首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytokines and nitric oxide (NO) are potential mediators of luteal development and maintenance, angiogenesis, and blood flow. The aim of this study was to evaluate (i) the localization and protein expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) in equine corpora lutea (CL) throughout the luteal phase and (ii) the effect of a nitric oxide donor (spermine NONOate, NONOate) on the production of progesterone (P4) and prostaglandin (PG) E(2) and factor(s) that stimulate endothelial cell proliferation using equine luteal explants. Luteal tissue was classified as corpora hemorrhagica (CH; n = 5), midluteal phase CL (mid-CL; n = 5) or late luteal phase CL (late CL; n = 5). Both eNOS and iNOS were localized in large luteal cells and endothelial cells throughout the luteal phase. The expression of eNOS was the lowest in mid-CL (P < 0.05) and the highest in late CL (P < 0.05). However, no change was found for iNOS expression. Luteal explants were cultured with no hormone added or with NONOate (10(-5) M), tumor necrosis factor-α (TNFα; 10 ng/mL; positive control), or equine LH (100 ng/mL; positive control). Conditioned media by luteal tissues were assayed for P4 and PGE(2) and for their ability to stimulate proliferation of bovine aortic endothelial cells (BAEC). All treatments stimulated release of P4 in CH, but not in mid-CL. TNFα and NONOate treatments also increased PGE(2) levels and BAEC proliferation in CH (P < 0.05). However, in mid-CL, no changes were observed, regardless of the treatments used. These data suggest that NO and TNFα stimulate equine CH secretory functions and the production of angiogenic factor(s). Furthermore, in mares, NO may play a role in CL growth during early luteal development, when vascular development is more intense.  相似文献   

2.
The components of the IGF-system were shown to be differentially regulated in bovine antral follicles and corpora lutea (CL) during different stages of the estrous cycle, and to have important functions for specific stages. The aim of this study was to investigate the detailed pattern of mRNA expression of most constituents of the IGF-system and their possible involvement in prostaglandin (PG)F2-induced luteolysis in the bovine CL. Therefore, cows in the mid-luteal phase (days 8–12) were injected with the PGF2-analogue Cloprostenol, and CL were collected by transvaginal ovariectomy at 2, 4, 12, 48 and 64 h after PGF2-injection. Real-time RT-PCR using SYBR Green I detection was employed to determine mRNA expressions of the following factors: ubiquitin (UBQ), insulin-like growth factor I (IGF I), IGF II, IGF-receptor type 1 (IGFR-1), growth hormone receptor (GH-R) and IGF-binding proteins-1–6 (IGFBP-1–6). Total extractable RNA decreased with ongoing luteolysis. IGFBP-1 mRNA was significantly up-regulated at 2 h after PGF2 and maximal at 4 h with a 34-fold increase. IGFBP-5 mRNA was significantly up-regulated after 12 h with a maximum of an 11-fold increase at 64 h. For GH-R, IGFR-1, IGF II, IGFBP-3 and -4 mRNA expression, we found a significant down-regulation in certain stages. There was a significant up-regulation for IGFBP-2 and -6 mRNA at 64 h after induced luteolysis. There were no significant changes in IGF I mRNA expression. In conclusion, the IGF-system with all its components seems to play an important role in the very complex process of PGF2-induced luteolysis in bovine CL.  相似文献   

3.
Corpus luteum (CL) regression is required during the estrous cycle. During CL regression, luteal cells stop producing progesterone and are degraded by apoptosis. However, the detailed mechanism of CL regression in cattle has not been fully elucidated. The aim of this study was to evaluate autophagy, lysosome activity, and apoptosis during CL regression in cattle. The expression of autophagy-related genes (LC3α, LC3β, Atg3, and Atg7) and the protein LC3-II was significantly higher in the late CL than in the mid CL. In addition, autophagy activity was significantly increased in the late CL. Moreover, gene expression of the autophagy inhibitor mammalian target of rapamycin (mTOR) was significantly lower in the late CL than in the mid CL. Lysosome activation and expression of cathepsin-related genes (CTSB, CTSD, and CTSZ) showed significant increases in the late CL and were associated with an increase in cathepsin B protein. In addition, mRNA expression and activity of caspase 3 (CASP3), an apoptotic enzyme, were significantly higher in the late CL than in the mid CL. These results suggest simultaneous upregulation of autophagy-related factors, lysosomal enzymes and apoptotic mediators, which are involved in regression of the bovine CL.  相似文献   

