity of the nanocomposite mat was improved by using an electrospinning system. Our experimental results suggested that the PSA/G nanocomposites have potential to serve in many different applications, especially in the area of electronic components.  相似文献   

4.
Microwave-absorptive polymer composite materials provide protection against interference to communication systems caused by microwave-inducing devices. Microwave-absorptive polymer composites were prepared from polylactic acid (PLA) biocomposite blended with oil palm empty fruit bunch (OPEFB) fiber and commercial Iron oxide (Fe2O3) as filler using the melt-blending method. The composites characterization was carried out using the scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The coefficient of reflection S11 and coefficient of transmission S21 of the composites for various Fe2O3 filler percentages were determined using a rectangular waveguide in connection with microwave vector network analyser (HP/Agilent model PNA N5227). These coefficients were then used to calculate microwave-absorption properties (in decibels). XRD analysis showed that increasing amounts of reinforced material (Fe2O3) reduces the crystallinity of the composites. SEM data indicated that Fe2O3 filler ratio increased in the composites, and adhesion to the cellulose fiber grew gradually until the highest percentage of filler was added. The complex relative permittivity and relative permeability were obtained within the broad frequency range of 8–12 GHz at room temperature for various percentages of filler and were measured by the transmission/reflection method using a vector network analyser. Fe2O3 embedment in OPEFB/PLA was observed to have resulted in enhancing the dielectric and magnetic properties. The values of permittivity and permeability increased with increasing Fe2O3 filler content. Theoretical simulation studied the relation between ε′ and ε″ of the relative complex permittivity in terms of Cole-Cole dispersion law. The result indicated that the processes of Debye relaxation in Fe2O3/OPEFB/PLA, the unique dielectric characteristics of Fe2O3 cannot be accounted for by both the Debye dipolar relaxation and natural resonance. Results further showed that the material transmission, reflection, and absorption properties could be controlled by changing the percentage of Fe2O3 filler in the composites.  相似文献   

5.
Electropolymerization of carbazole (Cz) by cyclic voltammetry (CV) onto carbon fiber microelectrodes (CFME) (diameter ∼7 μm) in dichloromethane (CH2Cl2) solution of 0.1 mol·dm−3 tetraethyl ammonium perchlorate (TEAP) results in the formation of polycarbazole (PCz) thin film coatings. CV results showed that these PCz thin films have reversible redox behavior in monomer-free electrolyte solution. The resulting thin polymer films were characterized using Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR) and atomic force microscopy (AFM). Results performed at optimum experimental conditions indicate that electrodes show a reversible and stable behavior over sixty eight days of testing for dopamine in 100 μmol·dm−3 buffer solution. A detection limit for PCz thin films as low as 0.1 μM (3S/N) was obtained for the polycarbazole (PCz) thin films formed using CV. Hence, this novel sensor can be considered as promising sensor for dopamine detection.  相似文献   

6.
Nanocomposite fibers of polyamide 6 (PA6) and hydroxyapatite (HA) were prepared and doped with silver to investigate antibacterial activities due to good potential for textile modification. Nano-sized HA could be synthesized using agarose and ethanol as thickener and washing medium, respectively. The PA6/HA nanocomposite fibers could be doped with silver by dipping the fibers having HA in aqueous AgNO3 solution containing 300 ppm of Ag ion for 1 min utilizing HA as a carrier to load silver through ion-exchange mechanism. It was found that silver was successfully doped to PA6/HA nanocomposite fibers from the EDS spectra. The nanocomposite fibers containing 3.3 wt% of HA after silver doping demonstrated such excellent antibacterial activities against K. pneumonia and E. coli that they are expected to serve as functional antibacterial materials in various application fields.  相似文献   

7.
In this study, a new finishing technique is introduced through treatment of wool fabric with graphene/TiO2 nanocomposite. Graphene oxide/titanium dioxide nanocomposite first applied on the wool fabric by hydrolysis of titanium isopropoxide in graphene oxide suspension and then this coating chemically converted by sodium hydrosulfite to graphene/TiO2 nanocomposite. The homogenous distribution of the graphene/TiO2 nanocomposite on the fiber surface was confirmed by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray mapping. X-ray diffraction patterns proved the presence of titanium dioxide nanoparticles with a crystal size of 127 Å on the treated wool fabric. Also, the defect analysis based on X-ray photoelectron spectroscopy (XPS) established the composition of the nanocomposite. Other characteristics of treated fabrics such as antibacterial activity, photo-catalytic self-cleaning, electrical resistivity, ultraviolet (UV) blocking activity and cytotoxicity were also assessed. The treated wool fabrics possess significant antibacterial activity and photo-catalytic self-cleaning property by degradation of methylene blue under sunlight irradiation. Moreover, this process has no negative effect on cytotoxicity of the treated fabric even reduces electrical resistivity and improves UV blocking activity.  相似文献   

