首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperate saltmarshes are a potential source of atmospheric methane. We have measured the concentration and emission of methane in typical saltmarsh soils (Salic Fluvisols) and humus-rich saltmarsh soils (Thionic Fluvisols) from the German North Sea coast. We also measured the methane production rates of the latter. The methane content of typical saltmarsh soils reached 12.0 μmol 1?1, although values of 1–4 μmol 1?1 were usual. The sulphate concentrations of the pore-water were about 10 mm , which means sulphate reduction is not limited and methanogenesis would be suppressed. Methane concentrations were generally largest in summer. Independent of the redox potential and the degree of soil development, methane concentrations were smallest in those soils poorest in humus. Methane emission rates were almost zero. In the humus-rich saltmarsh soils, methane concentrations were roughly a thousand times larger than those in typical saltmarsh soils, reaching values of 23 mmol 1?1 The sulphate concentrations of the pore-water were often less than 1 mM, indicating limited sulphate reduction. Methane production was up to 80 μg cm?3 day?1 and was not inhibited when we added sulphate. Methane emission rates reached up to 190 μg m?2 day?1 in summer, with values up to 20 μg m?2 day?1 at other times. The two kinds of saltmarsh soil behave quite differently: the typical saltmarsh soils act as a sink for methane; the humus-rich saltmarsh soils are a source.  相似文献   

2.
Landfills are regarded as important sources of the atmospheric methane (CH4), one of the major greenhouse gases. In this study we investigated the CH4 dynamics of landfill cover soils in a long‐term field experiment. The CH4 emission rates were low, mostly ranging from —100 to 100 μmol m—2 h—1, with prevailing negative values. Higher values of up to 130,000 μmol m—2 h—1, obtained concurrently, were due to mice burrows, connecting the reduced soil sections with the aerated ones. Thus, the appearance of spatial dissimilarity was the most important factor influencing temporal variability. Reducing the soil cover from 120 cm to at least 60 cm caused a tendency of increased CH4 emission. The oxidation rates were also low and differed with low temporal variability from 1.0—11.9 nmol g—1 h—1 in 0—10 cm soil depth and 0—5.3 nmol g—1 h—1 in 40—50 cm, respectively. Highest rates were obtained at 25—30 % soil water content. A mapping of CH4 concentrations over the whole landfill showed a large spatial variation with values of 3.1—343 nmol g—1. Subsequent CH4 emission rates were between —0.2 and 120,000 mmol m—2 d—1 and showed a positive correlation to the CH4 concentrations (r = 0.993, P < 0.05). Thus, by a large scale mapping of CH4 concentrations a low‐cost procedure is proposed to identify the hot spots of CH4 release which should be treated with additional thick and well aerated cover soil materials.  相似文献   

3.
Though engineered covers have been suggested for reducing landfill methane emissions via microbial methane oxidation, little is known about the covers' function at low temperature. This study aimed to determine the methane consumption rates of engineered soil columns at low temperature (4–12°C) and to identify soil characteristics that may enhance methane oxidation in the field. Engineered soils (30 cm thick) were mixtures of sewage sludge compost and de-inking waste, amended with sand (SDS soil) or bark chips (SDB soil). At 4–6°C, we achieved rates of 0.09 gCH4 kgTS?1d?1 (0.02 m3 m?2d?1) and 0.06 gCH4 kgTS?1d?1 (0.009 m3 m?2d?1) with SDS and SDB soils, respectively. With SDS, good movement and exchange of oxygen in porous soil moderated the slowdown of microbial activity so that the rate dropped only by half as temperature declined from 21–23°C to 4–6°C. In SDB, wet bark chips reduced the soil's air-filled porosity and intensified non-methanotrophic microbial activity, thus reducing the methane consumption rate at 4–6°C to one fourth of that at 21–23°C. In conclusion, soil characteristics such as air-filled porosity, water holding capacity, quantity and stabilization of organic amendments that affect the movement and exchange of oxygen are important variables in designing engineered covers for high methane oxidation at low temperature.  相似文献   

