共查询到20条相似文献,搜索用时 0 毫秒
1.
T. Miedaner F. Wilde V. Korzun E. Ebmeyer M. Schmolke L. Hartl C. C. Schön 《Euphytica》2009,166(2):219-227
Fusarium head blight (FHB) infects all cereals including maize and is considered a major wheat disease, causing yield losses and mycotoxin
contamination. This study aimed to compare the realized selection gain from marker and phenotypic selection in European winter
wheat. A double cross (DC) combined three FHB resistance donor-QTL alleles (Qfhs.lfl-6AL and Qfhs.lfl-7BS from ‘Dream’, and one QTL on chromosome 2BL from ‘G16-92’) with two high yielding, susceptible winter wheats, ‘Brando’ and
‘LP235.1’. The base population of 600 DC derived F1 lines was on one hand selected for the respective QTLs by SSR markers (marker-selected cycle, CM), resulting in 35 progeny
possessing different combinations of beneficial donor-QTL alleles. On the other hand it was selected phenotypically, only
by FHB rating, and the best 20 lines were recombined and selfed (phenotypically selected cycle, CP). The variants CP, CM,
and an unselected variant (C0) were tested at four locations by inoculation of Fusarium culmorum. Resistance was measured as the mean of multiple FHB ratings (0–100%). FHB severity was reduced through both phenotypic and
marker selection by 6.2 vs. 5.0%, respectively. On a per-year basis, marker selection by 2.5% was slightly superior to phenotypic
selection with 2.1%, because the first variant saved 1 year. Marker-selected lines were on average 8.6 cm taller than phenotypically
selected lines. A high genetic variation within the marker-selected variant for FHB resistance and the high effect of a resistance-QTL
allele on straw length indicate that additional phenotypic selection will further enhance selection gain. 相似文献
2.
Fusarium head blight (FHB) is a destructive disease of wheat worldwide. FHB resistance genes from Sumai 3 and its derivatives such as Ning 7840 have been well characterized through molecular mapping. In this study, resistance genes in Wangshuibai, a Chinese landrace with high and stable FHB resistance, were analyzed through molecular mapping. A population of 104 F2-derived F7 recombinant inbred lines (RILs) was developed from the cross between resistant landrace Wangshuibai and susceptible variety Alondras. A total of 32 informative amplified fragment length polymorphism (AFLP) primer pairs (EcoRI/MseI) amplified 410 AFLP markers segregating among the RILs. Among them, 250 markers were mapped in 23 linkage groups covering a genetic distance of 2,430 cM. In addition, 90 simple sequence repeat (SSR) markers were integrated into the AFLP map. Fifteen markers associated with three quantitative trait loci (QTL) for FHB resistance (P < 0.01) were located on two chromosomes. One QTL was mapped on 1B and two others were mapped on 3B. One QTL on 3BS showed a major effect and explained up to 23.8% of the phenotypic variation for type II FHB resistance. 相似文献
3.
J. Obidiegwu J. Loureiro E. Ene-Obong E. Rodriguez M. Kolesnikova-Allen C. Santos C. Muoneke R. Asiedu 《Euphytica》2009,169(3):319-326
The Guinea yams, Dioscorea
cayenensis Lam. and D. rotundata Poir. (D. cayenensis–D. rotundata complex), represent a highly important crop, widely distributed in the humid and semi-humid tropics. The ploidy levels of
170 accessions of the core set of Guinea yams from West African countries was determined using flow cytometry with propidium
iodide staining. One hundred and eight of the genotypes were found to be tetraploid, 47 were hexaploid and five were octoploid.
One mixoploid individual containing tetraploid and hexaploid nuclei was also detected. A deeper analysis considering each
separate taxon revealed that while for D. rotundata the majority of individuals were tetraploid, for D. cayenensis this ploidy level was not detected in any of the accessions. Also, no association between ploidy level and place of cultivation
was found for the evaluated germplasm. The obtained data is highly valuable for breeding programs of Guinea yam, especially
for the optimization of future hybridization experiments directed to the genetic improvement of this economically important
crop. 相似文献
4.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus.
Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage
analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major
effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived
from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii. 相似文献
5.
A. D. Munshi Bishwajit Panda Bikash Mandal I. S. Bisht E. S. Rao Ravinder Kumar 《Euphytica》2008,164(2):501-507
The genetics of resistance to Cucumber mosaic virus (CMV) in Cucumis sativus var. hardwickii R. Alef, the wild progenitor of cultivated cucumber was assessed by challenge inoculation and by natural infection of CMV.
Among the 31 genotypes of C. sativus var. hardwickii collected from 21 locations in India the lowest mean percent disease intensity (PDI) was recorded in IC-277048 (6.33%) while
the highest PDI was observed in IC-331631 (75.33%). All the four cultivated varieties (DC-1, DC-2, CHC-1 and CHC-2) showed
very high PDI and susceptible disease reaction. Based on mean PDI, 8 genotypes were categorized as resistant, 13 as moderately
resistant, 9 as moderately susceptible and one as susceptible. A chi-square test of frequency distribution based on mean PDI
in F2 progenies of six resistant × susceptible crosses revealed monogenic recessive Mendelian ratio 1(R):3(S) to be the best fit.
This monogenic recessive model was further confirmed by 1(R):1(S) ratio as the best fit for back cross with resistant parent
and no fit for either 3:1 or 1:1 in the back cross with the susceptible parent. The results revealed that CMV resistance in
C. sativus var. hardwickii was controlled by a single recessive gene. Considering the cross compatibility between C. sativus var. hardwickii and cultivated cucumber, the resistance trait can be easily transferred to cultivated species through simple backcross breeding. 相似文献
6.
This paper describes the relative efficiency of three marker systems, RAPD, ISSR, and AFLP, in terms of fingerprinting 14
rice genotypes consisting of seven temperatejaponica rice cultivars, three indica near-isogenic lines, three indica introgression lines, and one breeding line of japonica type adapted to high-altitude areas of the tropics with cold tolerance genes. Fourteen RAPD, 21 ISSR, and 8 AFLP primers
could produce 970 loci, with the highest average number of loci (92.5) generated by AFLP. Although polymorphic bands in the
genotypes were detected by all marker assays, the AFLP assay discriminated the genotypes effectively with a robust discriminating
power (0.99), followed by ISSR (0.76) and RAPD (0.61). While significant polymorphism was detected among the genotypes of
japonica and indica through analysis of molecular variance (AMOVA), relatively low polymorphism was detected within the genotypes of japonica rice cultivars. The correlation coefficients of similarity were significant for the three marker systems used, but only the
AFLP assay effectively differentiated all tested rice lines. Fingerprinting of backcross-derived resistant progenies using
ISSR and AFLP markers easily detected progenies having a maximum rate of recovery for the recurrent parent genome and suggested
that our fingerprinting approach adopting the ‘undefined-element-amplifying’ DNA marker system is suitable for incorporating
useful alleles from the indica donor genome into the genome of temperate japonica rice cultivars with the least impact of deleterious linkage drag. 相似文献
7.
J. L. Gonzalez-Hernandez P. K. Singh M. Mergoum T. B. Adhikari S. F. Kianian S. Simsek E. M. Elias 《Euphytica》2009,166(2):199-206
Stagonospora nodorum blotch (SNB) is an important foliar disease of durum wheat (Triticum turgidum var. durum) worldwide. The combined effects of SNB and tan spot, considered as components of the leaf spotting disease complex,
result in significant damage to wheat production in the northern Great Plains of North America. The main objective of this
study was the genetic analysis of resistance to SNB caused by Phaeosphaeria nodorum in tetraploid wheat, and its association with tan spot caused by Pyrenophora tritici-repentis race 2. The 133 recombinant inbred chromosome lines (RICL) developed from the cross LDN/LDN(Dic-5B) were evaluated for SNB
reaction at the seedling stage under greenhouse conditions. Molecular markers were used to map a quantitative trait locus
(QTL) on chromosome 5B, explaining 37.6% of the phenotypic variation in SNB reaction. The location of the QTL was 8.8 cM distal
to the tsn1 locus coding for resistance to P. tritici-repentis race 2. The presence of genes for resistance to both SNB and tan spot in close proximity in tetraploid wheat and the identification
of molecular markers linked to these genes or QTLs will be useful for incorporating resistance to these diseases in wheat
breeding programs. 相似文献
8.