8.
In this work homogeneous and adherent nanocomposite of polypyrrole (PPY) with Na+-Cloisite nanoclays was successfully prepared by insitu electropolymerization of pyrrole monomer in the presence of Na+-Cloisite nanoclays. Formation of nanocomposite and incorporation of nanoclays in polypyrrole matrix was endorsed and characterized by FTIR spectroscopy studies, X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM). The X-ray difraction patterns showed that PPY was intercalated between clay layers in the order of nanoscale. The morphology of the resulted nanocomposite was studied by scanning electron micrograph (SEM). Cyclic voltammetry experiments were carried out in different electrolytes and showed that nanocomposite is electroactive, while conductivity of the nanocomposite derived from four point probe technique indicated that the resulted nanocomposite is conductive. The anticorrosive properties of a thin layer coating of PPY/Na+-Cloisite nanocomposite on iron coupons was evaluated and compared with pure polypyrrole coating. According to the results in various corrosive environments PPY/Na+-Cloisite nanocomposite has enhanced corrosion protection effect in comparison to pure polypyrrole coating. It was observed that the corrosion protection effect was due to the dispersion of nanoclays in polymer matrix, which results in the increase in the corrosion potential and decrease in corrosion current and corrosion rate.  相似文献   

9.
The secondary structure of a dough-like zein polymer was compared to the structure present in a wheat viscoelastic system using FT-IR spectroscopy. When zein was mixed at 35 °C, which is above its glass transition temperature (Tg), changes in its secondary structure suggested that the protein loses its native structure, mainly composed of α-helices (68%), and a viscoelastic system is formed by a structural rearrangement that favors β-sheet structures. This rearrangement is very similar to the structural changes observed in gluten viscoelastic polymers. Upon removal of shear stress, the zein polymer showed a rapid decrease in the proportion of β-sheet structures (from 48% to 28% after the first 3 min) in favor of unordered structures. At the same time, the viscoelasticity of the polymer decreased rapidly. In contrast, gluten, in a similar viscoelastic system and held at the same temperature, showed a fairly constant high content of β-sheet structures (49%) coinciding with the slow relaxation time typical of gluten networks after the removal of shear. We speculate that the addition of a protein capable of causing extensive and stable β-sheet formation in the zein–starch viscoelastic polymer could increase the stability and relaxation time of the zein system and, thereby, create the possibility of a zein dough with similar functionality to a wheat viscoelastic system.  相似文献   

10.
In order to improve thermal stability of Acrylonitrile-butadiene-styrene (ABS) polymer, ABS/natural clinoptilolite (Clino) nanocomposite was produced using solvent/non-solvent method. The influence of natural clinoptilolite nanoparticles on scratch resistance and adherence properties of ABS coating on steel coupons was investigated. In order to study the scratch resistance and adherence properties, thin (20 µm) coatings of ABS and ABS/Clino nanocomposites, were prepared by solution casting method. The formation of ABS/Clino nanocomposite was characterized using FTIR spectroscopy, X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM). Results showed that there is a strong interaction such as hydrogen bonding between ABS and clinoptilolite nanoparticles. The thermal stability of the nanocomposite was examined using thermogravimetric analysis (TGA). TGA results showed an increase in the thermal degradation temperature of the nanocomposite. TGA results indicated that the thermal stability of ABS increases by increasing the Clino content of nanocomposite up to 5 % w/w. Scratch resistance and adherence properties of ABS/Clino nanocomposite coatings were also evaluated. Results showed that the scratch resistance and adherence strength of ABS/Clino nanocomposite coatings are higher than that of pure ABS coatings.  相似文献   

11.
The poly (8, 11-bis (3, 4-ethylenedioxythiophen-2-yl) acenaphtho [1, 2-b] quinoxaline) (PBEAQ), was synthesized by solid-state polymerization using ferric chloride (III) as an oxidant in high yield. The structure of the monomer and polymer was elucidated by FT-IR, UV-vis absorption spectrum and element analysis. PBEAQ has an [η] value of 0.42 dl g?1 at 25 °C in H2SO4 (w=98 %). The electrochemical performance of PBEAQ was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy with three-electrode cell configuration in acidic (1 M H2SO4), alkaline (6 M KOH) and organic (0.1 M tetraethylammoniumtetrafluoroborate (TEABF4) acetonitrile solution) electrolytic solutions and PBEAQ exhibits good performance in acidic medium.  相似文献   