4.
The soil microbial communities of a landfill cover substrate, which was treated with landfill gas (100 l CH4 m?2 d?1) and landfill leachate for 1.5 years, were investigated by phospholipid fatty acid (PLFA), ergosterol and respiratory quinone analyses. The natural 13C depletion of methane was used to assess the activity of methanotrophs and carbon turnover in the soil system. Under methane addition, the soil microbial community was dominated by PLFAs (14:0 and 16:1 isomers) and quinones (ubiquinone-8 and 18-methylene-ubiquinone-8) related to type I methanotrophs, and 18:1 PLFAs contained in type II methanotrophs. While type I methanotrophic PLFAs were 13C depleted, i.e. type I methanotrophs were actively oxidising and assimilating methane, 13C depletion of 18:1 PLFAs was low and inconsistent with their abundance. This, possibly reflects isotopic discrimination, assimilation of carbon derived from type I methanotrophs and a high contribution of non-methanotrophic bacteria to the 18:1 isomers. Landfill leachate irrigation caused the methanotrophic community to shift closer to the soil surface. It also decreased 18:1 PLFAs, while type I methanotrophs were probably stimulated. Gram positive bacteria, but not fungi, were also 13C depleted and consequently involved in the secondary turnover of carbon originating from methanotrophic bacteria. Cy17:0 PLFA was 13C depleted in deep soil layers, indicating anaerobic methane oxidation.  相似文献   

5.
Information about soil VOC inventories and exchange rates in different soils is very scarce. Seasonality of soil VOC exchange rates is also largely unknown, despite the increasing interest in some soil volatile compounds, such as monoterpenes, because of their important role in soil ecology. We aimed to explore and quantify soil VOC exchange rates in a Mediterranean shrubland and their seasonality. Measurements of soil VOC exchange were taken using GC‐MS and PTR‐MS techniques, together with soil temperature, soil moisture and soil CO2 efflux measurements, during two annual campaigns with contrasting precipitation. Methanol, acetic acid, ethyl acetate, acetaldehyde, acetone, C3 and C4 carbonyls (such as methyl ethyl ketone), α‐pinene and limonene, showed the highest emission rates. Maximum soil monoterpene emission rates were very low (0.003 nmol m?2 s?1) compared with foliar monoterpene emission rates. The emission rates of the other VOCs were also low (maximum 0.8 nmol m?2 s?1) except for methanol (1.2 nmol m?2 s?1). Maximum soil uptake rates for some VOCs, such as methanol and acetonitrile (ranging from ?0.1 to ?0.5 nmol m?2 s?1) were, however, comparable with foliar uptake rates. Further studies are needed to corroborate these results and the possible importance of the soil VOC sink in regional chemistry‐climate models. Long‐term severe drought increased soil monoterpene emission rates in this Mediterranean shrubland. The increases seem to be linked to changes in the soil’s physical properties induced by low soil moisture. Unlike monoterpenes, other soil VOC emission rates decreased when soil moisture was low. The results suggest a seasonal control of soil temperature on the emission rates of monoterpenes and other VOCs. The emission rates increase with soil temperature. Positive correlations between the VOC exchange rates and the soil CO2 fluxes suggest that phenology of roots and microorganisms also controls seasonal changes in soil VOCs in this Mediterranean shrubland.  相似文献   

6.
N20 emissions and denitrification N-losses. precipitation, air temperature, soil moisture, bulk density and content of mineral N were monitored in 9 different agricultural soils in 6 European countries throughout the vegetation period (April to September) 1992 and 1993. N2O emissions and denitrification N-losses were log-normal distributed, reflecting high temporal changes. While small flux rates (< 2 g N ha?1 d?1) were detectable every day, high rates (> 10 g N ha?1 d?1) were measured after fertilization. An attempt to relate the emission variables to climate and soil variables was made through the use of correlation analysis. The mean N20 emissions from soil were significantly correlated with the soil properties clay, organic C and mineral N content and the amount of applied mineral N fertilizer. The best prediction of the N2O emission rates (r2 = 0.734) was achieved by multiple linear regression using the soil parameter clay and mineral N. Only 50% of the observed variation could be explained by the factors Corg and mineral N, which describe the substrate availability for microbial processes. No successful statistical model was found for the prediction of denitrification N-losses.  相似文献   

7.
Purpose

The purpose of this research was to study the generation, sink, and emission of greenhouse gases by soils on technogenic parent materials, created at different stages of the Moskva River floodplain development (1—construction and 2—landscaping of residential areas).

