首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract

Simultaneous extraction of nutrients using ammonium bicarbonate–diethylene triamine penta acetic acid (ABDTPA) extractant has been successful for highland soils, but its potential for lowland soils is still uncertain. This study evaluated the suitability of ABDTPA extractant to determine available phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in lowland rice soils of Sri Lanka. Available nutrients were analyzed both by conventional and ABDTPA methods, using the original ABDTPA (1∶2 soil–extractant) method as well as a modified (1∶4 soil–extractant) method. Conventional methods tested were Olsen, Bray 1, and FeO strip for available P; neutral NH4OAc extraction for exchangeable Ca, Na, K, and Mg; and DTPA extraction for available Zn, Cu, Fe, and Mn. Nutrient content and uptake by plants were determined by a pot experiment with rice (Oryza sativa). Nutrients extracted by the conventional methods and ABDTPA methods correlated well, in general, for all nutrients. Highly significant correlations were observed between plant uptake and extractable nutrients by 1∶2 and 1∶4 ABDTPA methods for P (r=0.85***and 0.73***, respectively), K (r=0.79*** and 0.66***, respectively), Na (r=0.86*** and 0.78***, respectively), Zn (r=0.66*** and 0.60***, respectively), Mn (r=0.72*** and 0.84***, respectively), and Fe (r=0.74*** and 0.68***, respectively). Calcium and Mg extracted by ABDTPA showed a poor relationship with their respective plant uptake. The ABDTPA method was as effective as or even better than the conventional methods in evaluating fertility status of lowland rice soils with respect to most nutrients. Replacing the conventional methods by the single ABDTPA multielement extractant will reduce the time and cost of soil analysis.  相似文献   

2.
Abstract

Acid‐related soil infertility is the major constraint to crop production on low‐activity clay soils in the tropics. We investigated the role of phosphorus (P), calcium (Ca), and magnesium (Mg) in alleviating the acid‐related fertility problem in upland rice on an Ultisol in the humid forest zone of West Africa. A field experiment was conducted in 1994 under rainfed condition to determine the response of an acid‐tolerant, upland rice cultivar (WAB 56–50) to the application of P, Ca, and Mg nutrient combinations. Phosphorus alone or in combination with Ca and Mg significantly increased yield and agronomic and physiological P efficiencies and improved harvest index of the crop. Application of Ca and Mg alone or together had a non‐significant effect on yield, elemental composition of plant tissue at tillering, and the uptake of macro‐ and micronutrients at harvest. The results indicate that P deficiency was the most important nutrient disorder in the Ultisol and that the application of Ca and Mg as plant nutrients was initially not as important to the growth, yield, and plant nutrient status of an acid‐tolerant upland rice cultivar.  相似文献   

3.
Liming and phosphorus (P) applications are common practices for improving crop production in acid soils of the tropical as well as temperate regions. Four greenhouse experiments were conducted on an Oxisol (clayey, kaolinitic, isothermic, Typic Haplustox) to evaluate response of liming (0,2, and 4 g/kg) and P application (0, 50, and 175 mg P/kg) in a factorial combination on growth and nutrient uptake by upland rice (Oryza sativa L.), wheat (Triticum aestivum L.), common bean (Phaseolus vulgaris L.), and corn (Zea mays L.). Phosphorus application significantly (P<0.01) increased dry weight of tops of all the four crop species as well as dry weight of roots of wheat and corn. Liming significantly (P<0.01) improved growth of common bean and corn but had significant negative effects on rice growth. Maximum dry weight of tops of rice and wheat was obtained at 175 mg P/kg without lime. Maximum dry weight of tops in common bean was obtained at 4 g lime/kg with 175 mg P/kg of soil. In all the crops, increasing levels of applied P significantly increased nutrient uptake. With some exceptions, increasing levels of lime tend to reduce uptake of P, zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) and increase the uptake of calcium (Ca) and magnesium (Mg) in all the crop species. Decrease in potassium (K) uptake, due to high lime, is probably due to antagonistic effects of Ca and Mg and reduced micronutrients uptake is probably due to increased soil pH resulting in decreased availability of these elements to plants. Therefore, in these types of acid soils, one should avoid over liming.  相似文献   

