首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Amy S.  Tidwell  DVM  Andrew  Specht  DVM  Lauren  Blaeser  DVM  Marc  Kent  DVM 《Veterinary radiology & ultrasound》2002,43(4):319-324
Myelography and magnetic resonance imaging (MRI) were performed on a 4-year-old neutered female Rottweiler with bilateral pelvic limb paresis. On the myelogram, there was extradural spinal cord compression at the level of the T11-12 intervertebral disc. Inadvertent placement of epidural contrast medium also allowed identification of a 1-cm circular filling defect in the epidural space dorsal to the compressed spinal cord. MRI showed partial loss of the nucleus pulposus signal of the T11-12 disc, a focal signal void within the vertebral canal at T11 compatible with a free disc fragment, and extradural masses compressing the spinal cord at T10-11 and T11-12. Hemorrhage within the masses was confirmed on T2*-weighted images. A mixture of hematoma and mineralized disc material was found at surgery, and there was no histopathologic evidence of neoplasia. In this article, the appearance on MRI of hemorrhage associated with intervertebral disc herniation is discussed.  相似文献   

2.
The purpose of this study was to describe the appearance of normal bone marrow in seven adult dogs using low-field (0.3 T) magnetic resonance (MR) imaging. The areas imaged included the lumbar spine, pelvis, and femur. T1-weighted, fast spin-echo T2-weighted, and short tau (T1) inversion recovery (STIR) sequences were obtained at all locations. Histopathology was performed on sections from the sixth lumbar vertebral body, the wing of the ilium, and the femur (head and neck, mid-diaphysis, and condyle) for evaluation of cellularity and fat content. The lumbar spine and pelvic marrow MR images were similar in all dogs. The lumbar vertebral bone marrow was uniform, intermediate signal intensity, and isointense to muscle on all sequences. There was variation between dogs in the bone marrow distribution with MR imaging of the femur. In the proximal and mid-diaphysis of the femur there was patchy high-signal intensity on T1- and T2-weighted images, and hypointense foci on the STIR images. The distal femoral metaphysis had a variable pattern ranging from intermediate-to-high signal on T1- and T2-weighted images and intermediate-to-low signal on STIR images. The femoral condyles were uniformly high signal on T1- and T2-weighted images and hypointense on STIR images. Histopathologically there was a normal variation in the bone marrow cellularity. The marrow was normocellular (25–75% cellularity) for all sites examined except the femoral condyles, which were hypocellular (<25% cellularity).  相似文献   

3.
F. Rossi  DVM    G. Seiler  DVM    A. Busato  DVM habil.  MSc.    C. Wacker  DVM    J. Lang  DVM habil. 《Veterinary radiology & ultrasound》2004,45(5):381-387
The geometry of the lumbosacral region has been suspected to play a role in the development of degenerative lumbosacral stenosis in the dog. In this study, 50 dogs (21 German Shepherd dogs and 29 dogs of other breeds) with clinical signs of cauda equina compression were studied by magnetic resonance (MR) imaging. The orientation of the articular process joints in the L5-S1 region and the angle difference between two adjacent motion segments were calculated. Intervertebral disc degeneration of the same region was identified and classified in four stages. A positive association between MR-imaging stage and articular process joint angle difference in the transverse plane was found in the two groups of animals. German Shepherd dogs and dogs of other breeds had different geometry of the lumbosacral region with different articular process joint angles in the transverse plane and statistically different stages of disc degeneration.  相似文献   

4.
Degenerative lumbar spine diseases, i.e., sacrolumbar stenosis, intervertebral disk degeneration and protrusion and spondylosis deformans of the canine lumbar spine were studied in eleven canine patients and three healthy controls using radiography and 0.02 T and 0.04 T low field magnetic resonance imaging. The T1 and T2 weighted images were obtained in sagittal and transverse planes. The loss of hydration of nucleus pulposus, taken as a sign of degeneration in the intervertebral disks, could be evaluated in both T1 and T2 weighted images. As a noninvasive method magnetic resonance imaging gave more exact information about the condition of intervertebral disks than did radiography. Sacrolumbar stenosis and compression of the spinal cord or cauda equina and surrounding tissue could be evaluated without contrast medium.  相似文献   