4.
5.
The bovine corpus luteum (CL) is a unique, transient organ with well-coordinated mechanisms by which its development, maintenance, and regression are effectively controlled. Angiogenic factors, such as vascular endothelial growth factor A and basic fibroblast growth factor, play an essential role in promoting progesterone secretion, cell proliferation, and angiogenesis. These processes are critically regulated, through both angiogenic and immune systems, by the specific immune cells, including macrophages, eosinophils, and neutrophils, that are recruited into the developing CL. The bovine luteolytic cascade appears to be similar to that of general acute inflammation in terms of time-dependent infiltration by immune cells (neutrophils, macrophages, and T lymphocytes) and drastic changes in vascular tonus and blood flow, which are regulated by luteal nitric oxide and the vasoconstrictive factors endothelin-1 and angiotensin II. Over the period of maternal recognition of pregnancy, the maternal immune system should be well controlled to accept the semiallograft fetus. The information on the presence of the developing embryo in the genital tract is suggested to be transmitted to the ovary by both the endocrine system and the circulating immune cells. In the bovine CL, the lymphatic system, but not the blood vascular system, is reconstituted during early pregnancy, and interferon tau from the embryo could trigger this novel phenomenon. Collectively, the angiogenic and vasoactive factors produced by luteal cells and the time-dependently recruited immune cells within the CL and their interactions appear to play critical roles in regulating luteal functions throughout the life span of the CL.  相似文献   

6.
The corpus luteum (CL) of the estrous cycle in the cow is a dynamic organ which has a life time of approximately 17-18 days. The main function of the CL is to secrete a large amount of progesterone (P) thereby supporting the achievement of pregnancy. As the CL matures, the steroidogenic cells establish contact with many capillaries and the matured CL is composed of many vascular endothelial cells that account for up to 50% of all CL cells. The bovine CL produces several major angiogenic and vasoactive foctors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiopoietin-1 and -2 (ANPT-1 and -2), prostaglandin F (PGF), endothelin-1 (EDN1), angiotensin II (Ang II) and nitric oxide (NO). These factors regulate P secretion directly and/or indirectly within the CL. Moreover, different actions of PGF in the early cycle CL (non-luteolytic) and the mid cycle CL (luteolytic) may provide insight into the luteolysis cascade in the cow. The aim of the present review is to describe the current concepts of the local mechanisms for the cascade of development and regression of the bovine CL as regulated by luteal angiogenic and vasoactive factors.  相似文献   

7.
Porcine corpora lutea (CL) fail to show a luteolytic response to prostaglandin-F-2α (PGF-2α) (ie, luteolytic sensitivity, or LS) until ∼day 13 of the estrous cycle. In view of the importance of protein kinase C (PRKC) in PGF-2α signal transduction, it was hypothesized that limiting levels of 1 or more PRKC isoforms may explain the lack of LS before day 13. This hypothesis was tested by examining expression of mRNA and protein, and the cellular localization patterns of the 11 PRKC isoforms throughout the porcine estrous cycle, to determine whether PRKC expression correlates with and thus may be associated with the control of the acquisition of LS in the pig. The expression patterns show that for most PRKC isoforms (ie, PRKC alpha, beta 1, beta 2, delta, epsilon, theta, iota, and zeta), mRNA was maximally expressed on day 7 or day 10 (protein kinase D1 only) of the cycle, whereas PRKCs gamma, eta, and lambda were unchanged. At the protein level, only PRKC epsilon (PRKCE) significantly changed during the estrous cycle and was elevated on day 13 (versus days 4, 7, and 15; P < 0.05). By immunofluoresence, most PRKC isoforms, including PRKCE, were localized to steroidogenic large luteal cells (LLC) and small (nonendothelial cell) luteal cell subtypes (SLC). In conclusion, since the increase in PRKCE protein expression (day 13) occurred coincidentally with the onset of LS (≥day 12), these results support a potential role for PRKCE in control of the acquisition of LS in the pig.  相似文献   

