首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy agricultural machinery can cause structural degradation in agricultural subsoils. Severe structural degradation impedes plant growth. Therefore, compaction must be limited to layers that can be structurally reclaimed and remoulded with reasonable effort by tillage. The purpose of this study was to investigate the impact of a single pass with a sugar beet harvester on the soil properties of an unploughed Eutric Cambisol. Field measurements and laboratory testing were carried out in Frauenfeld, Switzerland. In addition 2D calculations of strain, stress and subsequent compaction were conducted using a three-phase (soil skeleton, pore water, and air) model for unsaturated soil incorporating a recently developed constitutive law. Model data were compared to the field measurements. Due to the pass of the machinery, the soil was compacted down to a depth of at least 0.15 m and at most 0.25 m. This compaction was indicated by an increase in soil bulk density and pre-consolidation pressure as well as by a decrease in total porosity and macroporosity. The surface displacement measured in the field was consistent with the calculated model data. The calculated and measured stresses at depths of 0.35 and 0.55 m stand in good accordance with each other, whereas at a depth of 0.15 m the pressure measured in the field exceeded the calculated pressure. In this study, we show the degree of compaction due to heavy wheel traffic and the suitability of a model approach to describe compaction processes.  相似文献   

2.
Cricital state soil mechanics, which expresses relationships between deformation and effective stresses, has not yet been established for unsaturated soils. Effective stresses in unsaturated soils are not only complicated functions of the applied stress and the pore-water pressure, but are also hysteretic. Furthermore, they cannot yet be determined independently, because present theories are inadequate, and they must be obtained by the less satisfying method of comparing the deformation of unsaturated and saturated soils subjected to similar stress paths. The paper discusses the further measurements that need to be made to validate the extension of critical state soil mechanics to unsaturated soils, and concludes that unless the effect of hysteresis proves to be small, the theory may be too difficult, if not impossible, to apply quantitatively.  相似文献   

3.
Tillage effects on near-surface soil hydraulic properties   总被引:1,自引:0,他引:1  
The processes for the formation of porosity are thought to differ between tilled and non-tilled cropping systems. The pores are created primarily by the tillage tool in the tilled systems and by biological processes in non-tilled systems. Because of the different methods of pore formation, the pore size distribution, pore continuity and hydraulic conductivity functions would be expected to differ among tillage systems. The objective of this study was to determine effects of three tillage systems — mold-board plow (MP), chisel plow (CP), and no-till (NT) — on hydraulic properties of soils from eight long-term tillage and rotation experiments. Tillage effects on saturated and unsaturated hydraulic conductivity, pore size distribution, and moisture retention characteristics were more apparent for soils with a continuous corn (CC) rotation than for either a corn-soybean (CS) rotation or a corn-oats-alfalfa (COA) rotation. Pore size distributions were similar among tillage systems for each soil except for three soils with a CC rotation. The MP system increased volume of pores >150 μm radius by 23% to 91% compared with the NT system on two of the soils, but the NT system increased the volume of the same radius pore by 50% on one other soil. The NT system had 30 to 180% greater saturated hydraulic conductivity than either the CP or MP systems. The NT system with a CC rotation showed a greater slope of the log unsaturated hydraulic conductivity; log volumetric water content relationship on two of the soils indicating greater water movement through a few relatively large pores for this system than for either the CP or MP systems.  相似文献   