4.
Producers use elemental ratios, such as calcium (Ca): magnesium (Mg), in fertility programs to ensure sufficient nutrient uptake. Kale (Brassica oleracea L. var. acephala D.C.) accumulates high levels of carotenoids which can be beneficial for human health. Objectives were to determine the influence of Ca:Mg fertilization on 1) biomass, 2) essential nutrients, and 3) carotenoids in kale leaf tissues. ‘Redbor’ kale was greenhouse-grown in solution culture. Ca:Mg ratio treatments were 9:1, 6:1, 3:1, 1:3, 1:6, and 1:9. Ca:Mg ratio significantly affected biomass, nutrient accumulation, and carotenoids. Plant biomass decreased linearly (P ≤ 0.001) and β-carotene, lutein, neoxanthin, and antheraxanthin all increased, then decreased quadratically (P ≤ 0.001) as the ratio of Ca:Mg changed from 9:1 to 1:9. Ca:Mg ratio also affected leaf tissue Ca, Mg, potassium (K), sulfur (S), boron (B), manganese (Mn), molybdenum (Mo) and zinc (Zn). Results indicate that producers wishing to maximize elemental uptake and carotenoid content of kale need to consider the ratio of Ca:Mg in their fertility programs.  相似文献   

5.
Abstract

To optimize the nutrient management of upland rice production on tropical ferralsols, a greenhouse experiment was established using the multi-nutrient omission approach. A reciprocal soil origin-rice cultivar transplant experiment was also conducted to better understand the relative contributions of the soil origin and the rice cultivar in rice nutrient limitation. We tested the deficiency of seven major and secondary nutrients [nitrogen (N), phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), and silicon (Si)] and a solution of six micronutrients (B, Mn, Cu, Co, Na, Mo) likely to limit the growth of two upland rice cultivars, Chhomrong Dan and Nerica 4, on two Ferralsols from the highlands of Madagascar. We found severe multiple nutrient deficiencies. For both cultivars, P, Ca, N, Mg omission significantly depressed the shoot and root dry biomass and their amounts in plant tissues. However, the main limiting nutrients were not the same in both soils. We conclude that the multinutrient deficiencies observed for rice growth in the Ferralsols are site-specific, even though P limitation appears to be in common, and requires a holistic consideration of the mineral fertility, including micronutrients.  相似文献   

6.
Rice (Oryza Sativa L.) nutrition is influenced by the interactions of (Iron) Fe, (Manganese) Mn, and (Silicon) Si in the rhizosphere. A greenhouse experiment was carried out with rice grown in four low‐pH soils (a granitic lateritic red earth, a paddy soil from the red earth, a basaltic latosol, and a paddy soil from the latosol). Rice was grown in pots with the roots confined in rhizobags and the rhizosphere soil and nonrhizosphere soil were analyzed separately for active Si, Fe, and Mn by Tamm's solution. Silicon and Mn concentrations were lower in the rhizosphere soil indicating a depletion which was higher for the basaltic soils and for the paddy soils. Iron concentrations were higher in the rhizosphere soil indicating an accumulation that was higher for granitic soils and for the upland soils. Plant growth response was due mostly to Mn with the basaltic soils supplying toxic amounts and the granitic soils being deficient. Iron accumulation in the rhizosphere caused lower plant uptake of Si, phosphorus (P), and calcium (Ca) and higher Fe and aluminum (Al) absorption leading to the conclusion that Fe deposition on plant roots and in rhizosphere may block the uptake of other nutrients.  相似文献   

7.
Lowland rice is a staple food for more than 50% world population. Iron toxicity is one of the main nutritional disorders, which limits yield of lowland rice in various parts of the world. The toxicity of iron is associated with reduced soil condition of submerged or flooded soils, which increases concentration and uptake of iron (Fe2 +). Higher concentration of Fe2 + in the rhizosphere also has antagonistic effects on the uptake of many essential nutrients and consequently yields reduction. In addition to reduced condition, increase in concentration of Fe2 + in submerged soils of lowland rice is associated with iron content of parent material, oxidation-reduction potential, soil pH, ionic concentration, fertility level, and lowland rice genotypes. Oxidation-reduction potential of highly reduced soil is in the range of –100 to –300 mV. Iron toxicity has been observed in flooded soils with a pH below 5.8 when aerobic and pH below 6.5 when anaerobic. Visual toxicity symptoms on plants, soil and plant tissue test are major diagnostic techniques for identifying iron toxicity. Appropriate management practices like liming acid soils, improving soil fertility, soil drainage at certain growth stage of crop, use of manganese as antagonistic element in the uptake of Fe2 + and planting Fe2 + resistant rice cultivars can reduce problem of iron toxicity.  相似文献   