8.
Porcine corpora lutea (CL) fail to show a luteolytic response to prostaglandin-F-2α (PGF-2α) (ie, luteolytic sensitivity [LS]) until about day 12-13 of the estrous cycle. Although little is known of the control of LS in any species, endothelin-1 (EDN1) is believed to play a role in LS control in ruminants. Therefore, we measured mRNA and protein expression and examined the cellular localization of EDN1 precursor (pre-pro EDN1, or ppEDN1), EDN-converting enzyme-1 (ECE1), and EDN receptors (A, EDNRA and B, EDNRB) in porcine CLs collected on days 4, 7, 10, 13, and 15 of the estrous cycle to look for differences between CLs displaying (days 13-15) versus those lacking (days 4-10) LS. Abundance of ppEDN1 mRNA was greatest (and significant vs all other days) on day 7 of the cycle, whereas EDN1 protein expression did not vary during the cycle and was localized exclusively to endothelial cells (EC). Abundance of ECE1 mRNA was also greatest on day 7 (vs all other days), but ECE1 protein was significantly elevated on day 10 (vs day 4) and was immunolocalized to ECs and large luteal cells (LLC). Abundance of EDNRA mRNA was also maximal on day 7 (vs all other days) of the cycle, whereas EDNRA protein expression was not significantly changed during the cycle and was observed in LLCs, ECs, and small luteal cells (SLC). On day 13, EDNRB mRNA was significantly decreased (versus day 7). Expression of EDNRB protein was decreased on day 10 (versus all other days), and on days 13-15 (vs day 4), and was primarily localized to ECs. In conclusion, the observed elevation in ECE1 protein concentrations on day 10 and the presence of EDNRA on LLC suggests a possible role for EDN1 (resulting from the actions of ECE1) acting via EDNRA in the control of LS in the pig.  相似文献   

9.
The objective of our study was to compare the characteristics of the corpus luteum (CL) formed after ovulation of the dominant follicle (DF) of the first follicular wave (W1) and those of the CL formed after ovulation of the DF of the second (induced) follicular wave (W2). Non-lactating Holstein cows were used for this study. In Experiment 1, cows were treated with PGF2α and GnRH on days 6 and 8 (day 0 = day of follicular wave emergence) for W1 (n = 6) and W2 (n = 6), respectively. Dominant follicles were aspirated on day 9 to quantify the amounts of mRNA (VEGF120, VEGF164, FGF-2, StAR, P450-scc and 3β-HSD) in granulosa cells (GC). In Experiment 2, the size and blood flow area of the CL formed after ovulation of the DF in W1 (W1CL; n = 6) and W2 (W2CL; n = 6) (the day of DF ovulation in W1 and W2 was day 10) were evaluated on days 12, 15, 18 and 21. The plasma P4 concentration was measured on days 10 to 21. The amounts of VEGF164, P450-scc and 3β-HSD mRNA were higher (P < 0.05) in the DF in W1, and those of VEGF120,FGF-2 and StAR mRNA tended to be higher (P < 0.1) in the DF in W1. The size of the CL was greater in the W1CL on days 15, 18 and 21. The blood flow area of the CL was greater in the W1CL on days 12 and 15. The plasma P4 concentrations were higher in the W1CL. These results indicate that the CL formed after ovulation of the DF in W1 was greater in terms of size, blood flow and plasma P4 concentration.  相似文献   

10.
Decreased fertility associated with maternal ageing is a well‐known critical problem, and progesterone (P4) concentration decreases during the menopause transition in women. The corpus luteum (CL) secretes P4, thereby supporting the implantation and maintenance of pregnancy. It is proposed that a bovine model is suitable for studying age‐associated decline of fertility in women because the physiology of cows is similar to that of women and cows have a greater longevity compared with other animal models. Thus, we investigated the age‐dependent qualitative changes and inflammatory responses in the bovine CL. In vivo experiment: Cows were divided into three groups, namely, young (mean age: 34.8 months), middle (80.1 months) and aged (188.9 months). Blood samples were collected on days 7 and 12 during the estrous cycle. In vitro experiments: Cows were divided into young (mean age: 27.6 months) and aged (183.1 months). The CL tissues of these groups were collected from a local slaughterhouse and used for tissue culture experiments. An in vivo experiment, plasma P4 concentration in aged cows was significantly lower than that in young cows, whereas no difference was found regarding the area of CL. An in vitro examination in the bovine CL tissues showed that the luteal P4 concentration, P4 secretion, and mRNA expression of StAR and 3β‐HSD were lower in aged cows compared with young cows, especially in the early luteal phase. However, no differences were detected in the mRNA expression of inflammation‐ and senescence‐related factors and inflammatory responses to lipopolysaccharides between the CL tissues from young and aged cows, indicating that an age‐dependent increase in inflammation is not involved in the luteal function. P4 production and secretion from the bovine CL diminish in old cows, especially during the early luteal phase, suggesting that senescence may affect the luteal function in cows.  相似文献   