4.
Soil compaction by agricultural machines can have adverse effects on crop production and the environment. Different models based on the Finite Element Method have been proposed to calculate soil compaction intensity as a function of vehicle and soil properties. One problem when modelling soil compaction due to traffic is the estimation of vertical stress distribution at the soil surface, as the vertical stress is inhomogeneous (non-uniform) and depends on soil and tyre properties. However, uniform stress distribution at the soil/tyre interface is used to predict the compaction of cultivated soils in most FEM compaction models. We propose a new approach to numerically model vertical stress distribution perpendicular to the driving direction at the soil/tyre interface, employing the FEM models of PLAXIS code. The approach consists of a beam (characterised by its geometric dimensions and flexural rigidity) introduced at the soil surface and loaded with a uniform stress with the aim to simulate the action of a wheel at the soil surface. Different shapes of stress distribution are then obtained numerically at the soil surface by varying the flexural rigidity of the beam and the mechanical parameters of the soil. PLAXIS simulations show that the soil type (soil texture) modifies the shape of the stress distribution at the edges of the contact interface: a parabolic form is obtained for sand, whereas a U-shaped is obtained for clay. The flexural rigidity of the beam changes the shape of distribution which varies from a homogenous (uniform) to an inhomogeneous distribution (parabolic or U-shaped distribution). These results agree with the measurements of stress distributions for different soils in the literature. We compared simulations of bulk density using PLAXIS to measurement data from compaction tests on a loamy soil. The results show that simulations are improved when using a U-shaped vertical stress distribution which replaces a homogenous one. Therefore, the use of a beam (cylinder) with various flexural rigidities at the soil surface can be used to generate the appropriate distribution of vertical stress for soil compaction modelling during traffic.  相似文献   

5.
Interaction between mechanically and hydraulically affected soil strength depending on time of loading Soil‐deformation analysis often only considers the direct effects of mechanical stress on changes in void ratio or pore functions while the interaction between hydraulic and mechanical processes is seldomly mentioned. Thus, we analyzed the effect of mechanical stress and time of soil settlement on changes in soil strength and the corresponding interactions between stress‐dependent changes in pore water pressure on precompression stress for a clayey silt. Disturbed samples with a bulk density of 1.4 g cm–3 and a water content of 25 g (100 g)–1 were compressed for four time steps (10–240 min) at eight stresses (20–400 kPa) with four replications. During the experiments, the changes of pore water pressure and void ratio were registered. With increasing time of stress application, we determined an increased soil strain. The higher the stress‐application time, the smaller gets the void ratio and the precompression stress value. Parallel to these variations in settlement, we also found changes in the pore‐water‐pressure values. This is a consequence of decreasing pore diameter while the water saturation increases. Thus, the proportion of neutral stresses on total stress increases which coincides with a change of water suction (= unsaturated) conditions up to even positive pore‐water‐pressure values (from less negative to positive pore water pressure values). From our experiments, we can conclude that the changes in pore‐water‐pressure values already occur at normal stress values smaller than the precompression stress. This underlines the increasing sensitivity of soil deformation processes close to the internal soil strength. The results support the idea, that in order to quantify the mechanical strength of structured unsaturated soils, we always have to determine the changes in pore‐water‐pressure values, too.  相似文献   

6.
Even though conservation tillage may be ideal for the semi-arid tropics (SAT) in view of results from studies and tillage practices in the U.S.A. and Australia, studies conducted in semi-arid regions of Africa appear to support the use of conventional tillage systems. Some of the reasons for this apparent discrepancy are because of the physical properties of the soils in semi-arid Africa, particularly the Sahelian zones where the soils are sandy, have high bulk densities and therefore low total porosities and form crusts upon wetting and drying. Consequently, no-till or reduced tillage systems that do not have the soil surface covered by residue in irder to prevent formation of crust as a result of raindrop impact, tend to lose water through runoff in a region where water economy is essential. Also, because these soils have inherently high bulk densities, conventional tillage systems appear to be suitable since they increase the macropores, reduce both bulk density and strength and thus ensure prolific root distribution and the resultant exploration of water and nutrients at greater soil depths. Notwithstanding, it seems that since most of the SAT soils are structurally unstable, further conventional tillage even though it has ephemeral advantages, may in the long term be exacerbating the problems of structural instability and their deleterious effect on water and soil conservation and therefore on crop production. We suggest that at this stage soil tillage research in the semi-arid regions of Africa and Asia should re-examine some of the concepts of conservation tillage in relation to soil physical properties and processes in order to obtain a tillage system that ensures high crop yields without destruction of the soil resource.  相似文献   