Materials and methods

Field surveys revealed the spatial trends of concentration and emission of the greenhouse gases in following groups of soils: Retisols (RT-ab-ct) and Fluvisols (FL-hu, FL-hi.gl) before land engineering preparation for the construction, Urbic Technosols Transportic (TC-ub-ar.tn and TC-ub-hu.tn) at stage 1 and Urbic Technosols Folic (TC-ub-fo) at stage 2. CO2 and CH4 concentration in soils and their emission were determined using subsurface soil air equilibration tubes and the closed chamber method, respectively. Bacterial methane generation rate (MGR) and methane oxidation rate (MOR) were measured by kinetic methods.

Results and discussion

In natural soils MOR is caused only by intra-aggregate methanogenesis. The imbalance of methane generation and oxidation was observed in FL-hi.gl. It caused CH4 accumulation in the profile (7.5 ppm) and its emission to the atmosphere (0.11 mg CH4 m?2 h?1). RT-ab-ct acted as the sink of atmospheric methane. CO2 emission was 265.1?±?24.0 and 151.9?±?37.2 mg CO2 m?2 h?1 from RT-ab-ct and FL-hi.gl, respectively. In Technosols CH4 concentration was predominantly low (median was 2.7, 2.9, and 3.0 ppm, in TC-ub-ar.tn, TC-ub-hu.tn, and TC-ub-fo, respectively), but due to the occurrence of peat sediments under technogenic material, it increased to 1–2%. Methane emission was not observed due to functioning of biogeochemical barriers with high MOR. In TC-ub-ar.tn and TC-ub-hu.tn, the barriers were formed at 60-cm depth. In TC-ub-fo, the system of barriers was formed in Folic and Technic horizons (at 10- and 60-cm depth). CO2 emission was 2 times lower from TC-ub-ar.tn and TC-ub-hu.tn and 1.5 times higher from TC-ub-fo than from natural soils.

Conclusions

Greenhouse gas generation, sink, and emission by natural soils and Technosols in floodplain were estimated. CO2 and CH4 content in Technosols varied depending on the properties of parent materials. Technosols at stage 1 did not emit CH4 due to formation of biogeochemical barriers—soil layers of high CH4 utilization rates. Urbic Technosols (Folic) at stage 2 performed as a source of significant CO2 emission.

  相似文献   

8.
The objectives of this 2-year field study were to assess the effects of irrigation and nitrogen (N) application on nitrous oxide (N2O). Soil N2O flux was determined using open-bottomed chambers. Nitrous oxide concentrations were determined with gas chromatography. The results showed that in 2008, N2O emission rates ranged from 2.0 to 50.0 g N ha?1 d?1 in the alternating furrow irrigation and N application treatments (AFINA) and from 2.4 to 68.4 g N ha?1 d?1 in the conventional every-furrow irrigation and fertilization treatment (CIF). In 2009, cumulative N2O-N loss in the optimal combination with greater yields and lower N2O emission in AFINA was 1277 g N ha?1 compared to 1695 g N ha?1 with CIF. The study indicated that AFINA practices combined with optimum N fertilizer and irrigation rates could reduce soil N2O emission and water input compared to CIF practices without causing a decline in corn yield.  相似文献   

9.
Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two recently discovered processes in the nitrogen cycle that are catalysed by anammox bacteria and n-damo bacteria, respectively. Here, the depth-specific distribution and importance of anammox bacteria and n-damo bacteria were studied in an urban wetland, Xixi Wetland, Zhejiang Province (China). Anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia and Candidatus Anammoxoglobus, and n-damo bacteria related to “Candidatus Methylomirabilis oxyfera” were present in the collected soil samples. The abundance of anammox bacteria (2.6–8.6 × 106 copies g−1 dry soil) in the shallow soils (0–10 cm and 20–30 cm) was higher than that (2.5–9.8 × 105 copies g−1 dry soil) in the deep soils, whereas the abundance of n-damo bacteria (0.6–1.3 × 107 copies g−1 dry soil) in the deep soils (50–60 cm and 90–100 cm) was higher than that (3.4–4.5 × 106 copies g−1 dry soil) in the shallow soils. Anammox activity was detected at all depths, and higher potential rates (12.1–21.4 nmol N2 g−1 dry soil d−1) were observed at depths of 0–10 cm and 20–30 cm compared with the rates (3.5–8.7 nmol N2 g−1 dry soil d−1) measured at depths of 50–60 and 90–100 cm. In contrast, n-damo was mainly occurred at depths of 50–60 cm and 90–100 cm with potential rates of 0.7–5.0 nmol CO2 g−1 dry soil d−1. This study suggested the niche segregation of the anammox bacteria and n-damo bacteria in wetland soils, with anammox bacteria being active primarily in deep soils and n-damo bacteria being active primarily in shallow soils.  相似文献   