8.
Abstract

An adequate supply of available Ca in the soil solution of the pegging zone during fruit development is required for production of high yields of high quality peanuts (Arachis hypogaea L.). On low Ca soils, application of gypsum during early bloom is recommended in order to ascertain adequate availability of Ca. Reaction of gypsum in soils under leaching conditions vary considerably and play an important role in fruit development and yield of peanuts. A laboratory study was conducted in leaching soil columns to investigate the effects of one gypsum amendment on leaching of Ca, K, Mg, and SO4 to a depth of 8 cm (fruiting zone of peanut). Six soils of varying physical and chemical properties representative of major peanut growing soils in Georgia were utilized. Following leaching with 15 cm water through gypsum‐amended soil columns, 50% to 56% and 74% to 77% of applied Ca and SO4, respectively, were leached below 8 cm in the sandy‐Carnegie, Dothan, Fuquay and Tifton soils. The respective values for the sandy clay loam‐Greenville and Faceville soils were 28% to 36% and 58% to 69%. Lower initial Ca status and greater leaching of Ca from the applied gypsum in the sandy soils as compared to sandy clay loam soils suggest greater beneficial effects of supplemental gypsum application for peanut production in the former soils than in the latter soils. Leaching of K or Mg (as percentage of Mehlich 1 extractable K or Mg) in gypsum‐amended treatment was considerably greater in sandy soils than that in the sandy clay loam soils. In view of the reported adverse effects of high concentrations of soil K and Mg in the fruiting zone on the yield and quality of peanuts, greater leaching of K and Mg from the fruiting zone in gypsum amended sandy soils enable them to maintain a favorable cation balance for the production of high yields of quality peanuts.  相似文献   

9.
Oxisols, which are highly weathered, occupy a large area of Malaysia. These soils are infertile because of low pH, calcium (Ca), magnesium (Mg), and potassium (K) levels but high aluminum (Al) content. The infertility can be ameliorated by applying soil amendments. A study was conducted to determine the effects of basalt and/or rice husk compost application on cocoa growth planted on an Oxisol. The results showed that either basalt or rice husk compost and their combinations were effective ameliorants. Basalt application increased soil pH and exchangeable Ca and Mg while decreasing exchangeable Al. Accordingly, soil solution Ca, Mg, and K increased and Al and manganese (Mn) concentrations decreased. Silicate released from basalt was able to lower the pHo (the pH at which the net charge of the variable charge minerals is zero), indicating a negative charge was being generated, which led to increase in the cation exchange capacity (CEC) of the Oxisol. The improvement in soil fertility because of application of the amendments had improved cocoa growth. Leaf K and P of the cocoa planted on the basalt-treated soils were within the sufficient range for cocoa growth. Rice husk compost applied at a rate of less than 20 t ha?1 in this trial was not able to supply sufficient N to the cocoa. Basalt application at an appropriate rate effectively ameliorates acidic soil infertility, but it takes time to realize the positive effects of application as it slowly dissolves under field conditions.  相似文献   

10.
水稻根际中铁的形态转化   总被引:16,自引:0,他引:16  
王建林  刘芷宇 《土壤学报》1992,29(4):358-364
本文以熟化红壤性水稻土、淀浆白土、红壤和赤红壤为样品,研究了植稻后根际中铁的形态转化.结果表明,两种水稻土根际中无定形氧化铁、游离氧化铁、络合态铁、土壤中氧化铁的活化度及两种红壤上根际中的络合态铁均低于非根际土;而两种红壤上其余各项在根际内外分布趋势均与水稻土相反.用穆斯堡尔谱仪分析表明,所有根际土与非根际土相比,四极矩分裂增大,内磁场下降,说明根际中氧化铁被活化.同时,水稻土上根际中Fe2+增多,赤红壤中根际出现新矿物磁赤铁矿.根际中铁被活化,可能会影响根际中重金属等污染物的吸附和解吸特性、植物的铁素营养及对其它养分的吸收.  相似文献   

