共查询到20条相似文献,搜索用时 15 毫秒
1.
To quantify the effects of reduced sulfate input on the chemistry of soil solution and soil S storage in acid forest soils, an experiment with undisturbed soil columns from two different sites was implemented. The acid cambisol of the Solling is subjected to a high sulfate input and especially the B-horizon has a high sulfate content. On the contrary, the podzol of the Fuhrberg site is subjected to low input and has low sulfate content. Undisturbed soil columns were taken from both sites and were irrigated at 6 °C with a precipitation rate of 3 mm d?1 over 10 mo. In treatment No. 1, an artificial throughfall with pH 5.2 and reduced sulfate load (45 μmol L?1) was applied. In treatment No. 2, an artificial througfall representing a high sulfate deposition (427 μmol L?1, pH 3.2) was used. In case of the Solling soil, the pH of soil solution was unaffected by treatments during the entire experiment. Alkalinity of the soil solution was slightly increased in treatment No. 1 at a depth of 20 cm. While treatment No. 1 resulted in a reduction of the sulfate concentrations of the soil solution in the top soil, sulfate concentrations were unaffected at a depth of 40 cm. The B-horizon of the Solling soil prevented deacidification of the soil solution by desorption of previously stored sulfate. In case of the Fuhrberg soil, treatment No. 1 resulted in reduced sulfate concentrations of the soil solution even in deeper soil layers with concentrations approaching input levels. The pH of the solution was slightly elevated and the alkalinity of the solution increased. Organic S compounds in the soil seemed to have no influence on sulfate release in either soils. 相似文献
2.
Abstract. Fifteen soil profiles in the Alltcailleach Forest in NE Scotland have been resampled after almost 40 years. The pH, in 0.01 M CaCl2 , of the soil has decreased by 0.07 to 1.28 units in 80% of the surface organic horizons and by 0.16 to 0.54 units in 73% of the mineral horizons below 40 cm. The key factors governing increases and decreases in soil pH are changes in ground vegetation and tree canopy, although some effects of acid deposition cannot be ruled out. 相似文献
3.
Response of soil and soil water of podzols in the Kola Peninsula to acid deposition was estimated under both field and laboratory conditions. A significant increasing trend of exchangeable acidity in organic (O) horizons and exchangeable Al in podzolic (E) horizons of podzols with distance from the nickel smelter was observed. The simulated rain at pH 4.5 did not alter chemical properties of soils and soil solutions. As much as 95–99% of the applied H+ ions were retained by soils and appeared in the percolates after a treatment period that depended on acid load and soil thickness. Ca and Mg in soil solutions were highly sensitive to acid loading. Simulated acid rain enhanced the leaching of exchangeable base cations out of root zone. Acid inputs resulted in decreased pH, amount of exchangeable base cations and base saturation, in elevated exchangeable acidity and it's Al fraction in soil solid phase. The most significant changes occurred in O and E horizons. Substantial amounts of both Ca and Mg can be lost from the root zone of podzols in the north-western Kola, subjected to acid deposition, thus leading to forest productivity damage. 相似文献
4.
Forest floor and mineral soil samples were collected from subalpine spruce-fir forests at 1000 m above mean sea level on 19 mountains in the northeastern United States to assess patterns in trace metal concentrations, acidity, and organic matter content. The regional average concentrations of Pb, Cu, and Zn in the forest floor were 72.3 (2.9 s.e.) μg g?1, 8.5 (0.7) μg g?1, and 46.9 (2.0) μg g?1, respectively. The regional average concentrations of Pb, Cu, and Zn in the mineral soil were 13.4 (0.8) μg g?1, and 18.2 (1.2) μg g?1, respectively. The regional average pH values of the forest floor and mineral soil were 3.99 (0.03), and 4.35 (0.03), respectively. The Green Mountains had the highest concentrations of Pb (105.7 μg g?1), and Cu (22.7 μg g?1), in the forest floor. They also had the highest concentrations of Cu (18.0 μg g?1), in the mineral soil. Site aspect did not significantly influence any of the values. Concentrations of Pb were lower than concentrations reported earlier in this decade at similar sites while concentrations of Cu and Zn remained the same. We believe that these lower Pb concentrations reflect real changes in forest Pb levels that have occurred in recent years. 相似文献
5.