7.
Conflicting reports in the literature on the effects of tillage on earthworms are reviewed in the light of their roles in agro-ecosystem functioning. Tillage can change the abundance (by 2–9 times) as well as the composition (diversity) of earthworm populations. The actual impact is dependent on soil factors, climatic conditions and the tillage operations but hitherto this information was seldom provided in research reports. The declines in earthworm population often reported in conventionally tilled soils are associated with undesirable changes in the soil environmental conditions resulting from excessive tillage. Different species of earthworm respond differently to tillage. While the abundance of the deep burrowing species (anecic) tends to decline under tillage, particularly under deep ploughing, endogeic species can actually increase in number especially when there is increased food supply. Under conservation tillage systems, earthworms can potentially play a more important role than under conventional tillage in the functioning of the farming systems because of their abilities to modify the soil physical environment and nutrient cycling. However, adoption of conservation tillage does not automatically result in an optimal earthworm population in terms of abundance and diversity. There are opportunities to introduce more beneficial species to improve the ecological performance of agro-ecosystems. More research is needed to fully understand the ecology of different earthworm species, their interactions and their potential roles in promoting more sustainable farming systems.  相似文献   

8.
The precompression stress value defines the transition from the reloading curve to the virgin compression line in the stress–strain curve, which can be used to quantify the highest load or the most intense predrying previously applied to the soil. Thus, in soils with well-defined structured soil horizons, each layer can be characterized by such mechanical strength. Penetration resistance measurements, on the other hand, can be used to determine total soil strength profiles in the field. The effect of long-term tillage systems on physical and mechanical properties was determined in undisturbed and remolded samples collected at 5 and 15 cm depth, 6 months after applying no-till (NT), chisel plow (CP), and conventional tillage (CT) treatments, along with the application of mineral fertilizer and poultry litter. The compressibility tests were performed under confined conditions, with normal loads varying from 10 to 400 kPa after a defined predrying to −6 or −30 kPa. Penetration resistance was determined in the field, after seeding, in three positions: seeding row (SR), untrafficked interrow (UI), and recently trafficked interrow (TI). No-till system showed greater soil resistance to deformation than tilled treatments, as determined by the higher precompression stress and lower coefficient of compressibility. When original soil structure was destroyed (remolded samples), smaller differences were found. The application of extra organic matter (poultry litter) resulted in a reduction of precompression stress in undisturbed samples. Penetration resistance profiles showed greater differences among tillage treatments in the upper layer of the untrafficked interrow, where NT system showed the higher values. Smaller differences were found in the seeding row (with lower values) and in recently trafficked interrow (with higher values), showing that even traffic with a light tractor after soil tillage reduced drastically the effect of previous tillage by loosening up the soil. On the other hand, the tool used to cut the soil and to open the furrow for seeding, incorporated in the direct seeding machine, was sufficient to realleviate surface soil compaction.  相似文献   

9.
土壤理化性质异质性研究及其影响   总被引:2,自引:0,他引:2  
Structured soils are characterized by the presence of inter- and intra-aggregate pore systems and aggregates, which show varying chemical, physical, and biological properties depending on the aggregate type and land use system. How far these aspects also affect the ion exchange processes and to what extent the interaction between the carbon distribution and kind of organic substances affect the internal soil strength as well as hydraulic properties like wettability are still under discussion. Thus, the objective of this research was to clarify the effect of soil aggregation on physical and chemical properties of structured soils at two scales: homogenized material and single aggregates. Data obtained by sequentially peeling off soil aggregates layers revealed gradients in the chemical composition from the aggregate surface to the aggregate core. In aggregates from long term untreated forest soils we found lower amounts of carbon in the external layer, while in arable soils the differentiation was not pronounced. However, soil aggregates originating from these sites exhibited a higher concentration of microbial activity in the outer aggregate layer and declined towards the interior. Furthermore, soil depth and the vegetation type affected the wettability. Aggregate strength depended on water suction and differences in tillage treatments.  相似文献   