10.
Abstract

Organic carbon in paddy soil is oxidized to carbon dioxide by reducing electron acceptors for a certain period after submerging. Methane production commences after the reduction of iron oxide which is the most important electron acceptor in the soil. We aimed to study the long-term suppression of the methane emission from the paddy soil by single application of iron slag. A revolving furnace slag (RFS; 248 g Fe kg?1) was applied to the potted soil at the rate of 0 (control) or 20 ton ha?1 in 2000. Rice plants were successively cultivated on the potted soils for 3 years without further application of the RFS. Methane emissions from the potted soils with rice plants were measured by the closed chamber method during these cultivation periods. Total flux of CH4 emission from the pot applied with ,FS decreased by 5–30% compared with the control. The RFS supplied free iron oxide to the potted soil, and its iron acted as the oxidizing agent as evidenced by the increase in ferrous iron content in the soil. The amount of iron lost from leaching at the bottom of the pots was estimated as 54–59 kg Fe ha?1 year?1 at the percolation rate of 20 mm d?1. Accordingly, half-life of the iron in the applied RFS was calculated as 42–46 years. Therefore, there is a possibility that the suppressing effect of RFS on CH4 emission is sustained for a half-century, Contents of heavy metals (Cd, Cu, and Zn) in the brown rice harvested from the pot applied with RFS were not significantly different with those from the control pot.  相似文献   

11.
Tree species can affect the sink and source strength of soils for atmospheric methane and nitrous oxide. Here we report soil methane (CH4) and nitrous oxide (N2O) fluxes of adjacent pure and mixed stands of beech and spruce at Solling, Germany. Mean CH4 uptake rates ranged between 18 and 48 μg C m?2 hour?1 during 2.5 years and were about twice as great in both mixed and the pure beech stand as in the pure spruce stand. CH4 uptake was negatively correlated with the dry mass of the O horizon, suggesting that this diminishes the transport of atmospheric CH4 into the mineral soil. Mean N2O emission was rather small, ranging between 6 and 16 μg N m?2 hour?1 in all stands. Forest type had a significant effect on N2O emission only in one mixed stand during the growing season. We removed the O horizon in additional plots to study its effect on gas fluxes over 1.5 years, but N2O emissions were not altered by this treatment. Surprisingly, CH4 uptake decreased in both mixed and the pure beech stands following the removal of the O horizon. The decrease in CH4 uptake coincided with an increase in the soil moisture content of the mineral soil. Hence, O horizons may maintain the gas diffusivity within the mineral soil by storing water which cannot penetrate into the mineral soil after rainfall. Our results indicate that conversion of beech forests to beech–spruce and pure spruce forests could decrease soil CH4 uptake, while the long‐term effect on N2O emissions is expected to be rather small.  相似文献   

12.
Abstract

A micro-plot 15N-tracer experiment was established in three different soils of a long-term soil fertility field experiment. The nutrient-poor loam sand has been subjected to various treatments over the years and this has resulted in different organic C (0.35% – 0.86%), microbial biomass (38.3 – 100.0 µg C mic g?1 soil), clay and fine silt contents. Using the 15N-pool dilution technique, we assessed gross N-transfer rates in the field. Gross N mineralization rates varied strongly among the three plots and ranged between 0.4 and 4.2 µg N g?1 soil d?1. Gross nitrification rates were estimated to be between 0 and 2.1 µg N g?1 soil d?1. No correlation between gross N mineralization rates and the organic matter content of the soils was established. However, gross nitrate consumption rates increased with increasing soil C content. The 15N-pool dilution technique was successfully used to measure gross N transfer rates directly in the field.  相似文献   