The genus Kalanchoe is currently divided into section Kalanchoe and section Bryophyllum, and there has been no successful report on the production
of inter-sectional hybrids. Therefore, reciprocal crosses were made between Kalanchoe spathulata (sect. Kalanchoe) and K. laxiflora (sect. Bryophyllum) in order to obtain basic information on the reproductive barriers between these two sections. The seeds
were aseptically germinated in vitro and the plants were grown in greenhouse till flowering. When K. spathulata was used as a maternal donor, 39 out of 80 plants showed intermediate characteristics between K. spathulata and K. laxiflora. In contrast, no plants were obtained in the reverse crosses. Hybridity of these plants was confirmed by flow cytometric
analysis, chromosome numbers and RAPD analysis. Bulbil formation on the leaf margin as one of the conspicuous characteristics
of K. laxiflora was not observed in the hybrids. Some of the hybrid lines showed some pollen fertility, but failed to yield viable seeds
by self-pollination or backcross-pollination. Successful production of the inter-sectional hybrid between the two species
suggests that they are not so distantly related as considered previously. 相似文献
9.
Using three varieties of Brassica rapa, cv. Hauarad (accession 708), cv. Maoshan-3 (714) and cv. Youbai (715), as the maternal plants and one variety of B. oleracea cv. Jingfeng-1 (6012) as the paternal plant, crosses were made to produce interspecific hybrids through ovary culture techniques. A better response of seed formation was observed when ovaries were cultured in vitro at 9–12 days after pollination on the basal MS and B5 media supplemented with 6-benzylaminopurine (BA) and naphthylacetic acid (NAA). The best response was observed for cross 714×6012 with the rate of seeds per ovary reaching 43.0%. Seeds for cross 715×6012 showed the best germination response (66.7%) on the regeneration medium (MS+1.0 mg l–1 BA+0.05 mg l–1 NAA). In all three cross combinations, good response in terms of root number and length of plants was observed on the root induction medium (MS+1.0 mg l–1 BA+0.1 mg l–1 NAA). A better response was observed for the regenerated plants cultured for 14 days than for 7 days. The ovary-derived plants with well-developed root system were hardened for 8 days and their survival rate reached over 80%. Cytological studies showed that the chromosome number of all plants tested was 19 (the sum of both parents), indicating that these regenerated plants were all true hybrids of B. rapa (n = 10) × B. oleracea (n = 9). The regenerated plants were doubled with colchicine treatment, and the best response in the crosses 708×6012, 714×6012 and 715×6012 was observed when treated with 170 mg l–1 colchicine for up to 30 h and their doubling frequency reached 52, 56 and 62%, respectively. 相似文献
10.
Late maturity α-amylase (LMA) is a genetic defect that is fairly widely spread in bread wheat (Triticum aestivum L.) germplasm, and recently detected in durum cultivars, which can result in unacceptably high α-amylase activity (low falling
number) in ripe grain. LMA has also been observed at unexpectedly high frequency and severity in synthetic hexaploid wheats
derived from the interspecific hybridisation of Triticum durum (AABB) and Aegilops tauschii (DD). Since synthetic hexaploids represent an important new source of resistances/tolerances to a range of biotic and abiotic
stresses for wheat breeders, there is a pressing need to understand the mechanisms involved in LMA in synthetics and develop
strategies for avoiding its adverse effects on grain quality. The objectives of this study were to firstly, compare the LMA
phenotype of synthetics that varied for plant height, secondly, to characterise the LMA phenotype in groups of synthetics
derived from the same durum parents and finally to determine whether LMA in primary synthetics is associated with the QTL
previously reported in conventional bread wheat. More than 250 synthetic hexaploids, a range of durum cultivars and a doubled
haploid population derived from Worrakatta (non-LMA) × AUS29663 (high LMA synthetic) were phenotyped and genotyped with markers
reported to be linked to LMA in conventional bread wheat and markers diagnostic for the semi-dwarfing gene, Rht1. More than 85% of synthetics were prone to LMA, approximately 60% ranked as very high. Genetic control of LMA in synthetic
hexaploids appeared to involve QTL located on 7B, and to a lesser extent 3B, similar to bread wheats. However, the LMA phenotype
of many synthetic hexaploids appeared to be more extreme than could be explained by comparisons with bread wheat even taking
into account the apparent absence of Rht1 in most genotypes. Other mechanisms, possibly triggered by the interaction between the AABB and DD genomes cannot be excluded.
