首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Orally administered [1-14C]ethyl paraoxon, O,O-diethyl-O-p-nitrophenyl phosphate, is readily absorbed from the gastrointestinal tract of male albino rats. Radioactivity is essentially eliminated in 72 hr by excretion into urine and feces and by expiration as 14CO2. Compounds with radioactivity in the urine are tentatively identified as diethyl phosphoric acid, desethyl paraoxon, ethanol, metabolites conjugated with amino acids, and paraoxon; the first compound is the predominant radioactive metabolite. Intraperitoneally injected phenobarbital, DDT, dieldrin, and endrin are inducers of microsomal enzymes that degrade paraoxon. The aryl phosphate-cleaving activity in vitro is not dependent on the addition of NADPH. O-Dealkylation of paraoxon is catalyzed by microsomal enzymes that require NADPH and oxygen and are inhibited by carbon monoxide. Microsomal enzymes from rats pretreated with enzyme inducers give an increased rate of O-dealkylation of paraoxon. Reduced glutathione has little or no effect on paraoxon degradation by either microsomal or soluble enzymes. Actinomycin D inhibits O-dealkylation of paraoxon in vivo, as indicated by reduction of 14CO2 formation, and in vitro, as indicated by decreased activity of microsomal O-dealkylase. The role of microsomal mixed-function oxidases and NADPH-dependent O-dealkylase in the metabolism of organophosphorus insecticides is discussed.  相似文献   

3.
Microsomal mixed-function oxidase (MFO) was characterized in liver of freshwater fishes, bass, Micropterus dolomeiux, and bluegill, Lepomis macrochirus, using the chlorinated cyclodiene insecticide aldrin as a substrate.The MFO activity of bluegill adults, bluegill fry, and bass fry using cyclodienes as substrates was compared with that of mouse. Aldrin epoxidase activity was found to be high in bluegill fry (73% of the activity in mouse) compared to bluegill adults (13% of the activity in mouse).Chlordene was found to be metabolized by both fish and mouse MFO to chlordene 2,3-epoxide and 1-hydroxychlordene.Competitive inhibition between various cyclodiene substrates studied in mouse and fish showed that endrin was a potent inhibitor of aldrin epoxidation in vitro.  相似文献   

4.
The cecropia juvenile hormone and three of its analogs were compared as inducers of microsomal epoxidase, O-demethylase, and DDT dehydrochlorinase in the housefly, Musca domestica L. The compounds were the cecropia juvenile hormone, methoprene, hydroprene, 6,7-epoxy-3,7-diethyl-1-[3,4-(methylenedioxy)phenoxy]-2-octene, and piperonyl butoxide, a well known insecticide synergist. The compounds were administered by feeding at levels up to 1% in the diet for 3 days to 1-day-old female adults. Enzymes were then prepared and assayed for their activity using heptachlor, p-nitroanisole, and DDT as substrates.There was approximately a twofold increase in the microsomal oxidases and a 50% increase in DDT dehydrochlorinase after the treatment with the cecropia juvenile hormone, while methoprene had some activity as an inducer of the epoxidase (30% increase) but no activity in the case of the O-demethylase or the dehydrochlorinase. Hydroprene had no effect on any of the enzyme systems, while 6,7-epoxy-3,7-diethyl-1-[3,4-(methylenedioxy)phenoxy]-2-octene was an inhibitor of the two microsomal oxidases. The latter compound and piperonyl butoxide were strong inducers of DDT dehydrochlorinase, causing approximately twofold increases in the activity of this enzyme.There was evidence that the microsomal preparations were able to metabolize and inactivate methoprene and hydroprene, the action being oxidative in the case of methoprene and both oxidative and hydrolytic in the case of hydroprene. The oxidative metabolism of the two juvenile hormone analogs by the microsomal preparations was inducible by the cecropia juvenile hormone and by phenobarbital and dieldrin.  相似文献   