5.
Reversible magnetic resonance (MR) imaging lesions have been described in humans following seizures. This condition has not yet been reported in animals. This paper describes reversible abnormalities identified in 3 dogs using MR imaging that was performed initially within 14 days of the last seizure and follow-up imaging that was performed after 10 to 16 weeks of anticonvulsant therapy. All three dogs had lesions in the piriform/temporal lobes, characterized by varying degrees of hyperintensity on T2-weighted images and hypointensity on T1-weighted images. In one dog, contrast enhancement was evident. On reevaluation, partial resolution occurred in all 3 dogs. In a fourth animal with an olfactory meningioma, similar appearing lesions in the temporal cortex and right and left piriform lobes were identified after seizure activity. A surgical biopsy of the temporal cortex and hippocampus was performed and edema, neovascularization, reactive astrocytosis, and acute neuronal necrosis were evident. These histologic findings are similar to those reported in humans with seizures. Recognizing the potential occurrence of reversible abnormalities in MR images is important in developing a diagnostic and therapeutic plan in canine patients with seizures. Repeat imaging after seizure control may help differentiate between seizure-induced changes and primary multifocal parenchymal abnormalities.  相似文献   

6.
Debra K.  Baird  DVM  John T.  Hathcock  DVM  MS  Steven A.  Kincaid  DVM  MS  PhD  Paul F.  Rumph  DVM  MS  John  Kammermann  MS  William R.  Widmer  DVM  MS  Denise  Visco  PhD  Donald  Sweet  MD 《Veterinary radiology & ultrasound》1998,39(3):167-173
Six healthy adult male mongrel dogs underwent cranial cruciate ligament transection in the left stifle. Survey radiography of both stifles and low-field (0.064 T) MRI of the left stifle were performed preoperatively and at 2, 6, and 12 weeks postoperatively. Focal changes in signal intensity were seen with MRI in the subchondral bone of the medial tibial condyle at 2 and 6 weeks postoperatively. At 12 weeks postoperative, a cyst-like lesion was detected using MRI in the subchondral bone of the medial tibial condyle in 4 of 6 dogs and a less defined lesion at this site in the remaining 2 dogs. The cyst-like lesion was spherical in shape and showed typical characteristics of fluid with low signal intensity on T1-weighted images, high signal intensity on T2-weighted images and high signal intensity on inversion recovery images. The lesion was seen in the subchondral bone of the caudal medial and/or middle region of the tibial plateau slightly cranial to the insertion of the caudal cruciate ligament. No subchondral cysts were seen in the tibia on radiographs. Histopathologically, the tibia was characterized by a loose myxomatous phase of early subchondral cyst formation.  相似文献   

7.
The caudal lumbar and lumbosacral spine of 13 dogs with pain or neurologic deficits were evaluated using magnetic resonance imaging (MRI). Spin echo T1, proton density, and T2 weighted and gradient echo T2* imaging sequences were utilized. MRI permitted direct, multiplanar, tomographic visualization of the spine facilitating evaluation of all components of degenerative caudal lumbar and lumbosacral stenosis. Abnormalities detected included intervertebral disc degeneration, intervertebral disc protrusion involving both the vertebral canal and intervertebral foramina, articular process osteophytosis, articular process fracture, nerve root impingement by spondylosis deformans, and the presence of low signal material within the vertebral canal of 2 dogs with recurrent pain following previous spinal surgery. In all 7 dogs treated surgically, MRI findings were consistent with surgical findings.  相似文献   

8.
Evaluation of the canine temporomandibular joint (TMJ) is important in the clinical diagnosis of animals presenting with dysphagia, malocclusion and jaw pain. In humans, magnetic resonance imaging (MRI) is the modality of choice for evaluation of the TMJ. The objectives of this study were to establish a technical protocol for performing MRI of the canine TMJ and describe the MRI anatomy and appearance of the normal canine TMJ. Ten dogs (one fresh cadaver and nine healthy live dogs) were imaged. MRIs were compared with cadaveric tissue sections. T1‐weighted (T1‐W) transverse closed‐mouth, T1‐W sagittal closed‐mouth, T1‐W sagittal open‐mouth, and T2‐W sagittal open‐mouth sequences were obtained. The condylar process of the mandible and the mandibular fossa of the temporal bone were hyperintense to muscle and isointense to hypointense to fat on T1‐W images, mildly hyperintense to muscle on T2‐W images, and were frequently heterogeneous. The articular disc was visible in 14/20 (70%) TMJs on T1‐W images and 13/20 (65%) TMJs on T2‐W images. The articular disc was isointense to hyperintense to muscle on T1‐W images and varied from hypointense to hyperintense to muscle on T2‐W images. The lateral collateral ligament was not identified in any joint. MRI allows evaluation of the osseous and certain soft tissue structures of the TMJ in dogs.  相似文献   