The presence of wild type rht1 in most synthetic hexaploids and their extreme height is difficult to reconcile with the semi-dwarf, Rht1, stature of many of the durums used in the interspecific hybridisation process. Mechanisms that could explain this observation
remain unclear. 相似文献
11.
A set of 105 European wheat cultivars was assessed for seedling resistance and adult plant resistance (APR) to stripe (yellow)
rust in greenhouse and field tests with selected Australian isolates of Puccinia striiformis f. sp. tritici (Pst). Twelve cultivars were susceptible to all pathotypes, and among the remainder, 11 designated seedling genes (Yr1, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, Yr32, YrHVII and YrSP) and a range of unidentified seedling resistances were detected either singly or in combination. The identity of seedling
resistance in 43 cultivars could not be determined with the available Pst pathotypes, and it is considered possible that at least some of these may carry uncharacterised seedling resistance genes.
The gene Yr9 occurred with the highest frequency, present in 19 cultivars (18%), followed by Yr17, present in 10 cultivars (10%). Twenty four cultivars lacked seedling resistance that was effective against the pathotype
used in field nurseries, and all but two of these displayed very high levels of APR. While the genetic identity of this APR
is currently unknown, it is potentially a very useful source of resistance to Pst. Genetic studies are now needed to characterise this resistance to expedite its use in efforts to breed for resistance to
stripe rust.
Colin R. Wellings seconded from NSW Department of Primary Industries. 相似文献
12.
Oliver E. Manangkil Hien Thi Thu Vu Shinya Yoshida Naoki Mori Chiharu Nakamura 《Euphytica》2008,163(2):267-274
Submergence is a major stress causing yield losses particularly in the direct-seeded rice cultivation system and necessitates
the development of a simple, rapid and reliable bioassay for a large scale screening of rice germplasms with tolerance against
submergence stress. We developed two new bioassay methods that were based primarily on the seedling vigor evaluated by the
ability of fast shoot elongation under submerged conditions, and compared their effectiveness with two other available methods.
All four bioassay methods using cultivars of 7 indica and 6 japonica types revealed significant and consistent cultivar differences in seedling vigor under submergence and/or submergence tolerance.
Japonica cultivars were more vigorous than indica cultivars, with Nipponbare being the most vigorous. The simplest test tube method showed the highest correlations to all
other methods. Our results suggest that seedling vigor serves as a submergence avoidance mechanism and confers tolerance on
rice seedlings to flooding during early crop establishment. A possible relationship is discussed between seedling vigor based
on fast shoot elongation and submergence tolerance defined by recovery from submergence stress. 相似文献
13.
Rice blast resistance gene ‘Pi-z’ present in rice genotypes, Zenith and Fukunishiki, represents a potential source of blast resistance for the north-western
Himalayan region of India. We tested the reliability of microsatellite markers linked to Pi-z for assessing blast resistance phenotype in crosses of commercial importance. A new set of microsatellite markers linked
to Pi-z was also developed by exploiting the publicly available marker and genomic resources of rice. Of the three previously reported
markers for Pi-z, only MRG5836 was suitable for the marker assisted selection of Pi-z. Among the 17 microsatellites selected from the putative region of Pi-z locus, two, RM8225 and RM8226 cosegregated with MRG5836 and were located at distance of 1.2–4.5 cM from the gene. A new microsatellite marker ‘SSR236’ was developed from the (CT)16 repeat of PAC clone P0502B12, which exhibited closer linkage (0.6–1.2 cM) to Pi-z. Survey of the allelic diversity at the loci of the Pi-z linked microsatellite markers revealed that the Fukunishiki and Zenith type alleles were not present in majority of the local
indica rice genotypes. As these markers are polymorphic between the Pi-z donors and a great majority of local indica rices tested, they can be used as a selection tool in rice breeding programs aimed at improving the blast resistance of local
rices. 相似文献
14.