In view of growing concern about sulfur (S) deficiency, we attempted to study the effect of soil characteristics on the adsorption and translocation of S in soils. Laboratory experiments were conducted with five surface soils collected from three regions in the state of Orissa (Eastern India). In an adsorption study, all the soils were equilibrated with graded doses of potassium sulfate (K2SO4). Freundlich adsorption isotherms provided good fit to S adsorption data. Free Fe2O3 and Al2O3 in the soils were primarily responsible for retaining added S in soils. Further, studies on the movement of sulfate‐S in 30‐cm plexiglass columns, where radio‐labeled S along with water (5 cm) was applied as gypsum and K2SO4, showed that K2SO4‐S migrated deeper than gypsum‐S. Sulfur moved deeper in case of initially water‐saturated soils than in initially air‐dry soils. 相似文献
6.
Prediction of concentration changes of cations in soil solutions is complex, and chemical models are necessary for the purpose. The objective of this study was to determine whether the reactions considered in a coupled equilibrium model were appropriate to predict cation concentrations when the initial equilibrium was disturbed by adding small amounts of electrolytes. Multi-ion sorption in three acid soils (two Cambisols and a Podzol) was studied by sequentially adding small amounts of electrolytes to samples of the soils in batch experiments. A chemical equilibrium model that included inorganic complexation and multiple cation exchange was used to interpret the results. For the subsoils, the solubility of jurbanite was also included in the model. Model results for the two Cambisol surface soils agreed well or satisfactorily with the measured pH and sorption values of Na, K, Mg, Ca, Mn, Al and Fe, with a few exceptions. Linear correlation coefficients were generally between 0.97 and 1, and the regressin coefficients for cations (modelled against measured) lay between 0.6 and 1.3. For the subsoils sorption of sulphate was described satisfactorily for the spodic dystric Cambisol and to some extent for the spodic Cambisol. Correlation coefficients for subsoils lay between 0.63 and 1, and the regression coefficients (modelled against measured) were between 0.9 and 1.6 for the Cambisols. The model did not predict pH and sorption data in surface and subsurface soils with very small amounts of exchange capacities, pointing to the significance of cation buffering resulting from exchange sites. This study showed the usefulness and limitations of equilibrium models to predict the composition of the soil solution. 相似文献
7.
Leaching of sulphate and cations from horizon samples of two acid sulphate soils (0.9 to 1.6% S in subsoil) was studied in the laboratory. Samples were incubated and eluted with water at 20 °C and 5 °C until apparent exhaustion of leachable S resources. The leachates were analyzed for pH, SO4-S, Fe, Al, Mn, K, Ca, Mg, and Na. Oxidation of sulphide was retarded at the lower temperature. From all the originally water-logged samples the sulphate formed was initially washed out with base cations (mainly with Mg), but the proportion of acid counter ions (predominantly Al) increased with proceeding oxidation and acid formation. In the most acid leachates, pH was 2.6 to 2.8. In the transition layer between reduced and oxidized horizons, sulphide oxidation had been going on for some time, and acid cations were the main counter ions for sulphate already at the beginning of the experiment. In the totally oxidized surface horizons, sulphate was leached only in moderate quantities, and the sum of cation equivalents (mainly base species) exceeded that of sulphate, suggesting some removal of other anions. Leaching losses in the laboratory experiment, corresponding to drainage-induced loading of waters in field experiments during the course of many decades, point out the environmental danger associated with deep drainage of potentially acid sulphate soils. 相似文献
8.
Peter Blaser Lorenz Walthert Stephan Zimmermann Elisabeth Graf Pannatier Jörg Luster 《植物养料与土壤学杂志》2008,171(2):163-170
Soil chemical parameters related to soil acidity were determined for 1450 soil samples taken from individual mineral soil horizons in 257 forest soils in Switzerland, 196 developed from carbonate‐containing and 61 from carbonate‐free parent material. The distribution of pH values and exchangeable base cations in corresponding pH ranges were related to the capacity and rate of buffer reactions in the soil. Based on this, five acidity classes for individual soil samples were defined. To describe and classify the status of soil acidity and base saturation (BS) of an entire soil body, the pH and the BS of the total fine earth in the soil were calculated from the pH and BS, respectively, of the individual soil horizons and the estimated volumetric content of fine earth. The status of soil acidification of soil profiles was assessed primarily using the total amount of exchangeable acidic cations in percent of the CEC of the fine earth in the entire soil profile. As a second factor, the gradient between the acidity class of the most acidic soil horizon and the estimated acidity class at the beginning of soil formation was used. The application of these classification schemes to our collection of soil profiles revealed the great influence played by the type of parent material. The acidification status of most soils on carbonate‐containing parent material was classified as very weak to weak, whereas soils on carbonate‐free parent material were found to be strongly to very strongly acidified. In terms of parent rock material, microclimate, and natural vegetation, the results of this study and the proposed classification schemes can be considered appropriate for large parts of Europe. 相似文献
9.