11.
Water buffaloes are easily adaptable animals, whose raising and economical exploitation have been growing in the last three decades all over the world. Hyperstimulation of ovarian function in this species is a common technique aiming to improve reproductive performance. Superovulatory treatment affects corpus luteum (CL) function, which is highly correlated to angiogenic process. The aim of this study was therefore to assess the temporal protein and mRNA expression of VEGF and its receptors in the CL of non-treated and superovulated buffaloes. For that purpose blood samples and CL from 36 healthy (30 untreated, groups 1–5, and 6 superovulated, group 6) non-pregnant buffaloes were collected and the samples were divided into 6 groups according to the age of CL. Plasma samples were submitted to RIA to measure progesterone concentration and CL were subjected to immunohistochemistry and real time PCR for VEGF (vascular endothelial growth factor), Flt-1 (fms-like tyrosine kinase receptor 1) and KDR (kinase insert domain containing region). The VEGF system protein and mRNA expression during CL life span of untreated animals showed a specific time-dependent profile, although protein did not always reflect mRNA concentrations. VEGF expression in luteal cells was high correlated to plasma progesterone levels. Superovulated CL showed a significant increase of the VEGF-system protein and a significant decrease of mRNA expression compared to untreated animals in the same stage of the oestrous cycle. We conclude that VEGF, Flt-1 and KDR protein and mRNA expression in buffalo CL is dependent of estrous cycle stage and superovulatory treatment is able to increase the translation rate of this system.  相似文献   

12.
Cells living under aerobic conditions always face the oxygen paradox. Oxygen is necessary for cells to maintain their lives. However, reactive oxygen species such as superoxide radicals, hydroxyl radicals and hydrogen peroxide are generated from oxygen and damage cells. Oxidative stress occurs as a consequence of the excessive production of reactive oxygen species and impaired antioxidant defense systems. Antioxidant enzymes include superoxide dismutase (SOD), which is a specific enzyme to scavenge superoxide radicals; copper‐zinc SOD, located in the cytosol and Mn‐SOD, located in the mitochondria. Both types of SOD belong to the first enzymatic step to scavenge superoxide radicals. It has been reported that a number of local factors such as cytokines, growth factors and eicosanoids are involved in the regulation of the corpus luteum (CL) function in addition to gonadotropins. Since reactive oxygen species are generated and SOD is expressed in the CL, there is a possibility that reactive oxygen species and SOD work as local regulators of the CL function. The present review reports that reactive oxygen species and their scavenging systems play important roles in the regulation of the CL function.  相似文献   

13.
14.
运用免疫组化ABC法妊娠26~120d的奶山羊黄体中催产素免疫反应细胞的分布进行了观察。结果表明,奶山羊妊娠黄体中存在催产素(Oxytocin,OT)免疫反应阳性细胞。阳性细胞在形态上以卵圆形、圆形、棱形为主,还有一些具有明显的突起。根据阳性细胞胞质内反应颗粒着色的深浅,可把OT阳性细胞分为强阳性、中等阳性和弱阳性3种。在妊娠26~30d,阳性细胞数量最多,强阳性细胞主要分布于黄体的周边,中等阳性及弱阳性细胞则均匀分布于整个黄体组织中,妊娠31~60d,阳性细胞数量明显下降,弥散于整个黄体组织中;妊娠61~120d,阳性细胞的数量及逐渐增多,以中等阳性和弱阳性细胞为主,而强阳性细胞数量较少。连续切片HE染色的对照观察显示妊娠黄体中大、小黄体细胞均可出现OT免疫阳性反应。  相似文献   