12.
We prepared solid polymer electrolytes (SPEs) composed of poly(ethylene glycol) monomethyl ether acrylate (1A9OMe) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm][OTF]) and 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide ([EMIm][TFSI]) as the ionic liquid. The SPEs formed by appropriately adding ionic liquids in the 1A9OMe prior to thermal cure. The ratio of 1A9OMe and ionic liquid was 1:9, 3:7, and 5:5, respectively. The characterization of solid polymer electrolytes were investigated using Fourier transform infrared spectroscopy in the attenuated total reflectance mode (FTIR-ATR), Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and glavanostatic charge-discharge test. The highest ionic conductivity of SPEs was found to be 4.90×10?4 S/cm in a 1A9OMe/[EMIm][OTF] of 3:7. As IL contents were increased, the specific capacitance of supercapacitor was increased. The specific capacitance of supercapacitor for ionic liquid with large ion size was lower than that for ionic liquid with smaller ion size.  相似文献   

13.
In the present study, conducting nanofillers are incorporated in thermoplastic polyurethane (TPU) to produce nanocomposite fibers through melt compounding route using micro twin screw extruder attached to a fiber drawing device. Nanocomposite fibers using bulk graphite, nanographite and carbon nanofiber were produced using varying amounts of these nanofillers. Metal coated nanographite, new hybrid nanoparticle produced in house, were also used to impart conductivity to the TPU fiber. The process parameters such as processing temperature, mixing time and rpm of the screw have been optimized considering minimum change in TPU bulk properties. It has been found that the nanofillers can be melt mixed safely up to 4 min with the TPU at 180 °C and 100 screw rpm. These mixing conditions give reasonable amount of dispersion. The studies on such fibers in differential scanning calorimetry (DSC) and thermomechanical analyzer (TMA) reveals that the metal coated nanographite particles make the nanocomposite fibers more thermally stable. Both the D. C. conductivity and A. C. impedance of the nanocomposite fibers have reduced significantly even at very low loading of nanofillers, although the conductivity of the produced fibers are in antistatic range (D.C. conductivity ~10?4 S/m).  相似文献   

14.
Two n-type conjugated polymers of pyrazine and quinoxaline containing poly(p-phenylene vinylene) (P-1) (P-2) have been synthesized through Wittig route. Formation of the polymers were confirmed by spectral (UV-Vis, PL, FT-IR and NMR), elemental and GPC analysis. These polymers were soluble in common organic solvents such as THF, CH2Cl2, CHCl3 and CH3CN. The resulting polymers have good thermal stability upto 308 and 361 °C with the 5 % weight loss. The absorption spectrum of the polymers displayed the maximum at 398 and 414 nm, corresponding to the ??-??* electronic transition of the conjugated polymer backbones. The optical band gap of these polymers found to have in the range of 2.5?C2.53 eV. The photoluminescence spectrum of the polymers was observed at 487 and 505 nm in CHCl3 solution. AFM images depicted that the micrometer sized globular and triangular shaped particles can be seen from the polymer surfaces.  相似文献   

15.
Layer by layer (LBL) self-assembly technique has been proved to be a feasible method that enables to accomplish the preparation of functional membranes with multilayered structure. In this research, the polymer of sulfonated polyetheretherketone (SPEEK) and thioglycolic acid capping of cadmium telluride (CdTe) nanocrystals as polyanion, the polymer of polyurethane (PU) as polycation have been used to prepare membrane electrolytes. These multilayered membranes showed good thermal stability and exhibited low liquid methanol permeability, which provided a possibility for the prepared membranes as proton exchange membranes (PEMs) to apply in direct methanol fuel cells (DMFCs). We have also demonstrated that the multicomponent (SPEEK/PU/CdTe/PU)100 membranes favored to combine more phosphoric acid (PA) molecules and possessed a higher proton conductivity comparing to the bicomponent (SPEEK/PU)210 membranes. So PA doped (SPEEK/PU/CdTe/PU)100 membrane presented a maximum proton conductivity up to 8.6×10-2 S/cm at 160 °C under anhydrous conditions. However, PA doped (SPEEK/PU)210 membranes underwent a drop on proton conductivity while the temperature exceeded 120 °C.  相似文献   

