首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domestic animals are often repeatedly exposed to the same anthropogenic stressors. Based on cortisol secretion and heart rate, it has been demonstrated that transport is stressful for horses, but so far, changes in this stress response with repeated road transport have not been reported. We determined salivary cortisol concentrations, fecal cortisol metabolites, cardiac beat-to-beat (RR) interval, and heart rate variability (HRV) in transport-naive horses (N = 8) transported 4 times over a standardized course of 200 km. Immunoreactive salivary cortisol concentrations always increased in response to transport (P < 0.001), but cortisol release decreased stepwise with each transport (P < 0.05). Concentrations of fecal cortisol metabolites increased from 55.1 ± 4.6 ng/g before the first transport to 161 ± 17 ng/g the morning after (P < 0.001). Subsequent transport did not cause further increases in fecal cortisol metabolites. In response to the first transport, mean RR interval decreased with loading of the horses and further with the onset of transport (1551 ± 23, 1304 ± 166, and 1101 ± 123 msec 1 d before, immediately preceeding, and after 60–90 min of transport, respectively; P < 0.05). Decreases in RR interval during subsequent transports became less pronounced (P < 0.001). Transport was associated with a short rise in the HRV variable standard deviation 2 (P < 0.001 except transport 1), indicating sympathetic activation. No consistent changes were found for other HRV variables. In conclusion, a transport-induced stress response in horses decreased with repeated transport, indicating that animals habituated to the situation, but an increased cortisol secretion remained detectable.  相似文献   

2.
For initial training, horses are often transferred from group housing to individual boxes, which is a potential stressor. In this study, salivary cortisol concentrations, locomotion activity, and heart rate (HR) were analyzed and the HR variability (HRV) variables standard deviation of beat-to-beat interval (SDRR) and root mean square of successive RR differences (RMSSD) were calculated in 3-year-old mares (n = 8). Mares were transferred abruptly from a group stable with access to a paddock to individual boxes without a paddock and were studied from 4 days before to 5 days after changing the stable. Mares underwent routine equestrian training for young horses. On the days before mares were moved to individual boxes, cortisol concentrations showed a diurnal rhythm with values approximately 0.6 ng/ml in the morning and a decrease throughout the day. When horses were moved to individual boxes, cortisol concentrations increased to 1.8 ± 0.2 ng/ml within 30 minutes and did not return to baseline values within 6 hours (0.7 ± 0.1 ng/ml, P < .05 over time). On the following days, a diurnal rhythm was re-established but at a higher level than before the change of stable. Locomotion activity was higher when mares had access to a paddock than when kept in individual boxes. Heart rate increased for approximately 60 minutes when mares were separated from their group. In conclusion, separating young horses from their group and individual stabling are perceived as stressful.  相似文献   

3.
4.
Equestrian competitions require both physical activity and mental adaptation in horses. Cortisol, heart rate, and heart rate variability (HRV) are accepted stress parameters and, in this study, have been determined in horses (n = 13) participating in equestrian competitions for up to 3 consecutive days. Participation in competitions caused an increase in salivary cortisol concentrations (e.g., on day 1 from 1.0 ± 0.2 before to 2.2 ± 0.4 ng/mL after the competition, days 1 and 2: P < 0.001, day 3: P < 0.05) and an increase in heart rate (days 1 and 2: P < 0.001, day 3: P = 0.01). A consistent decrease in HRV occurred only in response to the final competition on day 3 (P < 0.01). When horses competing in dressage and show jumping were compared, cortisol release and HRV did not differ between groups, but after the competition, heart rate was lower in dressage than in show jumping horses (P < 0.05). Heart rate increased not only during the actual competition but already when horses were prepared in their stables (e.g., day 1: ?60 minutes, 38.6 ± 2; ?5 minutes, 77 ± 7; competition, 81 ± 10 beats per minute; P < 0.01). In conclusion, participation in equestrian competitions caused an increase in cortisol release and heart rate and a decrease in HRV variables. However, competitions were not a major stressor compared with other anthropogenic challenges such as transport, to which horses are exposed regularly.  相似文献   