13.
Many regional landfills for municipal solid waste (MSW) and industrial, commercial, institutional (ICI) wastes in cold, dry regions do not produce enough gas to support conventional gas extraction, treatment, and utilization or flaring. Yet, some solution is required to reduce emissions of methane and trace constituents to the atmosphere for the protection of the public and of the global climate. Methane oxidation, as a natural biochemical process, offers an opportunity to reduce methane emissions with a simple, passive alternative cover system. The goal of this article is to develop an effective design of Methane Oxidation Covers to achieve superior methane management performance while still producing equivalent closure conditions to conventional covers in semi-arid, cold climates. specifically, the goal is to reduce methane surface emissions by 50% to 80%, with no significant increase in leachate production compared with conventional covers of clay and topsoil. A field pilot test of an alternative cover system with gas collection, methane oxidation and heat extraction was conducted on an operating MSW/ICI waste landfill in Western Canada from August 2001 to February 2005. The cool, semi-arid region experiences cold winters (down to minus 40?C) for up to 5 months of the year, and annual precipitation rates of 150 mm to 450 mm p.a., of which one third to one half falls as snow. The need to direct gas from large surface areas to gas control zones of minimal area led to the configuration of the system of gas collection trenches connected to a central methane oxidation (MethOx) bed. The need to keep the bed above 5?C in winter required the development of a simple, passive heat transfer system. The maintenance of suitable moisture contents and the restriction of percolation were accomplished by the choice of filter material and the layering of the bed over the gas percolation layer. The test program was conducted in three phases from August 2001 to February 2005. In the first test phase, a methane oxidation bed of yardwaste compost performed well during the summer, but froze from November to April and did not resume oxidation until May. Oxygen was always present at or above 3%(vol.) and the moisture content remained above 25%(vol.) in the lower layer of the bed. The freezing temperature caused the most serious performance reduction. In the next phases of the study, a passive heating system was installed in an accelerated methane oxidation bed. Heat exchange from inside the landfill to the filter raised the bed temperature to 14 to 18?C during the third winter of the test. The moisture contents of 25% to 50% (v/v) in the bed were high, but the percolation rate was only 7.3 mm/a, or about 2% of total precipitation. The methane oxidation performance increased with the heating of the bed, from a 33% emission reduction in an unheated bed, up to 89% in a well heated filter bed. The achievement of high oxidation performance (over 80%), the complete reduction of surface emissions from the test area (to zero), and the low percolation rate through the filter bed (less that 2%) constitute a proof of principle for MethOx covers in cool, semi-arid climates. The possible improvement of the Alternative Cover System's performance by adding vegetation to the filter bed is currently being tested in the ongoing research project.  相似文献   

14.
The flux rates of carbon dioxide, methane, and nitrous oxide in the soils on autonomous, transitional, transitional-accumulative, and accumulative positions of a catena on the Oka River’s right bank (Moscow oblast) were assessed using the chamber method. The lowest rate of C-CO2 emission (18.8–29.8 mg/m2 per hour) was found for the gray forest soil in the autonomous position, and the highest rate (52.4–66.1 mg/m2 per hour) was found for the alluvial meadow soil of the accumulative landscape. In the summer, the uptake of methane from the atmosphere exceeded its release from the soil at all the points of the catena (9–38 μg/m2 per hour). The highest rate of the C-CH4 uptake was observed for the soil in the transitional position. In the fall, the soils in the autonomous, transitional, and transitional-accumulative positions served as a sink of C-CH4, and the soil of the accumulative position was a source of methane emission. The rate of the N-N2O emission from the catena soils increased when going from the autonomous position to the accumulative one (0.41–11.2 μg/m2 per hour). The spatial variation of the C-CO2, C-CH4, and N-N2O fluxes within the catena was 33, 172, and 138%, respectively. The upper (0- to 10-cm) soil layer made the major contribution to the emission of carbon dioxide. This soil layer was characterized by its C-CH4 uptake, and the emission of methane was typical for the deeper (0- to 20-cm) layer. The layers deeper than 10 and 20 cm emitted more N-N2O than the surface layer.  相似文献   