5.
6.
Thirteen methylenedioxyphenyl (MDP) compounds, including commercial insecticide synergists and juvenile hormone analogs, were compared in their effect on detoxifying enzymes in the housefly (Musca domestica). Flies were fed a diet containing 1% of the compounds for 3 days. Enzymes were then assayed in vitro for their activity using aldrin and DDT as substrates. Piperonyl butoxide (PB), sesamex, propyl isome, sulfoxide, safrole, isosafrole, 6,7-epoxy-3,7-diethyl-1-[3-4(methylenedioxy) phenoxy]-2-octene (MDP-JH I) and 6,7-epoxy-3-methyl-7-ethyl-1-[3,4-(methylenedioxy) phenoxy]-2-octene (MDP-JH II) all caused a bimodal effect, inhibiting microsomal epoxidase and inducing DDT-dehydrochlorinase in the resistant Isolan-B strain. Two of these, PB and MDP-JH I, gave similar results with the susceptible strain, stw;w5 and two resistant strains, Fc-B and Orlando-DDT. However, o-safrole, piperonylic acid, piperonal, 3,4-methylenedioxybenzyl acetate and methyl-(3,4-methylenedioxy) benzoate had little or no effect on the enzyme systems studied. The standard susceptible strain (WHO-SRS) responded to these compounds very differently. Among those tested, piperonyl butoxide, sesamex, safrole, and isosafrole were inducers of microsomal epoxidase, a 4-fold increase occurring after treatment with sesamex. Only MDP-JH II showed a marked inhibition of the epoxidase. These treatments did not effect DDT-dehydrochlorinase activity in this strain.The enhancement of DDT-dehydrochlorinase activity by the MDP compounds is associated with an increased rate of DDT dehydrochlorination in vivo. The stimulatory effect could be blocked by treatment with actinomycin D or cycloheximide.  相似文献   

7.
An epoxide hydrolase purified from midgut microsomes of southern armyworm (Spodoptera eridania) larvae exhibited high activity toward monosubstituted epoxides (1,2-epoxyoctane, 1,2-epoxypropane, and styrene oxide) and lower activity toward cis-1,2-disubstituted epoxides (cyclohexene oxide, and the cyclodienes HEOM, HCE, and chlordene epoxide). Trisubstituted epoxides (2-methyl-2,3-epoxyheptane and JH-1) as well as several cyclodiene insecticides (dieldrin, endrin, endo-epoxyaldrin, and anti-heptachlor epoxide) were refractory to enzymatic attack. It is concluded that both lipophilic and steric factors dictate the substrate specificity of the enzyme. With cyclohexene oxide the enzyme yields the 1R, 2R enantiomer of the trans-diol. The purified enzyme is inhibited by several epoxides and mixed-function oxidase inhibitors and the potency of 3,3,3-trichloro-1,2-epoxypropane and sodium picrylsulfonate suggest the importance of electronic factors in the inhibitory mechanism. Studies with specific amino acid modifiers suggest the presence of an essential lysine or histidine residue at the active site and indicate that the enzyme lacks a metal ion requirement and an essential cysteine residue. The purified enzyme has a molecular weight of 46,000 daltons and amino acid analysis and immunochemical studies show it to be very similar to, but not identical with, the epoxide hydrolase from mammalian liver microsomes.  相似文献   

8.
The correct von Baeyer/IUPAC names of aldrin (HHDN), dieldrin (HEOD), and endrin, of 5 previously incorrectly-named compounds and of 18 other related compounds which have not hitherto been named in this way are presented in tabular form alongside their structural formulae. The von Baeyer ring systems present in some of these compounds were identified by inspection of Schlegel diagrams (planar representation of bridged hydrocarbons), a guide to the construction of which is presented. Also included in the tables (which have been indexed) are abbreviated chemical names; the suitability of the choices made is discussed. The alternative “polyhydroaromatic” names for 12 of these compounds have been abstracted from the literature and listed.  相似文献   