16.
A new monomer (2-N,N-dimethylamino-4,6-bis(2-furan)-pyrimidine) was synthesized and its homopolymer was successfully prepared by using ferric trichloride as an oxidant. The structure of monomer and polymer were fully characterized by 1H-NMR, FT-IR, UV, fluorescent spectroscopy, and X-ray diffraction. The N,N-dimethylformamide solution of the polymer showed a UV-Vis peak at 387 nm and the PL spectrum gave a peak at 517 nm. We have observed that the polymer was sensitive to inorganic acids and the protonation behavior was investigated applying inorganic acids such as HCI and H2SO4. The corresponding UV-Vis peaks were observed at 464 and 357 nm, respectively. X-ray diffraction data shows that polymer had a certain crystalline region. The polymer exhibited an [η] value of 0.21 dl/g at 25 °C in H2SO4 (w=98 %).  相似文献   

17.
A novel nano-silver colloidal solution was prepared in one step by mixing AgNO3 aqueous solution and an amino-terminated hyperbranched polymer (HBP-NH2) aqueous solution under vigorous stirring at room temperature. All results of Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and UV/Visible Absorption Spectrophotometry indicated that silver nanoparticles had been formed in colloidal solution. Cotton fabric was treated with nano-silver colloid by an impregnation method to provide the cotton fabric with antibacterial properties. The whiteness, silver content, antibacterial activity and washing durability of the silver-treated fabrics were determined. The results indicated that the silver-treated cotton fabric showed 99.01 % bacterial reduction of Staphylococcus aureus and 99.26 % bacterial reduction of Escherichia coli while the silver content on cotton was about 88 mg/kg. The antimicrobial activity of the silver-treated cotton fabric was maintained at over 98.77 % reduction level even after being exposed to 20 consecutive home laundering conditions. In addition, the results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirmed that silver nanoparticles have been fixed and well dispersed on cotton fabrics’ surface and the major state of the silver presented on the surface was Ag0.  相似文献   

18.
A suspension copolymerization in the presence of aqueous radiopaque nanoparticles was used to prepare poly(vinyl pivalate/vinyl acetate) (P(VPi/VAc)) nanocomposite microspheres for embolic materials. To generate nanocomposite microspheres with radiopacity, various radiopaque nanoparticles (TiO2, Ti, Ag, Au and Pt) were added to P(VPi/VAc) copolymer. The P(VPi/VAc)/nanoparticles microspheres with radiopacity were then saponified in alkali solution, leading to syndiotactic poly(vinyl alcohol) (s-PVA)/nanoparticles microspheres with radiopacity of which degree of saponification (DS) was up to 99.8 %. The saponification time of P(VPi/VAc)/nanoparticles microspheres decreased with increasing the amount of nanoparticles. Computed tomography (CT) analysis revealed that s-PVA/TiO2 and s-PVA/Ti microspheres had good radiopacity.  相似文献   

19.
Uniform chitosan fibers (CS/PEO) with diameter of 398±76 nm were prepared by electrospinning with merely 5 wt.% of poly(ethylene oxide) (PEO) loading, and then annealed at elevated temperature without the use of additional crosslinker to improve the thermostability and solvent resistance. Swelling test shows that the CS/PEO composite fibers annealed at 200 oC were stable in 50 wt.% acetic acid aqueous solution. The mechanical strength test shows that the annealing temperature can affect the tensile strength of CS/PEO composite fiber mat. The cross-linked CS/PEO composite fibers provide a useful platform for the immobilization of palladium catalyst to catalyze the Mizoroki-Heck reactions of aromatic halides with olefins. Moreover, these CS/PEO composite fibers could be post modified with special ligands to chelate palladium species efficiently to further improve the catalytic activity and stability.  相似文献   

20.
In this work, a study of the dynamic dielectric analysis of the unidirectional epoxy composite: flax-fibre-reinforced epoxy (FFRE) was investigated. In this composite, three relaxation processes were identified. The first one is the water dipoles polarization imputed to the presence of polar water molecules in flax fiber. The second relaxation process associated with conductivity occurs as a result of the carriers charges diffusion. As for the third dielectric relaxation associated with the interfacial polarization effect is attributable to the accumulation of charges at the fibers/matrix interface. The analysis of the Maxwell-Wagner-Sillars (MWS) and the water dipoles polarizations using the Havriliak-Negami model revealed the high adhesion of flax fibers in the matrix. This analysis was supported by the thermal properties using a Differential Scanning Calorimety (DSC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号