15.
利用TaqMan—MGB探针实时荧光RT—PCR检测方法,对牛黄体中促黄体素受体(luteinizing hormone receptor,LHR)的一种剪接体(F类)在黄体4个不同发育时期(前,中,后,末)的相对表达差异进行了分析。同时将Real-time PCR中获得的数据用Realplex软件进行相对基因表达差异分析,应用SPSS软件对结果进行统计学分析。结果表明,LHR的F类剪接体在牛黄体发育的4个时期中,中期表达量是前期的0.535倍,后期表达量达到最高,是前期的5.65倍,末期显著下降是前期的0.0116倍,各个时期LHR的F类剪接体表达量间存在极显著差异(P〈0.01)。  相似文献   

16.
The objective of this study was to determine if intramuscular administration of 60 units of oxytocin once daily for 29 days, regardless of when treatment was initiated during the estrous cycle (i.e., without monitoring estrous behavior and/or detecting ovulation), would induce prolonged corpus luteum (CL) function in cycling mares. Mares were randomly assigned to two groups: (1) saline-treated control (n = 7) and (2) oxytocin-treated (n = 9) subjects. Control mares received 3 cc of saline, and oxytocin-treated mares received 60 units (3 cc) of oxytocin intramuscularly for 29 consecutive days. Treatment was initiated in all mares on the same day (day 1), independent of the day of the cycle. Jugular blood samples for determination of progesterone concentration were collected three times weekly (M, W, and F) for 21 days before treatment was initiated to confirm that all mares had a luteal phase of normal duration immediately before treatment. Beginning on the first day of treatment, blood samples were collected daily for eight days and then three times weekly through day 80. Mares were considered to have prolonged CL function if serum progesterone remained >1.0 ng/mL continuously for at least 25 days after the end of the treatment period. The proportion of mares with prolonged CL function was higher in the oxytocin-treated group than in the saline-treated group (7/9 vs. 1/7, respectively; P < .05). Three of the seven oxytocin-treated mares that developed prolonged CL function initially underwent luteolysis within 4–7 days of the start of oxytocin treatment and then developed prolonged CL function after the subsequent ovulation during the treatment period. In the other four oxytocin-treated mares that developed prolonged CL function, progesterone remained >1.0 ng/mL throughout the treatment period and into the post-treatment period. All mares with prolonged CL function maintained elevated progesterone concentrations through at least day 55 of the study. In conclusion, intramuscular administration of 60 units of oxytocin for 29 consecutive days effectively prolonged CL function in mares, regardless of when treatment was initiated during the estrous cycle. Importantly, this represents a protocol for using oxytocin treatment to prolong CL function that does not require detection of estrous behavior or day of ovulation.  相似文献   

17.
Functional corpora lutea (CL) are required for pregnancy establishment and gestational maintenance in swine, and CL function is susceptible to environmental influences. Manganese (Mn) could be critical in regulating CL function since it is a component of the antioxidant enzyme Mn superoxide dismutase (MnSOD) as well as enzymes involved in cholesterol and steroid hormone synthesis. We hypothesized that a more bioavailable dietary Mn source would increase Mn content in the CL thereby influencing luteal function during the mid-luteal phase of the estrous cycle. Postpubertal gilts (n = 32) were assigned to one of four gestation diets. The control diet (CON) met or exceeded National Research Council (2012) requirements and was formulated to contain 20 parts per million (ppm) of added Mn in the form of Mn sulfate. Three additional diets included 20 (treatment [TRT]1), 40 (TRT2), or 60 (TRT3) ppm of added Mn from a Mn–amino acid complex (Availa-Mn; Zinpro Corporation) instead of Mn sulfate. Dietary treatment began at estrus synchronization onset and continued through 12 days post estrus (dpe) of the ensuing estrous cycle. Blood samples were collected at estrus onset, which was assigned as 0 dpe, as well as 4, 8, and 12 dpe. Gilts were euthanized and tissues were collected at 12 dpe. Serum progesterone (P4) increased (P < 0.01) from 0 to 12 dpe but was unaffected by dietary treatment (P = 0.15) and there was no effect of the interaction between day and treatment (P = 0.85). Luteal Mn content increased (P ≤ 0.05) by 19%, 21%, and 24% in gilts fed TRT1, TRT2, and TRT3, respectively, compared to CON. Luteal P4 concentrations decreased (P = 0.03) 25%, 26%, and 32% in gilts fed TRT1, TRT2, and TRT3, respectively, compared to CON. Relative to CON gilts, CL calcium content decreased (P = 0.02) by 36%, 24%, and 34% for TRT1, TRT2, and TRT3 gilts, respectively. Collectively, these data support the hypothesis that feeding a more bioavailable Mn source increases Mn accumulation in CL tissue. If and how this influences CL function may be related to altered luteal P4 concentrations.  相似文献   