We extracted molybdenum (Mo) from eight acid forest soils (19 A, E, and B horizons) in NE-Bavaria and from one site in the Ore Mountains, using (1) anion exchange-resin, (2) 0.2 M ammonium oxalate, and (3) ascorbic acid/ammonium oxalate. The Mo concentrations in the anion exchange-resin fraction varied between 5 and 28 μg kg-1. Oxalate-extractable Mo ranged from 44 to 407 μg kg-1 and after reduction of iron (Fe) with ascorbic acid, 135 to 1071 μg Mo kg-1 were extracted. The lowest concentrations of Mo were measured in acid and sesquioxide impoverished E horizons. The total concentrations of Mo in spruce needles correlated with ion exchange resin extractable Mo, indicating that this fraction represents Mo readily available to plants. The Mo and Fe dissolution kinetics during oxalate extraction were studied on 8 of the soil samples to obtain further information on Mo mobilization. Oxalate extractable iron (Feo) was mobilized within a few hours. A first order equation was applicable to the Fe dissolution kinetics with the rate constants ranging between 0.9 and 9.0 h-1. The mobilization of Mo occurred in two distinct stages. An initially rapid dissolution was followed by a further increase in extractable Mo but with slower kinetics. A combined first order-diffusion equation was found to be appropriate for modelling the results. The first order rate constants for Mo mobilization ranged from 0.6 to 11.4 h-1. However, correlations between the rates of reaction of Mo and Fe could not be established, indicating that Mo is either not distributed equally along Fe minerals or that there is another pool, possibly the organic substance of the soil, from which Mo is extractable by oxalate. 相似文献
10.
Ion leaching in 3 sandy spruce forest soils of different origin and pH was investigated in the laboratory. Zero-tension lysimeters containing undisturbed soil columns of varying soil depth were subjected to H2SO4 loadings for a period of 9 weeks. The analysis of the resulting leachate supports the hypothesis that Al-sulphate minerals may form in acidic soils when exposed to acid (H2SO4) deposition. In the B horizon of a glaciofluvial sandy soil (pH 4.2), both H+ and sulphate ions were retained to maintain 2pH + PSO4 = 11.9 in the leachate solutions. This relation between H+ and sulphate activity may be due to an adsorption mechanism or a precipitation mechanism. The precipitation mechanism is favored by the good fit of leachate composition to the conditions for jurbanite [AlOHSO4] formation from gibbsite [Al(OH)3]. In the B horizon of a sandy till at pH 3.7, the Al in soil solution (0.5 mmol L?1) was leached with sulphate. As the sulphate load was increased, some sulphate was retained. This may also be due to the dissolution and precipitation of an Al-sulphate mineral. The ion activity products of leachate solutions from the B horizon of this soil were close to the pKs reported for jurbanite. The conditions for the possible existence and/or formation of Al-sulphate minerals in acidic soils are discussed. 相似文献
11.
Abstract. The pH of soil surface horizons in Wales ranges from 3.5 to 7.5 and is significantly higher on agricultural land than under either rough grazing, unenclosed grassland or woodland. Sufficient information exists to map broad classes of soil pH. Rough grazing and woodland sites are concentrated on soil types which are naturally very acid. In Wales, such soils are found on the main mountain ranges and show up clearly on the map of pH. Their acidity is the result of an interrelationship between soil, climate and vegetation. However, afforestation, particularly with coniferous species, appears to lower the pH of the underlying soil. There is a trend in agricultural soils towards lower pH under a moister climate. 相似文献
12.
A pot experiment was catried out to study alleviation of soil acidity and Al toxicity by applying analkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acidsandy loam (pH 4.5). Barley (Hondeum vulgare L. cv. Forrester) was used as a test crop and was grownin the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that thealka1ine biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandyloam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity instrongly acid soils by increasing soil pH and lowering Al bioavailability. 相似文献
13.