11.
Ten‐day‐old seedlings of 22 rice (Oryza sativa L.) cultivars were subjected to aluminum (Al) stress in nutrient solutions with an initial pH of 4.0±0.1. The rice cultivars exhibited a wide range of response by changing the rhizosphere pH, and the uptake and efficiency ratio (ER) of utilization of nutrients both in the presence (222 μM Al) and absence of Al. In the presence of Al, the cultivars Co 37 and Basmati 370 recorded maximum uptake and highest ER's for calcium (Ca), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), and iron (Fe). The cultivars Damodar and ADT 36 performed very poorly in terms of nutrient uptake. The tolerant cultivars (Al‐insensitive) efficiently took up and utilized Ca and P in the presence of Al. The susceptible (Al‐sensitive) and intermediate cultivars exhibited less Ca and P uptake and utilization. There was no apparent relationship between foliar Al content and the efficiency ratios. However, the Al‐tolerant cultivars, Co 37 and Basmati 370, accumulated less Al in their foliage which was the reverse in case for the Al‐susceptible cultivars. Among the 22 rice cultivars tested, Co 37 and Basmati 370 emerged as the most Al‐tolerant. Hence, they would be recommended for cultivation in acidic, infertile soils of the tropics. The results of this study are discussed in terms of identifying the mechanism of Al tolerance or sensitivity among the studied rice cultivars as related to their nutrient metabolism.  相似文献   

12.
A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained soils and from two poorly drained soils, classified as Alfisols, were collected and used in this study. After certification of soil homogeneity the acid ammonium oxalate and dithionite-citrate-bicaxbonate methods were used to extract free iron and manganese oxides from the samples. Iron oxides extracted by the dithionite-citrate-bicarbonate method (Fed) were significantly higher than the iron oxides extracted by the ammonium oxalate method (Feo), indicating that a considerable fraction is present in crystalline forms, independent of drainage status. A confirmation of free iron oxides and fine clay was detected. The ratios Feo/Fed and (Fed-Feo)/total Fe (Fet) could not be used to distinguish the well drained soils from the poorly drained soils. Manganese movement in a soluble form is independent of the fine clay.  相似文献   

13.
In pot experiments, uptake of zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) by hybrid rice from different soil types was compared with a traditional rice (Oryza sativa L.) cultivar. The concentration and total uptake of Fe in the shoots of hybrid rice grown in Oxisol and Ultisol were lower than those of the traditional cultivar. The concentration and total uptake of Zn in the shoots of hybrid rice grown in the Inceptisol (calcareous) were significantly higher than those of the traditional cultivar. Higher ratios of Zn and Fe in upper leaves (UL) to the lower leaves (LL) were found in hybrid rice grown in the calcareous Zn‐deficiency soil. The results indicated that hybrid rice root avoided absorbing excess Fe from Fe‐toxic soils due to its higher oxidizing power, and was more efficient in absorbing Zn from calcareous Zn‐deficient soils than the traditional cultivar.  相似文献   

14.
ABSTRACT

Iron (Fe) toxicity is a widespread nutritional soil constraint affecting rice production in the wetland soils of West Africa. Critical levels of total iron in plant causing toxicity is difficult to determine as different rice cultivars respond to excessive Fe2 + in various ways in what is called “bronzing” or “yellowing” symptoms (VBS). An investigation was conducted to evaluate the relationship between plant growth and nutrient ratios at four iron levels (1000, 3000, 4000 μ g L?1) and control. This involved two rice cultivars (‘ITA 212’ and ‘Suakoko 8’), and two soil types (Aeric Fluvaquent and Aeric Tropaquept). The experimental design was a 2 × 2 × 4 factorial in a completely randomized fashion with four replications. The results showed that nutrient ratios [phosphorus (P)/Fe, potassium (K)/Fe, calcium (Ca)/Fe, magnesium (Mg)/Fe, and manganese (Mn)/Fe), Fe content, and Fe uptake vary widely with the iron levels as well as with the age of the cultivars. The iron toxicity scores expressed as VBS increased with increasing Fe2 + in the soils, resulting in simultaneous reduction of the following variables: plant height, tiller numbers/pot, relationships grain yield (GY) and dry matter yield (DMY). There were no significant difference between nutrient ratios, Fe contents, Fe uptake, the GY and DMY of both rice cultivars on both soil types. Multiple stepwise regression analysis showed that Fe uptake and Fe contents contributed 42% and 17% respectively to the variation in the grain yield of ‘ITA 212’ on Aeric Tropaquept. On both soil types and cultivars, Fe uptake and Fe content contributed between 26 and 68% to the variation in the DMY, while the nutrient ratios (P/Fe, K/Fe, Ca/Fe, and Mn/Fe) contributed between 3% and 13% DMY. Thus, it could be concluded that iron toxicity in rice is more a function of a single nutrient (Fe) rather than nutrient ratios.  相似文献   