9.
Debra K.  Baird  DVM  John T.  Hathcock  DVM  MS  Paul F.  Rumph  DVM  MS  Steven A.  Kincaid  DVM  MS  PhD  Denise M.  Visco  PhD 《Veterinary radiology & ultrasound》1998,39(2):87-97
Low-field magnetic resonance imaging (MRI) was performed on the stifle joints of four normal adult mongrel dogs using a 0.064 Tesla scanner. Markers were placed on each stifle joint to serve as reference points for comparing gross sections with the images. A T1-weighted sequence was used to image one stifle joint on each dog in the sagittal plane and the other stifle joint in the dorsal plane. The dogs were euthanized immediately following MRI and the stifle joints frozen intact. Each stifle joint was then embedded in paraffin, again frozen, and sectioned using the markers as reference points. On T1-weighted images, synovial fluid had low signal intensity (dark) compared to the infrapatellar fat pad which had a high signal intensity (bright). Articular cartilage was visualized as an intermediate bright signal and was separated from trabecular bone by a dark line representing subchondral bone. Menisci, fibrous joint capsule, and ligamentous structures appeared dark. In the true sagittal plane, the entire caudal cruciate ligament was often seen within one image slice. The patella was visualized as an intermediate bright signal (trabecular bone) surrounded by a low intensity signal (cortical bone). The trochlea and the intercondylar notch were difficult areas to analyze due to signal volume averaging of the curved surface of these areas and the presence of several types of tissues.  相似文献   

10.
Five gelatin phantoms were constructed to study the effect of matrical hydration on magnetic resonance imaging (MRI) signal intensity using a low-field strength imager. Water content of the phantoms ranged from 75 to 95% weight/weight. Signal intensity values of each phantom were measured using five imaging sequences: proton density, T1-weighted, T2-weighted, inversion recovery with short inversion time, and inversion recovery with long inversion time. There was significant positive correlation (p < .05) of signal intensity with differences in hydration using the T2-weighted sequence and the inversion recovery sequence with short inversion time. Significant negative correlations (p < .05) were found with T1-weighted imaging and the inversion recovery sequence with long inversion time. In a second part of the study, in vivo focal variations in MRI signal intensity were evaluated in a canine cranial cruciate ligament deficient model of osteoarthritis. Signal intensity measurements were obtained from multiple areas of articular cartilage to identify an initial stage in osteoarthritis that is characterized in part by increased hydration of articular cartilage. At 6 weeks post-transection of the cranial cruciate ligament, an increase in signal intensity was detected in the articular cartilage of the weight-bearing portion of the lateral femoral condyle and the caudal portion of the medial tibial condyle with T1-weighted imaging. The increase in signal intensity may reflect increased proteoglycan synthesis by chondrocytes that also occurs early in the pathogenesis of osteoarthritis.  相似文献   

11.
Two dogs with neurologic signs were evaluated by magnetic resonance imaging of the brain. Focal space-occupying lesions were present in both dogs. In the first, the lesion was in the brain stem and in the second, in the cerebellum. In one dog the lesion was only evident after administration of gadolinium-DTPA-dimeglumine. Based on the magnetic resonance images, neoplasia was suspected in both dogs but histopathologically, granulomatous meningoencephalomyelitis was diagnosed.  相似文献   

12.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

13.
The occurrence of asymptomatic disappearance of intervertebral disc calcification was evaluated in a radiographic prospective longitudinal study of 40 Dachshunds followed from 6 or 12 months of age to 2 years of age. Radiographic follow-up was performed at 3 to 4 years of age in 12 dogs. Disappearance of calcified disc material was observed in 9 thoracic and 1 lumbar intervertebral discs. The crude incidence rate tended to increase with age from 1 year of age. The features of the disappearing calcifications involved indicate that the phenomenon is part of the progressive degenerative process. A possible pathogenesis includes tearing of the annulus fibrosus due to the severe degeneration of the disc, followed by an inflammatory response to nuclear material and phagocytic resorption of calcified material.  相似文献   

14.
MAGNETIC RESONANCE IMAGING FEATURES OF PRIMARY BRAIN TUMORS IN DOGS   总被引:1,自引:0,他引:1  
Magnetic resonance images of twenty-five dogs with histopathologically confirmed primary brain tumors were evaluated. A lesion was visible in each dog. Meningiomas were extra-axial lesions that enhanced markedly withj gadolinium-DTPA. Glimas were Characteized by intra-axial location, significant mass effect and surrounding edema, and variable enhancement patterns. Choroid plexus tumors and pituitary tumors were differentiated by their location and marked enbancement. Prediction of general typeof tumor was correct in 24 of 25 dogs.  相似文献   