《Communications in Soil Science and Plant Analysis》2012,43(5):345-351
Abstract Alkaline‐soluble, acid‐precipitable organic matter from the Ah and Bm horizons of Chernozemic soils developed on four parent materials in each of three soil zones was analyzed for total and carboxyl acidity, and methoxyl groups. The values are expressed as meq/g dry ash‐free organic matter. Total acidity generally was higher in the Black Chernozems than in the Brown Chernozems and higher in the Bm horizon than in the Ah horizon. The distribution of carboxyl acidity between the Ah and companion Bm horizons of individual soils appeared to be related to texture and rainfall. The. methoxyl group content of the Brown Chernozems was larger than that of the .Dark Brown Chernozems, which in turn had a larger methoxyl group content than that of the Black Chernozems. It was concluded that the organic matter in the Ah horizons of the Brown Chernozems was not as humified as that of the Black Chernozems. The pH value and a minimum clay content are possible determining factors as to the amounts of methoxyl carbon present. 相似文献
14.
A variant of the European modelSimple Mass Balance (SMB) and the regionalizedPROFILE model have been used to calculate critical loads of acidity for Swiss forest soils. The single layer SMB has been applied to 11,800 receptor points and the multi-layer PROFILE to 720 forest sites. Weathering rates used in SMB calculations were assessed by means of a modified de Vries soil classification, and calculated from physical properties of the soil system with PROFILE.Cumulative frequency distributions of the results at the national resolution show that PROFILE predicts lower critical loads. Up to the 65-percentile critical load PROFILE percentile values are average 65% of the SMB percentile values. The upper percentiles of the PROFILE critical loads are merely 25% of the respective SMB predictions. 相似文献
15.
The goal of the present study was a qualitative and quantitative determination of chemical and mineralogical changes in forest soils due to acid atmospheric depositions. In the NE/SE Vienna Woods soil samples were taken at 4 depths (0 to 5 cm, 5 to 10 cm, 10 to 20 cm, 20 to 30 cm) in the contaminated infiltration zone of stemflow (S) of 8 beech trees (Fagus sylvatica), strongly influenced by acid atmospheric depositions (soil-pH 2.8 to 3.0) and in their non contaminated reference areas (R) between trees, where acid imput is much smaller (soil-pH 5.0 to 6.0). The results show that intensive weathering processes took place in the contaminated soil areas, which show higher clay and silt contents and smaller aggregates, as well as clay illuviation. Moreover, in the top of the contaminated soil areas higher contents of Ct and St and of the heavy metals Pb, Zn and Cu could be observed, accompanied by extreme low base saturation (expecially of Ca and Mg) and high Al-saturation (50 to 80% of the CEC). These data were confirmed by analysis of the water saturation extract. Moreover, in the contaminated top soils high amounts of Fe-oxides were found, whereas no “secondary” Al-chlorite (due to its instability at pH-values <4.0) could be traced. The desilification process which took place at the same time could be shown through total element analysis. In the clay-fraction strong weathering led to a loss of layer charge and to the genesis of highly expandable three-layer-silicates which could be determined by X-ray diffraction using n-alkylammonium-chloride technics and other chemical treatments. 相似文献
16.
A procedure for quantifying minerals in particle size fractions of fine earth (< 2 mm) is presented. Mineral fractions of the acid forest soils are characterised by various transition products. Transitional minerals between illite and vermiculite or smectite, polyhydroxy-Al polymers interlayered in smectite and vermiculite, as well as poorly crystalline compounds are present. Normative calculations with standard minerals, generally applied to rocks, cannot be used to quantify precisely minerals of these soil samples. Conventional qualitative and quantitative chemical analyses are therefore completed by microanalyses of well-identifiable minerals. The calculation procedure is based mainly on a system of simultaneous linear equations. These are set up from the chemical contents of a particle size fraction on the one hand and from the corresponding element contents of single minerals on the other hand. The contribution of single minerals to overall parameters can be calculated by programmed algorithms. The methodology was adjusted to different particle size fractions. 相似文献
17.
G. BENIANS 《European Journal of Soil Science》1985,36(2):231-238
Water-soluble and exchangeable basic cations, and electrical conductivity, were measured in temperate and tropical soils. The ‘availability’ of cations in temperate soils is a function of both the amounts of exchangeable ions and the electrical conductivity of the solution, especially for divalent cations. In tropical soils the solubility of Ca and Mg seems less clear. The implications for some management problems are discussed. 相似文献
18.