9.
A total of 146 samples of different kinds of cheeses produced in Spain were analysed in order to ascertain the specific contamination pattern. The organochlorine compounds studied were those most commonly investigated in previous surveys: α-HCH, β-HCH, γ-HCH (lindane), γ-HCH, chlordane, aldrin, dieldrin, endrin, heptachlor, heptachlor epoxide, and the isomers and metabolites of DDT. α-HCH, β-HCH, γ-HCH, chlordane, p,p′, DDT, and p,p′-DDE were found in more than 76% of samples; p,p′-DDE and γ-HCH were the most frequently detected, with frequencies of 100 and 97.9% respectively. γ-HCH, aldrin, dieldrin, heptachlor, heptachlor epoxide, o,p′-DDT, p,p′-DDD and o,p′-DDD were observed at lower frequencies. No residues of endrin were detected in any sample. Insecticides exceeding the maximum residue limits (MRLs) were chlordane, β-HCH, α-HCH and γ-HCH, with 42, 20, eight and six samples respectively. Mean residues of organochlorines found were as follows (μ kg?1 butterfat): α-HCH = 46.3; β-HCH = 46.5; γ-HCH = 54.2; δ-HCH = 16.9; aldrin = 16.7; dieldrin = 9.7; heptachlor = 15.9; heptachlor epoxide = 14.8; chlordane = 50.2; o,p′-DDT = 5.1; p,p′-DDT = 12.4; o,p′-DDT = 19.6; p,p′-DDD = 46.7; o,p′-DDE = 6.9; p,p′-DDE = 40.7 (.DDT = 55.0). Estimated dietary intakes (EDIs) from cheese consumption were compared to acceptable daily intakes (ADIs) for the pesticides where residues exceeded the MRL. EDIs calculated were in all cases below ADIs, and, therefore, based on the ADIs, there is no health risk involved in the consumption of cheese from Spain arising from organochlorine residues.  相似文献   

10.
Two metyrapone analogues, 2-(l-imidazolyl)-2-methyl-l-phenyl-l-pro-panone (A-phenyl-B-imidazolyl-metyrapone; III) and 2-methyl-l-phenyl-2-{1,2,4-triazol-l-yl)-l -propanone (A-phenyl-B-triazolyl-meiyrapone; IV) as well as two cyclopropylamine derivatives. N-cyclopropyl-4-icrt-butylbenzylamine (V) and N-cyclopropyl-4-(3,7-dimethyl-7-methoxy-octyloxy)benzamide (cyclopropylamine acylated with a JH analogue acid of known structure; VI) were synthesized and evaluated in biological assays for JH biosynthesis on cockroach, Diploptera punctata corpora allata and egg growth in adult cockroach as well as for mixed function oxidase activities, i.e. epoxidation of aldrin to dieldrin and O-demethylation of 7-methoxy-4-methylcoumarin to 7-hydroxy-4-methylcoumarin on microsomes from housefly, Musca domestica, abdomen and from cockroach midgut. Compound VI was a good in-vitro inhibitor of JH biosynthesis, but it had significantly lower activities in the assays for inhibition of microsomal cytochrome P-450. Compound IV and metyrapone had moderate activity as inhibitors of oocyte growth. Compounds III, IV and V were more potent inhibitors of housefly aldrin epoxidation than metyrapone and they inhibited the enzyme activity by almost 100% at 02mM, while in cockroach midgut microsome assay metyrapone was more potent than these three compounds.  相似文献   

11.
The effect of various plant substances and host plants on the microsomal oxidases and glutathione S-transferase was investigated in the fall armyworm (Spodoptera frugiperda (J. E. Smith)) maintained on a meridic diet. The glucosinolate, sinigrin, and the hydrolytic products of glucosinolates, β-phenylethylisothiocyanate, indole 3-acetonitrile, and indole 3-carbinol, and flavone were found to be potent inducers of the glutathione S-transferase in the armyworm. An 18-fold increase in the transferase activity was observed when larvae were fed a diet containing 0.2% indole 3-acetonitrile for 2 days. These compounds, with the exception of β-phenylethylisothiocyanate which appeared to be inhibitory, also stimulated the microsomal aldrin epoxidase significantly. In all instances, no induction of the microsomal oxidase or glutathione S-transferase was observed by the plant hormones, indole 3-acetic acid and gibberellic acid; the terpenoids, stigmasterol, sitosterol, and β-carotene; the polyphenolic gossypol; and the flavonol, quercetin; some of them were found to be inhibitory. Using corn, potato, and sweet potato as inducers of various microsomal oxidases, it was found that the inducing pattern of the N-demethylase was different from the two epoxidases and O-demethylase. Corn leaves were the most active compared with other aerial parts of corn (silks, developing corn, and husk) in inducing the microsomal oxidase. The microsomal oxidase in the younger larvae appeared to be less inducible by host plants than in the older larvae.  相似文献   