15.
Magnetic resonance imaging was performed in seven dogs with histopathologically-confirmed brain infarcts. The infarcts were non-hemorrhagic in four dogs and hemorrhagic in three dogs. Six dogs had single infarcts involving the cerebrum and one dog had multiple infarcts involving the cerebrum and brain stem. Non-hemorrhagic infarcts were typically wedge-shaped, hypointense on T1-weighted images, hyperintense on T2-weighted images, and did not enhance with gadolinium-DTPA. Hemorrhagic infarcts had mixed intensity on T1- and T2-weighted images, with variable patterns of enhancement.  相似文献   

16.
Magnetic resonance (MR) imaging characteristics of intracranial granular cell tumors (GCTs) have been previously reported in three dogs. The goal of this retrospective study was to examine a larger number of dogs and determine whether distinctive MR characteristics of intracranial GCTs could be identified. Six dogs with histologically confirmed intracranial GCTs and MR imaging were included. Tumor location, size, mass effect, T1‐ and T2‐weighted signal intensity, and peritumoral edema MR characteristics were recorded. In all dogs, GCTs appeared as well‐defined, extra‐axial masses with a plaque‐form, sessile distribution involving the meninges. All tumors were located along the convexity of the cerebrum, the falx cerebri, or the ventral floor of the cranial vault. All tumors were mildly hyperintense on T1‐weighted images, and iso‐ to hyperintense on T2‐weighted images. A moderate‐to‐severe degree of peritumoral edema and mass effect were evident in all dogs. Findings indicated that, while several MR imaging characteristics were consistently identified in canine cerebral GCTs, none of these characteristics were unique or distinctive for this tumor type alone.  相似文献   

17.
The cervical spine of 21 dogs with clinical signs of cervical stenotic myelopathy was evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2 and gradient echo T2 weighted images were obtained with a 1.5 Tesla magnet in 12 dogs and a 1.0 Tesla magnet in 9 dogs. Sagittal or parasagittal T1W and T2W images were helpful in determining the presence of spinal cord compression or degenerative disease of the articular processes. Transverse T1W and T2W images were the most useful for the identification of dorsolateral spinal cord compression secondary to soft tissue and ligament hypertrophy, as well as synovial cysts, associated with the articular processes. The MR imaging findings were consistent with the surgical findings in all 14 dogs that underwent surgery. Magnetic resonance imaging provided a safe, non-invasive method of evaluating the cervical spine in dogs suspected of having cervical stenotic myelopathy. Veterinary  相似文献   

18.
Three dogs with multilobular osteochondrosarcoma of the skull were evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2, proton weighted and post contrast T1W images were obtained with a 1.5 Tesla magnet. The MR imaging findings were similar in all three dogs with mixed signal intensities in the T1W, T2W and proton weighted images and fairly large areas of contrast enhancement in the post contrast T1W images. The extent of brain and soft tissue involvement were well delineated and provided useful information concerning surgical planning. MR imaging provided a useful method of evaluating dogs with skull tumors.  相似文献   

19.
The medical records and magnetic resonance (MR) images of dogs with an acquired trigeminal nerve disorder were reviewed retrospectively. Trigeminal nerve dysfunction was present in six dogs with histologic confirmation of etiology. A histopathologic diagnosis of neuritis (n=2) or nerve sheath tumor (n=4) was made. Dogs with trigeminal neuritis had diffuse enlargement of the nerve without a mass lesion. These nerves were isointense to brain parenchyma on T1-weighted (T1W) precontrast images and proton-density-weighted (PDW) images and either isointense or hyperintense on T2-weighted (T2W) images. Dogs with a nerve sheath tumor had a solitary or lobulated mass with displacement of adjacent neuropil. Nerve sheath tumors were isointense to the brain parenchyma on T1W, T2W, and PDW images. All trigeminal nerve lesions enhanced following contrast medium administration. Atrophy of the temporalis and masseter muscles, with a characteristic increase in signal intensity on T1W images, were present in all dogs.  相似文献   

20.
A series of low-field magnetic resonance images of the normal canine middle and inner ear are presented to serve as a reference. A completely balanced steady-state gradient echo pulse sequence with a slice thickness of 0.9 mm can be used to acquire images of the relevant structures within and neighboring the inner ear. These were the cochlear duct, semicircular ducts, vestibule, facial and vestibulocochlear nerves, as well as the temporal sinus. Within the middle ear, no applied sequence was able to allow identification of the auditory ossicles or the tympanic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号