Fusarium head blight (FHB) caused by Fusarium spp. is one of the most important fungal diseases of wheat (Triticum aestivum L.) in regions with wet climatic conditions. Improvement of the FHB resistance by developing new varieties requires sound knowledge on the inheritance of resistance. An 8 × 8 diallel analysis was performed to estimate general (GCA) and specific (SCA) combining ability of resistance to FHB. The F1s and parental lines were evaluated under artificial inoculation at the experimental field of IFA-Tulln, Austria during 2001 and 2002. Disease severity was evaluated by repeated scoring of the percentage of infected spikelets and calculating an area under the disease progress curve (AUDPC). The analysis of combining ability across two years showed highly significant GCA and non-significant SCA effects indicating the importance of additive genetic components in controlling FHB resistance. The significant GCA-by-year interaction presented the role of environmental factors in influencing the FHB reaction of wheat lines. The comparison of the crosses with low FHB infection and GCA effects of their parents showed that such crosses involved at least one parent with high or average negative GCA effect. The results revealed that it is feasible to use highly or moderately resistant genotypes and conventional breeding methods to achieve genetic improvement of FHB resistance in spring wheat. 相似文献
15.
Lu Xiao Bin Yi Yufeng Chen Zhen Huang Wei Chen Chaozhi Ma Jinxing Tu Tingdong Fu 《Euphytica》2008,164(2):377-384
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer,
7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication
of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism
(AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations,
seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking
markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage
group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK.
To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found
in the present study will facilitate the selection of interim-maintainer. 相似文献
16.
A system for the production of transgenic faba bean by Agrobacterium-mediated transformation was developed. This system is based upon direct shoot organogenesis after transformation of meristematic cells derived from embryo axes. Explants were co-cultivated with A. tumefaciens strain EHA105/pGlsfa, which harbored a binary vector containing a gene encoding a sulphur rich sunflower albumin (SFA8) linked to the bar gene. Strain EHA 101/pAN109 carrying the binary plasmid containing the coding sequence of a mutant aspartate kinase gene (lysC) from E. coli in combination with neomycinphosphotransferase II gene (nptII) was used as well. The coding sequences of SFA8 and LysC genes were fused to seed specific promoters, either Vicia faba legumin B4 promoter (LeB4) or phaseolin promoter, respectively. Seven phosphinothricin (PPT) resistant clones from Mythos and Albatross cultivars were recovered. Integration, inheritance and expression of the transgenes were confirmed by Southern blot, PCR, enzyme activity assay and Western blot. 相似文献
17.
Chaozhi Ma Chunyan Li Yongqiang Tan Wei Tang Jianfeng Zhang Changbin Gao Tingdong Fu 《Euphytica》2009,166(1):123-129
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance
of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based
on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S
1300
S
1300
sp
1300
sp
1300
and S
135
S
135
sp
135
sp
135
, respectively. S
135
is dominant to S
1300
, but coexistence of sp
1300
and sp
135
fails to suppress S locus. Both S
1300
and S
135
can be suppressed by sp
135
, while sp
1300
can suppress S
135
but not S
1300
. The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and
for dissecting the mechanism of SI/SC in B. napus. 相似文献
18.
Grain hardness plays an important role in determining both milling performance and quality of the end-use products produced
from common or bread wheat. The objective of this study was to characterize allelic variations at the Pina and Pinb loci in Xinjiang wheat germplasm for further understanding the mechanisms involved in endosperm texture formation, and the
status of grain texture in Chinese bread wheat. A total of 291 wheat cultivars, including 56 landraces, and 95 introduced
and 140 locally improved cultivars, grown in Xinjiang, were used for SKCS measurement and molecular characterization. Among
the harvested grain samples, 185 (63.6%), 40 (13.7%), and 66 (22.7%) were classified as hard, mixed and soft, respectively.