12.
Soil samples from five metropolitan areas including Baltimore, Maryland; Gadsden, Alabama; Hartford, Connecticut; Macon, Georgia; and Newport News, Virginia were analyzed for elemental arsenic, organochlorine pesticides, and polychlorinated biphenyls (PCBs). A representative number of samples were analyzed for organophosphorus pesticides, but none was detected. All areas exhibited heavy soil concentrations of organochlorine pesticides including sigma DDT, aldrin, dieldrin, photodieldrin, chlordane, heptachlor, heptachlor epoxide, endrin, endrin ketone, and endosulfan sulfate. PCBs were detected in three of the five metropolitan areas. Within the metropolitan areas, samples from the urban, or core city, locations generally had higher pesticide concentrations than did samples from suburban locations. Finally, pesticide residue concentrations were generally higher in soils of metropolitan areas than in nearby agricultural soils.  相似文献   

13.
The first syntheses of syn-12-hydroxydieldrin, syn-12-hydroxyendrin and anti-12-hydroxyendrin have been accomplished by debenzoylation and epoxidation of three isomeric adduction products of hexachlorocyclopentadiene and 1,7,7-trinorborna-2,5-dien-7-yl benzoate. A third known metabolite of endrin, 12-ketoendrin, and a putative metabolite of dieldrin, 12-ketodieldrin, were prepared from the corresponding alcohols by oxidation with chromium trioxide. Characterisation of the three debenzoylated intermediates as syn-12-hydroxyaldrin, and syn- and anti-12-hydroxyisodrin constitutes the first syntheses of these three possible metabolites of aldrin and isodrin.  相似文献   

14.
Enzymatic epoxide hydration, a significant mechanism in the regulation of insect development and in the detoxication of certain cyclodiene insecticides, has been investigated in vitro in the blowfly, Calliphora erythrocephala, the southern armyworm, Prodenia eridania, and the Madagascar cockroach, Gromphadorhina portentosa. Characterization of the hydrases involved in cyclodiene epoxide hydration has been achieved using as substrate a cyclodiene insecticide (HEOM) susceptible to enzymatic epoxide ring cleavage. The enzymes, which are microsomal but different from the oxidases, are inhibited in varying degrees by microsomal oxidase inhibitors as well as by certain epoxides, esterase inhibitors and compounds with reported juvenilizing ability. Group-bulk and electronegative effects are important requirements for HEOM-hydrase inhibition, the best inhibitor of the system being 1,1,1-trichloro-2,3-epoxypropane. Differences between the structural requirements for HEOM-hydrase inhibition and those for inhibition of the epoxide hydrase responsible for the degradation of juvenile hormone are discussed.  相似文献   

15.
The effects of aldrin, carbaryl, α- and γ-chlordane, dichlorodiphenyldichloroethane (DDD), dichlorodiphenyltrichloroethane (DDT), dieldrin, endrin, heptachlor, lindane, methoxychlor, and nonachlor on the short-circuit current and resistance of the isolated intact frog skin were studied. The short-circuit current is approximately equivalent to the rate of active transport of sodium, while the resistance indicates the summed ionic permeability of the skin. At a concentration of 2 × 10?4M, only carbaryl, DDD, dieldrin, and lindane produced significant (P<0.05, paired t test) changes in the short-circuit current. Nonachlor produced a decrease (P=0.12) in the short-circuit current and also increased the resistance (P=0.07). DDD, dieldrin, and carbaryl caused significant increases in short-circuit current while at the same time the resistance was significantly decreased. Lindane increased both the short-circuit current and the resistance. It was concluded that the frog skin probably contains effective permeability barriers that prevent externally applied insecticides from reaching the site of active sodium transport. It appeared likely that most of the insecticides produced the observed effects on the frog skin by altering the sodium permeability of the outer barrier.  相似文献   

16.
Concentrations of dieldrin in aquatic insects, crayfish, minnows, and small carpsuckers, and muscle tissue of channel catfish (Ictalurus punctatus) were compared with the dieldrin content of Des Moines River water in 1971-73. Monthly mean concentrations of dieldrin in river water and most aquatic organisms were highest in June and July, soon after aldrin had been applied to corn land in the watershed. Several groups of aquatic organisms also exhibited high dieldrin levels in the fall when the dieldrin content of river water was seasonally low. The influence of temperature on metabolic rate and enzyme activity and the differences in body fat content were suggested as probable causes of variations observed in the dieldrin content of aquatic organisms.  相似文献   