15.
Establishment of vegetative cover on coal refuse stabilizes the pile surface and reduces off site deposition of acidic sediments and drainage water. Direct revegetation through the use of by-product amendments would eliminate the need for topsoil cover and provide a beneficial use for by-product materials. This 8 month greenhouse study investigated yard trimmings compost, flue gas desulfurization (FGD) by-product, and agricultural limestone (ag-lime) amendments for direct revegetation of hyper-acidic coal refuse and their effects on leachate and plant quality. Pots (30 cm tall × 15 cm diam) of coal refuse were amended with five rates of compost (0 to 200 g kg?1), with and without sufficient agricultural limestone (ag-lime) to raise refuse pH to 7, and planted with orchardgrass (Dactylis glomerata). Compost increased leachate pH from <2 to 4.4, decreased specific conductance from >17 to <5 mmho cm?1 (due to large decreases in Al, Fe, and S), and decreased leachate concentrations of several trace elements. The pH increase from ag-lime greatly reduced leachate Al, Fe, and S and largely masked any effects of compost addition. Because no plant growth occurred with compost only, after 2 months FGD (200 g kg?1) was added to the upper 1/3 depth of compost-amended coal refuse. The FGD increased refuse pH to the range 4.2 (no compost) to 5.7 (200 g kg?1 compost), decreased leachate Al and Fe, increased leachate B, and allowed vigorous growth of orchardgrass. When combined with FGD, compost increased downward movement of Ca and Mg. Although compost addition decreased plant growth at the first harvest due to N immobilization, application of mineral N fertilizer alleviated this problem in subsequent harvests. Compost did not increase orchardgrass growth when combined with ag-lime. With FGD, however, compost increased orchardgrass growth to levels above that for ag-lime and compost, in spite of increased plant tissue B.  相似文献   

16.
The effect of controlled drainage on methane (CH4) and nitrous oxide (N2O) emissions from a paddy field under controlled irrigation (CI) was investigated by controlling the sub-surface drainage percolation rate with a lysimeter. CI technology is one of the major water-saving irrigation methods for rice growing in China. Water percolation rates were adjusted to three values (2, 5, and 8 mm d?1) in the study. On the one hand, the CH4 emission flux and total CH4 emission from paddy fields under CI decreased with the increase of percolation rates. Total CH4 emissions during the growth stage of rice were 1.83, 1.16, and 1.05 g m?2 in the 2, 5, and 8 mm d?1 plots, respectively. On the other hand, the N2O emission flux and total N2O emissions from paddy fields under CI increased with the increase of percolation rates. Total N2O emissions during the growth stage of rice were 0.304, 0.367, and 0.480 g m?2 in the 2, 5, and 8 mm d?1 plots, respectively. The seasonal carbon dioxide (CO2) equivalent of CH4 and N2O emissions from paddy fields under CI was lowest in the 2 mm d?1 plot (1364 kg CO2 ha?1). This value was 1.4% and 19.4% lower compared with that in the 5 and 8 mm d?1 plots, respectively. The joint application of CI and controlled drainage may be an effective mitigation strategy for reducing the carbon dioxide equivalents of CH4 and N2O emissions from paddy fields.  相似文献   

17.

Purpose

The dynamics and uncertainties in wetland methane budgets affected by the introduction of Alnus trabeculosa H. necessitate research on production of methane by methanogenic archaea and consumption by methane-oxidizing microorganisms simultaneously.

Materials and methods

This study investigated methane emission in situ by the closed chamber method, and methanogenic and methanotrophic communities using denatured gradient gel electrophoresis (DGGE) and quantitative PCR based on mcrA (methyl coenzyme M reductase), pmoA (particulate methane monooxygenase) genes in the rhizosphere and non-rhizosphere soils in the indigenous pure Phragmites australis T., and A. trabeculosaP. australis mixed communities in Chongxi wetland.

Results and discussion

Methane flux rate from the pure P. australis community was 2.4 times larger than that of A. trabeculosaP. australis mixed community in the rhizosphere and 1.7 times larger in the non-rhizosphere, respectively. The abundance of methanogens was lower in the mixed community soils (3.56?×?103–6.90?×?103 copies g?1 dry soil) compared with the P. australis community (1.47?×?104–1.89?×?104 copies g?1 dry soil), whereas the methanotrophs showed an opposite trend (2.08?×?106–1.39?×?106 copies g?1 dry soil for P. australis and 6.20?×?106–1.99?×?106 copies g?1 dry soil for mixed community soil). A liner relationship between methane emission rates against pmoA/mcrA ratios (R 2?=?0.5818, p?<?0.05, n?=?15) was observed. The community structures of the methane-cycling microorganism based on mcrA and pmoA suggested that acetoclastic methanogens belonging to Methanosarcinaceae and a particular type II methanotroph, Methylocystis, were dominant in these two plant communities.