5.
Heart rate (HR) and heart rate variability (HRV) are often determined with Polar heart rate monitors (HRMs; S810i; Polar, Kempele, Finland). The aims of this study were to compare data from horses obtained by Polar HRMs and a portable Televet electrocardiogram (ECG; 100 version 4.2.3; Kruuse, Marslev, Denmark) device and to determine appropriate recording times in horses (n = 14). Correlations were calculated and a Bland-Altman analysis was carried out to examine agreement between recording systems. For beat-to-beat (RR) interval, uncorrected and corrected data were highly correlated irrespective of the recording system and recording time (r > 0.99, P < 0.001). For HRV variables, standard deviation of RR interval and root mean square of successive RR intervals, correlations higher than 0.9 were obtained between uncorrected and corrected ECG but not Polar data. The RR interval, HR, and HRV from corrected Televet and Polar data at no time differed between the recording systems. However, with the increase in recording time, the RR interval decreased (P < 0.001). Thus, for comparisons, recording intervals of similar length should be chosen. Correlations among RR interval, HR, and HRV variables obtained by ECG and HRMs were highly significant at all recording times (r > 0.9, P < 0.001). Correlations increased with increasing recording time. Bland-Altman graphs showed a strong agreement between HRMs and ECG and mean RR intervals, HR, and HRV variables were close to identical. In conclusion, Polar HRMs are as adequate as ECG recordings in horses. Owing to a low HR in stationary horses, recording times below 2 minutes will underestimate changes in HR and HRV.  相似文献   

6.
Analysis of heart rate (HR) and heart rate variability (HRV) are powerful tools to investigate cardiac diseases, but current methods, including 24-h Holter monitoring, can be cumbersome and may be compromised by movement artefact. A commercially available data capture and analysis system was used in anaesthetised healthy cats to measure HR and HRV during pharmacological manipulation of HR. Seven healthy cats were subjected to a randomised crossover study design with a 7 day washout period between two treatment groups, placebo and atenolol (1 mg/kg, IV), with the efficacy of atenolol to inhibit β1 adrenoreceptors challenged by epinephrine. Statistical significance for the epinephrine challenge was set at P < 0.0027 (Holm–Bonferroni correction), whereas a level of significance of P < 0.05 was set for other variables.Analysis of the continuous electrocardiography (ECG) recordings showed that epinephrine challenge increased HR in the placebo group (P = 0.0003) but not in the atenolol group. The change in HR was greater in the placebo group than in the atenolol group (P = 0.0004). Therefore, compared to cats pre-treated with placebo, pre-treatment with atenolol significantly antagonised the tachycardia while not significantly affecting HRV. The increased HR in the placebo group following epinephrine challenge was consistent with a shift of the sympathovagal balance towards a predominantly sympathetic tone. However, the small (but not significant at the critical value) decrease in the normalised high-frequency component (HFnorm) in both groups of cats suggested that epinephrine induced a parasympathetic withdrawal in addition to sympathetic enhancement (increased normalised low frequency component or LFnorm). In conclusion, this model is a highly sensitive and repeatable model to investigate HRV in anaesthetised cats that would be useful in the laboratory setting for short-term investigation of cardiovascular disease and subtle responses to pharmacological agents in this species.  相似文献   

7.
OBJECTIVE: To determine whether evaluation of heart rate (HR) and HR variability (HRV) during prolonged road transportation in horses provides a sensitive index of autonomic stimulation. ANIMALS: Five 2-year-old Thoroughbreds. PROCEDURE: ECGs were recorded as horses were transported for 21 hours in a 9-horse van. Heart rate, high-frequency (HF) power, low-frequency (LF) power, and LF-to-HF ratio from Fourier spectral analyses of ECGs were calculated and compared with values recorded during a 24-hour period of stall rest preceding transportation. RESULTS: HR, HF power, and LF power had diurnal rhythms during stall rest but not during road transportation. Heart rate was higher and HF power and LF power lower during road transportation than stall rest, and HR, HF power, LF power, and LF-to-HF ratio all decreased with time during road transportation. Heart rate during stall rest was weakly and inversely associated with LF power, but during road transportation was strongly associated with LF power, HF power, and LF-to-HF ratio. Neither LF power nor HF power was correlated with LF-to-HF ratio during stall rest, but LF power was strongly and HF power weakly correlated with LF-to-HF ratio during road transportation. High-frequency power and LF power were significantly correlated with each other during stall rest and road transportation. Heart rate was significantly influenced by LF power and LF-to-HF ratio during stall rest (R(2) = 0.40) and by HF power and LF-to-HF ratio during road transportation (R(2) = 0.86). CONCLUSIONS AND CLINICAL RELEVANCE: HR is influenced by different sympathovagal mechanisms during stall rest, compared with during road transportation; HRV may be a sensitive indicator of stress in transported horses.  相似文献   