15.
Lime-induced iron (Fe) chlorosis is a nutritional disorder common in calcareous soils, which may result from a low level of Fe available or adverse factors that inhibit Fe mobilization and uptake by plants. Organic-matter amendments can prevent or correct Fe chlorosis in plants but the effect of endogenous soil organic matter (SOM) on this disorder is not known. The main subject of this work was to investigate the consequence of two contrasting levels of soil fertility on the nutritional status of an orange grove [Citrus sinensis (L.) Osb. cv. Valencia Late]. The field experiment was conducted in a commercial citrus grove using mature trees distributed in two plots with different values of SOM, phosphorus (P), and potassium (K), but with the same level of active lime. The concentration of nitrogen (N), P, K, magnesium (Mg), calcium (Ca), Fe, copper (Cu), zinc (Zn), and manganese (Mn) in young and mature leaves and flowers was evaluated. The level of Mg and the Mg/Zn ratio in flowers from both plots, although significantly different, only indicated moderate Fe chlorosis, as predicted by a previously developed model, and was consistent with the amount of chlorophyll present in the leaves. However, nutrient partitioning between leaves of contrasting age was very different. Mature leaves from trees grown in the high-fertility plot (HF) had larger concentrations of N, P, and K but lower concentrations of Ca, Fe, and Mn than did those from the low-fertility plot (LF). Young leaves from the LF had more N, P, Mg, Cu, and Mn and less Ca and Fe than did those from the HF. Flower analysis, although useful to predict Fe chlorosis, failed to detect differences in the nutritional status of plants resulting from contrasting levels of soil fertility. Furthermore, endogenous SOM had only a marginal effect on Fe chlorosis.  相似文献   

16.
Abstract

The need for an assessment of sampling effects on forest surface soils has followed the increased interest in the fertility status of northern hardwood forests, especially sugar maple stands. We sampled soils from a fertility research site in north‐central Vermont and measured the effects of drying (55°C) and moist, low temperature storage (4°C) on extractable aluminum (Al), calcium (Ca), potassium (K), magnesium (Mg), phosphorus (P), manganese (Mn), zinc (Zn), boron (B), iron (Fe), and pH. Drying induced large, significant increases in ammonium acetate (pH 4.8) extracted P, Mn, B, and Fe. Smaller, but statistically significant, changes were found in pH, Al, Ca, and Zn. Moist storage for 10 weeks resulted in small significant changes in only pH and K. The magnitude of these changes indicate that samples can be stored at low temperature for up to 10 weeks with little effect on soil test results. Drying should be avoided because of its drastic effect on the extractability of many soil test elements.  相似文献   

17.
Tuber crops are generally grown in marginal lands with low native soil fertility. In India, laterite soils (acidic Ultisols) are the major soils for tropical tuber crops and are poor in innate fertility. Among tropical tuber crops, some have adapted to poor soils, such as cassava, whereas others such as tannia (Xanthosoma sagittifolium L.) cannot establish well in these soils and may manifest nutritional disorders, which ultimately result in the complete devastation of the crop. Therefore, we investigated the effects from a preliminary rate trial (PRT) and nutrient-omission pot trial (NOPT) using maize as a test crop and a NOPT with tannia to determine the optimum nutrient rate and limiting nutrients, as well as nutritional problems affecting the growth and yield of tannia. Each experiment was laid out in a complete randomized design with three replications and was conducted for both garden and paddy soils. The PRT revealed that the optimum nutrient requirements for the soils were different, with garden soils requiring nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), zinc (Zn), and molybdenum (Mo) at 200, 60, 160, 70, 60, 50, 4, 8, and 0.8 kg ha?1, respectively, and paddy soil requiring twice these rates. The NOPT indicated that in addition to N, P, K, B, and Mo in both garden and paddy soils, Ca and Zn in paddy soils and S in garden soils were the constraining nutrients. The NOPT carried out with tannia indicated that the main nutritional problem was subsoil acidity-induced multinutrient deficiencies involving K, Ca, and Mg.  相似文献   