Eight different genotypes for the Pina and Pinb loci were identified, including seven previously reported genotypes, viz., Pina-D1a/Pinb-D1a, Pina-D1a/Pinb-D1b, Pina-D1b/Pinb-D1a, Pina-D1a/Pinb-D1p, Pina-D1a/Pinb-D1q, Pina-D1a/Pinb-D1aa, Pina-D1a/Pinb-D1ab, and a novel Pinb allele, Pinb-D1ac. This new allele, detected in Kashibaipi (local landrace) and Red Star (from Russia) has a double mutation at the 257th (G
to A substitution) and 382nd (C to T substitution) nucleotide positions of the coding region. Pina-D1b, Pinb-D1b, and Pinb-D1p were the most common alleles in Xinjiang wheat germplasm, with frequencies of 14.3%, 38.1% and 28.6% in hard textured landraces,
25.5%, 56.9% and 11.8% in hard introduced cultivars, and 24.8%, 47.8% and 26.5% in hard locally improved cultivars, respectively.
The restriction enzymes ApaI, SapI, BstXI and SfaNI were used to identify Pinb-D1ab or Pinb-D1ac, Pinb-D1b, Pinb-D1e and Pinb-Dg, respectively, by digesting PCR products of the Pinb gene. The unique grain hardness distribution in Xinjiang bread wheat, as well as the CAPs markers for identification of the
Pinb alleles provided useful information for breeding wheat cultivars with optimum grain textures.
Liang Wang and Genying Li—contributed equally to this work. 相似文献
19.
Photoperiod response is of great importance for optimal adaptation of bread wheat cultivars to specific environments, and
variation is commonly associated with allelic differences at the Ppd-D1 locus on chromosome 2D. A total of 926 Chinese wheat landraces and improved cultivars collected from nine wheat growing zones
were tested for their genotypes at the Ppd-D1 locus using allele-specific markers. The average frequency of the photoperiod-insensitive Ppd-D1a allele was 66.0%, with the frequencies of 38.6 and 90.6% in landraces and improved cultivars, respectively. However, the
Ppd-D1a allele was present in all improved cultivars released after 1970 except for spring wheats in high latitude northwestern China,
and winter wheats in Gansu and Xinjiang. The presence of the Ppd-D1a allele in landraces and improved cultivars increased gradually from north to south, illustrating the relationship between
photoperiod response and environment. Ppd-D1a in Chinese wheats is derived from three sources, Japanese landrace Akagomughi and Chinese landraces Mazhamai and Youzimai.
The current information is important for understanding the broad adaptation of improved Chinese wheat cultivars.
F. P. Yang and X. K. Zhang contributed equally to this work. 相似文献
20.
Leaf rust caused by the fungus Puccinia triticina is one of the most important diseases of wheat (Triticum aestivum) worldwide. The use of resistant wheat cultivars is considered the most economical and environment-friendly approach in controlling
the disease. The Lr38 gene, introgressed from Agropyron intermedium, confers a stable seedling and adult plant resistance against multiple isolates tested in Europe. In the present study, 94
F2 plants resulting from a cross made between the resistant Thatcher-derived near-isogenic line (NIL) RL6097, and the susceptible
Ethiopian wheat cultivar Kubsa were used to map the Thatcher Lr38 locus in wheat using simple sequence repeat (SSR) markers. Out of 54 markers tested, 15 SSRs were polymorphic between the
two parents and subsequently genotyped in the population. The P. triticina isolate DZ7-24 (race FGJTJ), discriminating Lr38 resistant and susceptible plants, was used to inoculate seedlings of the two parents and the segregating population. The
SSR markers Xwmc773 and Xbarc273 flanked the Lr38 locus at a distance of 6.1 and 7.9 cM, respectively, to the proximal end of wheat chromosome arm 6DL. The SSR markers Xcfd5 and Xcfd60 both flanked the locus at a distance of 22.1 cM to the distal end of 6DL. In future, these SSR markers can be used by wheat
breeders and pathologists for marker assisted selection (MAS) of Lr38-mediated leaf rust resistance in wheat. 相似文献