8.
9.
OBJECTIVE: To determine the effects of immersion in warm springwater (38 degrees to 40 degrees C) on autonomic nervous activity in horses. ANIMALS: 10 male Thoroughbreds. PROCEDURE: Electrocardiograms were recorded from horses for 15 minutes during a warm springwater bath after being recorded for 15 minutes during stall rest. Variations in heart rate (HR) were evaluated from the power spectrum in terms of low frequency (LF, 0.01 to 0.07 Hz) power and high frequency (HF, 0.07 to 0.6 Hz) power as indices of autonomic nervous activity. RESULTS: Mean (+/- SE) HR during stall rest and immersion in warm springwater was 31.1 +/- 1.7 and 30.3 +/- 1.0 beat/min, respectively. No significant difference was found between the HR recorded during stall rest and that recorded during immersion in warm springwater. The HF power significantly increased from 1,361 +/- 466 milliseconds2 during stall rest to 2,344 +/- 720 milliseconds2 during immersion in warm springwater. The LF power during stall rest and immersion in warm springwater was 3,847 +/- 663 and 5,120 +/- 1,094 milliseconds2, respectively, and were not significantly different from each other. Similarly, the LF:HF ratio did not change during immersion in warm springwater. The frequency of second-degree atrioventricular block, which was observed in 2 horses, increased during immersion in warm springwater, compared with during stall rest. CONCLUSIONS AND CLINICAL RELEVANCE: Increases in HF power indicates that the parasympathetic nervous activity in horses increases during immersion in warm springwater. Thus, immersion in warm springwater may provide a means of relaxation for horses.  相似文献   

10.
11.
Horse trekking (HT) is having a stroll on a horse along a walking trail in a forest, field, and/or sandy beach. Generally in HT, horses exercise in tandem line outside the riding facilities. Because the leading horse will be confronted with stressors in the forefront, we hypothesized that the leading horse shows higher stress responses than the following one. In order to verify the hypothesis, we compared short‐term stress responses between each position in six horses. Exercise consisted of 15 min of ground riding and 45 min of HT with walking and trotting. Heart rate variability was analyzed for 5 min at 30, 60, and 90 min after the exercising period. There was no significant difference in heart rate during exercise between leading and following positions. The high frequency / low frequency power band of heart rate variability, an index of sympathetic nervous activity, after exercise, tended to be higher in the leading position than following one (P < 0.1). The result in this study can suggest that the leading horse was in a higher stressed state than the following horse after HT.  相似文献   

12.
The objective of this study was to assess the effect of relaxing massage on the heart rate (HR) and heart rate variability (HRV) in young racehorses during their first racing season. In the study, 72 Purebred Arabian racehorses were included. The study was implemented during the full race season. The horses from control and experimental groups were included in regular race training 6 days a week. The horses from the experimental group were additionally subject to the relaxing massage 3 days a week during the whole study. HR and HRV were assumed as indicators of the emotional state of the horses. The measurements were taken six times, every 4‐5 weeks. The HRV parameters were measured at rest, during grooming and saddling the horse and during warm‐up walking under a rider. The changes of the parameters throughout the season suggest that the relaxing massage may be effectively used to make the racehorses more relaxed and calm. Moreover, the horses from the experimental group had better race performance records.  相似文献   

13.
This study aimed to investigate the effect of transportation and restraint in a van on heart rate (HR) and HR variability in Thoroughbreds. Eight healthy Thoroughbreds were exposed to four conditions, each for a duration of 30 min: stall rest (REST), restraint inside a van (VAN), restraint inside a van with the engine running (V + E), and road transportation (TRANS). Electrocardiograms were recorded to determine HR, low-frequency (LF) power, high-frequency (HF) power, and LF/HF ratio. During TRANS, HR was significantly greater than during REST and V + E. There was a significant increase during VAN compared with REST. These results demonstrated that restraint inside the transport vehicle was one of the major stressors that may cause physiological changes during transportation.  相似文献   