Conclusions

The introduction of A. trabeculosa would promote the proliferation of methanotrophs, especially the dominant Methylocystis, but not methanogens, ultimately diminishing methane emission in the wetland.
  相似文献   

18.
Oxygen availability in landfill cover soil is a major limitation to the growth and activity of methanotrophs as methane oxidation is an aerobic microbial process. Plants tolerant to high concentrations of landfill gas (LFG) may play an important role in improving methane oxidation within landfill cover soil and reducing emission of methane, a greenhouse gas, from it. In this study, the effect of an LFG tolerant plant Chenopodium album L. on methane oxidation activity (MOA) and bacterial community composition in landfill cover soil was investigated. Soil samples from four simulated lysimeters with and without LFG and plant vegetation were taken at 4 stages during the plant's development cycle. Results showed that the total number of culturable bacteria in soil could be significantly increased (P < 0.05) by the growth of C. album. The total number of methanotrophs and MOA in soils with LFG was significantly higher (P < 0.05) than in soils without LFG on sampling days 90, 150 and 210. The total number of methanotrophs and MOA in lysimeters with LFG added increased in the presence of C. album when the plant entered the seed setting stage. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) gel patterns of 16S rDNA gene fragment and band sequencing analyses showed apparent differences in soil bacterial communities in the presence of LFG and plant vegetation. Members of the genus Methylosarcina were found to be the active and dominant methanotrophs in rhizosphere soil of C. album with LFG, while Methylococcus, Methylocystis, and Methylosinus were the primary methanotroph genera in LFG soil without C. album. Thus, C. album appears to select for specific methanotrophic bacteria in the presence of LFG. Soil MOA and microbial diversity can also be significantly affected by the presence of this plant.  相似文献   

19.
Methane fluxes in alpine ecosystems remain insufficiently studied, especially in terms of the magnitude, temporal, and spatial patterns. To quantify the mean methane emission of alpine ecosystems, methane fluxes were measured among six ecosystems and microsites within each ecosystem at Zoige National Wetland Reserve. The average methane emission from Zoige Plateau was 2.25 mg CH4 m?2?h?1, which fell into the range of methane emission rate reported by a number of studies in other alpine wetlands. Prevailing ecosystem types had important impacts on the methane flux on the landscape scale. In the wet ecosystems, the microsites had different methane emissions resulting from the differences in the depth of water table and associated vegetation characteristics. The identification of the microsites based on their vegetation characteristics thus allows upscaling of methane emissions in these ecosystems. However, in the dry ecosystems showing even methane uptake, the spatial variation in the methane fluxes was low and the vegetation has a poor predicative value for the methane fluxes. There, the soil porosity linked to the gas diffusion rate in soil would be the key factor explaining methane fluxes.  相似文献   

20.
Abstract

Methane emission rates from plots with and without fertilizer and rice straw application, and growth of two rice varieties (an improved variety, IR74 or IR64, and a local variety, Krueng Aceh) in two Indonesian paddy fields (Inceptisol and Alfisol soils of volcanic ash origin) were measured every week throughout the growth period in the first and the second cropping seasons, 1994. The CH4 emission rates from the fields were similar between the two varieties. The effect of chemical fertilizer on the increase of the emissions was observed only in the Tabanan paddy field for the plots treated with rice straw. Application of rice straw increased the CH4 emission rates. The mean rates of CH4 emission were 1.37-2.13 mg CH4?C m?2 h?1 for the plots without rice straw and 2.14–3.62 mg CH4?C m?2 h?1 for the plots with rice straw application in the Alfisol plots, and 2.32–3.32 mg CH4 -C m-2 h-1 for the plots without rice straw and 4.18–6.35 mg CH4?C m?2 h?1 for the plots with rice straw application in the Inceptisol plots, respectively. Total amounts of CH4 emitted during the growth period were 3.9–6.8 and 2.6–3.3 g CH4?C m?2 for the Alfisol plots and 6.9–10.7 and 4.2–5.8 g CH4?C m?2 for the Inceptisol plots with and without rice straw application, respectively. These findings suggested that CH4 emission from tropical paddy fields with soils of volcanic ash origin is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号