18.
The analysis of the microfabric of soils developing from calcareous argillites (with sandstone interlayers) and their derivatives revealed the mechanisms of the transformation of the initial lithogenic features into pedogenic features. They include the release of primary carbonates and their segregation in secondary forms, the redistribution of iron oxides, and changes in the shape of the rock fragments and in the optical properties of the fine material in the lithomarge zone. The subsoil—the metamorphic BM horizon—is characterized by a high content of clay composed of chlorite-vermiculite and mica-smectite minerals along with kaolinite. The BM horizon is compact and has a massive microstructure with clay pseudomorphs over skeleton grains and with nonsegregational forms of iron oxide pedofeatures. The diagnostic properties of this horizon are clearly revealed in the soils on both hard rocks and loose colluvium deposits; in the latter case, they are supplemented with a stagnic marble-like pattern. The integrity of these features corresponds to the elementary pedogenic process of the metamorphism of the mineral mass in humid subtropics. In terms of micromorphology, this is a good example of pedoplasmation. The features testifying to the contribution of biota in the topsoils are few; dark compact nodules are common there. Zheltozems developed from hard rocks may be correlated with Cambisols in the WRB system; zheltozems developed from clayey colluvium display the features of clay illuviation; together with some physicochemical characteristics of these soils, they allow us to qualify such soils as Acrisols. There are also eluvial-gley variants of zheltozems with stagnic features.  相似文献   

19.
Mineral concentrations in cereals are crucial for human health, especially for people who consume cereals as a subsistence diet. Although rice (Oryza sativa L.) is one of most important staple crops in the world, starch constitutes a large portion of its grains, and mineral concentrations are lower than in other staple crops. One solution is the improvement of mineral concentrations in rice grains through biofortification, and this approach requires investigation of genetic resources that confer high mineral concentrations to rice grains. In the present study, we performed 2 years of field experiments, in 2012 and 2013, and determined sodium (Na), magnesium (Mg), phosphorus (P), potassium (K), calcium (Ca), boron (B), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn) and molybdenum (Mo) concentrations in the rice grains of 40 introgression lines derived from a cross between a japonica cultivar, Taichung 65 (T65), and African rice, Oryza glaberrima Steud. Substantial variation in mineral concentrations was observed among the 40 introgression lines. We selected several elite lines that had significantly higher concentrations of minerals, including Fe, Cu, Zn, Mo, Mg, P and Ca than the cultivated rice T65. These lines could be novel potential materials for breeding programs for biofortification and provide us with positional information for the candidate loci in the O. glaberrima genome responsible for high mineral concentrations in rice grains.  相似文献   

20.
The relationship of geomorphic and climatic history and formation of the ferruginous soils, formed on the acidic Peninsular Gneiss, of the Mysore Plateau, India, is discussed. The profiles studied are found on two different land systems. The soils of the older, fairly smooth landscape are composed of colluvium over truncated laterite profiles, with a gravel layer and a prominent kaolin layer over the weathered rock. These soils show an accumulation of pedogenic haematite grains in the sand fraction and have considerable kaolinite and amorphous ferri-aluminosilicate minerals in the clays. The soils of the younger, rugged landscape have similar clay mineralogy, but do not have a gravel layer, or haematite grains. The influence of the coarse-grained parent rock is seen in the large amounts of quartz gravel. The absence of granulation is attributed to lack of accumulation of iron. The soils have been formed in an earlier, more humid climate than prevails today. The original laterite profiles were formed on a plane surface, and subsequent change in climate has led to change in the land forms and dissection. Truncation of the profiles was followed by deposition of red colluvium over the resistant ferruginous layer. These ancient soils do not fit the criteria for Oxisols in the U.S. classification, but fit well in the French system as ‘Sols Ferrallitiques’, subclass ‘fiablement désatures en (B)’. The soil from a low lying area, formed from colluvium under hydromorphic conditions. is classified as‘Vertisols et Paravertisols'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号