14.
In humans and small animals, heart disease can lead to an increase in aldosterone, and the aldosterone level correlates with the severity of the heart disease. In horses similar interactions may be possible and may lead to an increase in aldosterone in horses with heart valve insufficiencies. In a prospective clinical trial eight healthy horses (control group) and 40 horses with heart valve disease were examined. In all horses, a clinical (auscultation), electro- and echocardiographic examination was performed and aldosterone plasma concentration was determined. The median aldosterone plasma concentration in the control group was 23.95 pg/ml. Twenty-one out of 40 horses with heart valve insufficiencies and without dimensional changes by echocardiography (group 1) showed a median aldosterone plasma concentration of 45.5 pg/ml. Five out of the 40 horses had a left atrial (LA) dilation and an average LA size with 147.6+/-11 mm (group 2) and a median aldosterone plasma concentration of 95.9 pg/ml. Five other horses had a left ventricular (LV) dilation with an average LV size of 141.6+/-6.8 mm (group 3) and a median aldosterone plasma concentration of about 115.3 pg/ml. In this group a positive correlation between aldosterone plasma concentration and LV existed (r=0.9, P=0.03). Nine horses with both LA (152.8+/-11.4 mm) and LV dilatation (145+/-9 mm, group 4) had a median aldosterone plasma concentration of 161.2 pg/ml. Significant differences of the aldosterone concentrations were observed between the control group and the horses with LA and LV dilation (group 4, P=0.0005), as well as between group 1 (horses with heart valve insufficiency but without dilation) and group 4 (P=0.0006). The study confirms that, as reported for other species, aldosterone rises as the severity of valvular disease increases. However, in this study, as there is only significant difference from normal in the most affected group, it will require further study before the plasma aldosterone level can be relied on as an indicator of the severity of heart disease in an individual horse.  相似文献   

15.

Background

Systemic hypertension is a prominent feature in humans with metabolic syndrome (MS) and this is partly caused by an enhanced endothelin-1 (ET-1) mediated vasoconstriction. There are indications that systemic hypertension might be a feature in equine metabolic syndrome (EMS) but if ET-1 is involved in the development of hypertension in horses is not known. Increased levels of cortisol have also been found in humans with MS but there are no reports of this in horses. Before blood pressure, plasma ET-1 and serum cortisol can be evaluated in horses with EMS, it is necessary to investigate the interday variation of these parameters on clinically healthy horses. The aims of the present study were therefore to evaluate the interday variation and influence of transportation on systemic blood pressure, plasma ET-1 and serum cortisol in healthy Standardbred and Icelandic horses, and to detect potential breed differences.

Methods

Nine horses of each breed were included in the study. Blood pressure was measured and blood samples were collected between 6 and 9 am on two separate days. Eight of the horses (four of each breed) were transported to a new stable were they stayed overnight. The next morning, the sampling procedure was repeated.

Results

The interday variation was higher for plasma ET-1 (37%) than for indirect pressure measurements (8-21%) and serum cortisol (18%). There were no differences in systemic blood pressure between the two breeds. The Icelandic horses had significantly lower serum cortisol and significantly higher plasma ET-1 concentrations compared to the Standardbred horses. Plasma ET-1 was significantly elevated after transportation, but systemic blood pressure and serum cortisol did not differ from the values obtained in the home environment.

Conclusions

Indirect blood pressure, plasma ET-1 and serum cortisol are of interest as markers for cardiovascular dysfunction in horses with EMS. The elevated plasma ET-1 concentrations recorded after transportation was likely caused by a stress response. This needs to be considered when evaluating plasma ET-1 in horses after transportation. The differences detected in plasma ET-1 and serum cortisol between the two breeds might be related to differences in genetic setup, training status as well as management conditions.  相似文献   

16.
17.
Mares give birth under high parasympathetic tone as indicated by increased heart rate variability (HRV) and atrioventricular blocks. These changes might be induced by oxytocin released at foaling. In this short communication, the cardiac (n = 4) and cortisol response (n = 3) of mares treated with oxytocin infusions because of fetal membrane retention are reported. A marked cortisol release occurred during oxytocin infusion in two mares but not in a third mare which was infused for 6 minutes only. Oxytocin-induced cortisol release was neither accompanied by an increase in heart rate nor a decrease in HRV, and heart rate even decreased during oxytocin infusions. Preliminary data indicate that cortisol release in oxytocin-treated mares is not a stress response. Treatment of retained membranes in mares with oxytocin does not induce cardiovascular side effects.  相似文献   