17.
The impact of four modern fungicides JS399-19 (2-cyano-3-amino-3-phenylancryic acetate) (novel fungicide), azoxystrobin (a strobilurin), tebuconazole (a triazole) and carbendazim (a benzimidazole), applied as foliar spray at the recommended field rate, on the physiology and biochemistry of the senescence process and grain yield was studied in winter wheat (Triticum aestivum L. cv. ‘Nannong No. 9918’) under natural environmental conditions. Fungicide treatments to wheat plants at growth stage [ZGS] 57 (3/4 of head emerged) significantly increased the chlorophyll (CHL) and soluble protein (SP) content and decreased the malondialdehyde (MDA) content and electrolyte leakage. Additionally, activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in flag leaves of the fungicide-treated plants were also higher than that in untreated plants. These coincided with elevated levels of H2O2 and reduced level of in the fungicide-treated plants. The results suggested that the fungicide-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species (AOS). Because all fungicides can induce the delay of wheat senescence, fungicide-treated wheat shown higher grain yield than untreated wheat. Of all tested fungicides, JS399-19, azoxystrobin and tebuconazole showed similar effects on delaying senescence of wheat and enhancing the grain yield of wheat, but JS399-19 was more efficient in general.  相似文献   

18.
A cyclodiene epoxide notable for its susceptibility to enzymic epoxide ring hydration in living organisms has been used to investigate potential inhibitors of the enzyme involved (epoxide hydrase), which is mainly microsomal, but distinct from the microsomal oxidases. Compounds with varying degrees of inhibitory efficiency include insect hormone analogues containing epoxide rings, certain other epoxides, methylenedioxybenzene-derived insecticide synergists, tri-o-cresyl phosphate, triphenyl phosphate and the microsomal oxidase inhibitor SKF 525A. The simple epoxides 1,l,l-trichloro-2,3-epoxy-propane and l,2-epoxy-l,2,3,4-tetrahydronaphthalene are the best inhibitors of this enzyme in blowfly pupal homogenates.  相似文献   

19.
The induction of glutathione S-transferases and microsomal oxidases by host plants and allelochemicals was examined in sixth-instar larvae of insecticide-susceptible and resistant strains of the fall armyworm, Spodoptera frugiperda (J. E. Smith). Among 11 host plants studied, parsnip and parsley were the best inducers of glutathione S-transferase, resulting in increases of 39- and 19-fold, respectively, compared with the artificial diet. The inducer in parsnip leaves was identified by mass spectrometry, high-pressure liquid chromatography, gas chromatography, and thin-layer chromatography as xanthotoxin, a furanocoumarin. Xanthotoxin also showed a bimodal effect on the microsomal oxidase systems, increasing cytochrome P-450 content and heptachlor epoxidase activity but inhibiting aldrin epoxidase, biphenyl 4-hydroxylase, and p-chloro-N-methylaniline N-demethylase. Using indole 3-acetonitrile, indole 3-carbinol, and flavone as inducers, the inducing pattern of glutathione S-transferases was the same toward 3,4-dichloronitrobenzene, 1-chloro-2,4-dinitrobenzene, and methyl iodide. Microsomal oxidase and glutathione S-transferase were also inducible by host plants and allelochemicals in larvae of a carbaryl-resistant strain.  相似文献   

20.
Dieldrin and two of its metabolites, 6,7-trans-dihydroaldrindiol, and 6,7-cis-dihydroaldrindiol, were studied with regard to their toxicity to the American cockroach, effects on ganglia of the ventral nerve cord, and penetration into the ventral nerve cord of poisoned cockroaches. An approximate LD50 for injected doses of dieldrin was 0.45 mg/kg. After injection at 115 mg/kg, the trans isomer of aldrin diol caused about 70%, and the cis isomer about 50% mortality. Injected doses of 40 mg/kg of the three compounds appeared in the ventral nerve cord to the extent of 0.13–0.26% of the doses. Dieldrin was more potent, but slower acting than the diols in causing synaptic after-discharge and elevated spontaneous activity in isolated nerve cords. The results are discussed in relation to other studies on these compounds. It was concluded that, in the American cockroach, dieldrin, rather than either of the diols, is the insecticidal agent in dieldrin poisoning, and that metabolic conversion of dieldrin to the cis and/or trans aldrindiol constitutes a detoxification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号