18.
山羊黄体弥散性神经内分泌细胞的分布   总被引:4,自引:0,他引:4  
为了探查山羊卵巢黄体中是否存在弥散性神经内分泌细胞,采用免疫组化链霉素抗生物素蛋白-过氧化物酶法对12~18月龄妊娠奶山羊卵巢中弥散性神经内分泌细胞标志物的分布进行了研究。结果显示:黄体组织中各区均含有催产素、神经元特异性烯醇化酶、S-100蛋白、突触素和5-羟色胺样免疫反应阳性细胞。这些细胞散在或成团分布,多呈圆形、卵圆形和三角形,一些细胞具有明显的突起。阳性细胞数由多至少顺序为:催产素、突触素、S-100蛋白、神经元特异性烯醇化酶、5-羟色胺。鉴于神经元特异性烯醇化酶、S-100蛋白、突触素和5-羟色胺是弥散性神经内分泌系统广谱的、共同的细胞标记物,结果提示山羊卵巢黄体中存在弥散性神经内分泌细胞。  相似文献   

19.
The objectives of this study were to (1) compare the effect of twice versus once daily administration of oxytocin on days 7-14 after ovulation on the duration of corpus luteum (CL) function and (2) determine the effect of oxytocin treatment on endometrial oxytocin receptor concentration in mares. In experiment 1, mares were randomly assigned to three groups on day 7: (1) untreated control group (n = 7), (2) twice daily oxytocin treatment group (n = 7), and (3) once daily oxytocin treatment group (n = 8). Oxytocin-treated mares received 60 U of oxytocin intramuscularly (IM) the respective number of times each day on days 7 through 14. One of seven control mares (14%), five of seven (71%) twice daily oxytocin-treated mares, and five of eight (63%) once daily oxytocin-treated mares had prolonged CL function. There was no significant difference in the proportion of mares with prolonged CL function between the two oxytocin-treated groups, and collectively, oxytocin treatment increased (P < .05) the proportion of mares with prolonged CL function compared with no treatment. In experiment 2, mares were randomly assigned to two groups (n = 5/group): (1) saline-treated control mares, and (2) oxytocin-treated mares. Beginning on day 7, control mares received 3 mL of sterile saline IM twice daily, and oxytocin-treated mares received 60 U of oxytocin IM twice daily through day 14. On day 15, endometrial oxytocin-binding capacity was determined (as a measure of oxytocin receptor concentration), and there was no difference (P > .1) between control and oxytocin-treated mares (1,465.7 ± 108 and 1,382.8 ± 108 fmol/mg protein [mean ± standard error of mean], respectively).  相似文献   

20.
Although prostaglandin (PG) F is considered as the principal luteolytic factor, its action on the bovine corpus luteum (CL) is mediated by other intraovarian factors. Among them, nitric oxide (NO) seems to play a mandatory role in luteolysis. In this article we review the background and current status of work on possible roles of NO in the CL function, based on available information and our own experimental data. NO is produced in all three main types of bovine CL cells: steroidogenic, endothelial and immune cells. PGF and some luteolytic cytokines (tumor necrosis factor, interferon) increase NO production and stimulate NO synthase expression in the bovine CL. NO inhibits progesterone production, stimulates the secretion of PGF and leukotriene C4, reduces the number of viable luteal cells and, finally, participates in functional luteolysis. NO induces the apoptotic death of CL cells by the modulation of bcl‐2 family gene expression and the stimulation of caspase‐3 gene expression and activity. However, this simple molecule shows both luteolytic and luteotropic actions during the estrous cycle in ruminants. The aim of this overview is to present and discuss the recent findings crucial for understanding NO role in the process of CL regression in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号