C. E. Johnson 《European Journal of Soil Science》2002,53(2):271-282
Negative correlations between soil pH and cation exchange capacity (CEC) or base saturation in soils of the northeastern USA and Scandinavia have raised questions regarding the nature of cation exchange in acid forest soils. Using data from three small‐catchment studies and an extensive regional survey of soils in the northeastern USA, I examined relationships among total carbon, effective CEC (CECe), soil pHs (in 0.01 m CaCl2) and base saturation. Organic matter is the predominant source of soil surface charge in these coarse‐grained, glacially derived soils. Correlation coefficients (r) between total carbon and CECe ranged from 0.43 to 0.74 in organic horizons and from 0.46 to 0.83 in mineral horizons. In all cases, the intercepts of functional relations between CECe and total C were near zero. In O horizons, the CECe per unit mass of organic carbon (CECe:C) was positively correlated with pHs in three of the four data sets, consistent with the weak‐acid behaviour of the organic matter. However, CECe:C was negatively correlated with pHs in mineral soils in two data sets, and uncorrelated in the other two. The CECe in mineral soils represents the portion of total CEC not occupied by organically bound Al. The negative correlations between CECe:C and pHs can therefore be explained by increased Al binding at higher pHs. Aluminium behaves like a base cation in these soils. When Al was considered a base cation, the relation between base saturation and pHs could be effectively modelled by the extended Henderson–Hasselbalch equation. When modelled without Al as a base cation, however, there were no consistent relationships between pHs and base saturation across sites or soil horizons. Because of the non‐acidic behaviour of Al, it is difficult to predict the effect of ongoing reductions in acid deposition on the base status of soils in the northeastern USA. 相似文献
19.
Patrick A.W. van Hees David L. Jones Sara J.M. Holmström Ulla S. Lundström 《Soil biology & biochemistry》2005,37(3):517-531
Low molecular weight organic acids such as citrate and oxalate have been hypothesized to play a key role in rhizosphere ecology and pedogenesis. A mathematical site-specific model, DYNLOW, was constructed to describe the temporal and spatial dynamics of these organic acids in coniferous forest soils using the modelling software STELLA®. Experimentally derived values for biodegradation, adsorption, and daily values of soil temperature, moisture and hydrological flow were used to parameterize the model. The model describes the dynamics and downward movement of oxalate and citrate through the horizons (O, AE, E, Bhs, Bs) of three podzolic soil profiles in Sweden. After calibration, the model predicted average soil solution organic acid concentrations ranging from <1 to 90 μM, which was in agreement with experimental measurements (<1 to 116 μM). The model results indicated that microbial degradation of organic acids was in quantitative terms the biggest process regulating soil solution concentrations. Primary production rates of organic acid in the soil were predicted to be high (<1 to 1250 nmol g−1 soil d−1) in comparison to the amount present at steady state in the soil solution pool (<0.1 to 240 nmol g−1 soil). The downward transfer of organic acids between soil horizons due to mass flow was predicted to be a small flux (<0.1 to 3% of the total loss) compared to that lost by microbial biodegradation. The model predicted that the amount of basal soil respiration that could be attributable to the microbial turnover of organic acids was on average 19±22% of the basal CO2 production across all sites and horizons for citrate and 7±7% for oxalate. The model results are discussed in the context of pedogenesis, forest soil respiration and organic matter production. 相似文献
20.
Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils 总被引:2,自引:0,他引:2
Low-molecular-weight organic acids are considered to be effective in the release of inorganic phosphorus (P) but their effectiveness to mobilize organic P is not well understood. The aim of this study was to examine the role of three common organic acids (maleic, oxalic, and citric acids) in mobilizing organic P in forest soils. Soil samples tested in this study were collected from either native or plantation forests in subtropical and tropical Australia with 16–87% of soil total P being in organic form. At a concentration of 10 mM organic acid kg?1 soil, all three organic acids did not enhance the release of inorganic P as compared with water, whereas the three organic acids displayed different capacities in mobilizing organic P. Citric acid significantly enhanced the solubilization of organic P by 34.7% as compared with water; whereas no significant differences were observed in the mobilization of organic P among maleic acid, oxalic acids, and water. The amount of organic P solubilized by citric acid was not correlated with soil pH but increased with increasing soil organic P as the values were below 200 mg kg.?1 The possible mechanisms of the effective mobilization of organic P by citric acid were discussed. Our results implied that organic P might play an important role in P nutrition of plants in subtropical and tropical forests due to its substantial proportion in soil P and the effective mobilization by organic acids. 相似文献