18.
The pattern of variation in heart rate on a beat-to-beat basis contains information concerning sympathetic (SNS) and parasympathetic (PNS) contributions to autonomic nervous system (ANS) modulation of heart rate (HR). In the present study, heart period (RR interval) time series data were collected at rest and during 3 different treadmill exercise protocols from 6 Thoroughbred horses. Frequency and spectral power were determined in 3 frequency bands: very low (VLF) 0-< or = 0.01, low (LO) >0.01-< or = 0.07 and high (HI) >0.07-< or = 0.5 cycles/beat. Indicators of sympathetic (SNSI = LO/HI) and parasympathetic (PNSI = HI/TOTAL) activity were calculated. Power in all bands fell progressively with increasing exercise intensity from rest to trot. At the gallop VLF and LO power continued to fall but HI power rose. SNSI rose from rest to walk, then fell with increasing effort and was lowest at the gallop. PNSI fell from rest to walk, then rose and was highest at the gallop. Normalised HI power exceeded combined VLF and LO power at all gaits, with the ratio HI to LO power being lowest at the walk and highest at the gallop. ANS indicators showed considerable inter-horse variation, and varied less consistently than raw power with increasing physical effort. In the horses studied, the relationship between power and HR changed at exercise intensities associated with heart rates above approximately 120-130 beats/min. At this level, humoral and other non-neural mechanisms may become more important than autonomic modulation in influencing heart rate and heart rate variability (HRV). HRV at intense effort may be influenced by respiratory-gait entrainment, energetics of locomotion and work of breathing. HRV analysis in the frequency domain would appear to be of potential value as a noninvasive means of assessing autonomic modulation of heart rate at low exercise intensities, only. The technique may be a sensitive method for assessing exercise response to experimental manipulations and disease states.  相似文献   

19.
Background: Relative cortisol insufficiency occurs in septic foals and impacts survival. Serum free (biologically available) cortisol concentration might be a better indicator of physiologic cortisol status than serum total cortisol concentration in foals. Hypotheses: In septic foals, (1) low free cortisol concentration correlates with disease severity and survival and (2) predicts disease severity and outcome better than total cortisol concentration. Animals: Fifty‐one septic foals; 11 healthy foals; 6 healthy horses. Methods: In this prospective clinical study, foals meeting criteria for sepsis at admission were enrolled. University‐owned animals served as healthy controls. Basal and cosyntropin‐stimulated total cortisol concentration and percent free cortisol (% free cortisol) were determined by chemiluminescent immunoassay and ultrafiltration/ligand‐binding methods, respectively. Group data were compared by ANOVA, Mann‐Whitney U‐tests, and receiver operator characteristic curves. Significance was set at P < .05. Results: Basal % free cortisol was highest in healthy foals at birth (58±8% mean±SD), and was higher (P≤.004) in healthy foals of all ages (33±6 to 58±8%) than in adult horses (7±3%). Cosyntropin‐stimulated total and free cortisol concentrations were lower (P≤.03) in foals with shock (total = 6.2±8.1 μg/dL; free = 3.5±4.8 μg/dL versus total = 10.8±6.0 μg/dL; free = 6.9±3.3 μg/dL in foals without shock) and in nonsurvivors (total = 3.8±6.9 μg/dL; free = 1.9±3.9 μg/dL versus total = 9.1±7.7 μg/dL; free = 5.5±4.4 μg/dL in survivors). Free cortisol was no better than total cortisol at predicting disease severity or outcome in septic foals. Conclusions and Clinical Importance: Serum free cortisol is impacted by age and illness in the horse. There is no advantage to measuring free over total cortisol in septic foals.  相似文献   

20.
OBJECTIVE: To assess pre-operative behavioral and physiological characteristics of healthy dogs hospitalized for elective surgery. STUDY DESIGN: Open clinical observational study. ANIMALS: Forty-one bitches hospitalized for elective ovariohysterectomy. METHODS: While undisturbed in a hospital cage, the behavior of the dog was recorded using a video camera and recorder. From the video recordings, various behavioral variables were registered. Simultaneous measurements were made on heart rates and heart rate variability (HRV) by use of an ambulatory electrocardiogram. In addition, the dog's response to human approach was noted. RESULTS: Different behavioral patterns were found in the dogs studied. Thirteen individuals were regarded as highly active, and were seen to bark or howl, manipulate the environment or attempt to flee vigorously. In 13 dogs (passive dogs) none of these activities occurred. Panting and displacement behaviors, such as snout licking, were observed in nearly all the animals monitored. In general, heart rates were higher and HRV lower with the most active individuals; however, the presence of physiological arousal could not be excluded in two animals with passive behaviors. To some extent, the behavior of the dog while undisturbed in the cage was reflected in the responses to a person entering the cage. CONCLUSIONS AND CLINICAL RELEVANCE: The different individual responses detected in this study raise an important question concerning their role and existence throughout the entire peri-operative period, especially during the post-anesthetic recovery phase when behavioral characteristics are commonly used to assess patient welfare. The results also emphasize the need for further investigations to explore the effects of pre-operative stressors on canine surgical patients, and the factors contributing to them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号