10.
Policy makers rely on risk‐based maps to make informed decisions on soil protection. Producing the maps, however, can often be confounded by a lack of data or appropriate methods to extrapolate using pedotransfer functions. In this paper, we applied multi‐objective regression tree analysis to map the resistance and resilience characteristics of soils onto stress. The analysis used a machine learning technique of multiple regression tree induction that was applied to a data set on the resistance and resilience characteristics of a range of soils across Scotland. Data included both biological and physical perturbations. The response to biological stress was measured as changes in substrate mineralization over time following a transient (heat) or persistent (copper) stress. The response to physical stress was measured from the resistance and recovery of pore structure following either compaction or waterlogging. We first determined underlying relationships between soil properties and its resistance and resilience capacity. This showed that the explanatory power of such models with multiple dependent variables (multi‐objective models) for the simultaneous prediction of interdependent resilience and resistance variables was much better than a piecewise approach using multiple regression analysis. We then used GIS techniques coupled with an existing, extensive soil data set to up‐scale the results of the models with multiple dependent variables to a national level (Scotland). The resulting maps indicate areas with low, moderate and high resistance and resilience to a range of biological and physical perturbations applied to soil. More data would be required to validate the maps, but the modelling approach is shown to be extremely valuable for up‐scaling soil processes for national‐level mapping.  相似文献   

11.
Soil water content during tillage can have a large impact on soil properties and tillage outcome. Measurement of soil relief in relation to fixed elevation points provides a non-destructive method of monitoring loosening/compacting processes during the year. The main objective of this study was to determine the effect of soil water content during primary tillage on soil physical properties.

The treatments included mouldboard and chisel ploughing of a clay soil on three occasions in the autumn, with gradually increasing water content (0.76, 0.91 and 1.01 × plastic limit). Soil surface height was measured by laser within a 0.64 m2 area from fixed steel plates after each tillage occasion, and before and after seedbed preparation in the following spring. The measurements of surface height were compared with measurements of other soil physical properties, such as bulk density, saturated hydraulic conductivity and seedbed properties.

Tillage at the lowest water content (0.76 × plastic limit) produced the greatest proportion of small aggregates, and generally the most favourable soil conditions for crop growth. Soil loosening, as measured by increase in soil height during primary tillage, was highest for mouldboard ploughing and for tillage at the lowest water content. Differences between tillage treatments decreased with time, but were still significant after sowing in the spring. Natural consolidation during winter was smaller than the compaction during seedbed preparation in the spring. No significant differences in bulk density were found between treatments, and thus soil surface height was a more sensitive parameter than bulk density determined by core sampling to detect differences between treatments.

Late tillage under wet conditions caused a greater roughness of the soil surface and the seedbed base, which was also found in the traditional seedbed investigation. The effect of tillage time on seedbed properties also resulted in a lower number of emerged plants in later tillage treatments.

The laser measurements were effective for studying changes in soil structure over time. The results emphasize the need to determine changes in soil physical properties for different tillage systems over time in order to model soil processes.  相似文献   


12.
This paper defines tillage, indicating that as it is mostly a physical concern of the soil, it has not been studied as much as chemically related soil properties. Tillage in shifting cultivation is also reviewed. Different tillage systems in a number of east African Countries namely Tanzania, Malawi, Botswana, Kenya, Zambia and Uganda are reviewed. The types of tillage in their respective soils are discussed in each Country. Uganda's tillage practices for the main food crop (banana) are discussed, pointing out the crop's rooting system in relation to the heavy, relatively fertile soils, where the bananas are mostly grown. The paper distinguishes between tillage to avoid soil compaction and tillage to reduce soil crusting or hardening and concludes that more research should be carried out on tillage practices relating to heavy soils as it affects the different types of crops, as most of the previous tillage research had been carried out on relatively light soils. Soil crusting or hardening which may involve an understanding of the physical, chemical and biological properties of the soil, should also receive more attention.  相似文献   

13.
Soil tillage practices can affect soil hydraulic properties and processes dynamically in space and time with consequent and coupled effects on chemical movement and plant growth. This literature review addresses the quantitative effects of soil tillage and associated management (e.g., crop residues) on the temporal and spatial variability of soil hydraulic properties. Our review includes incidental management effects, such as soil compaction, and natural sources of variability, such as topography. Despite limited research on space–time predictions, many studies have addressed management effects on soil hydraulic properties and processes relevant to improved understanding of the sources of variability and their interactions in space and time. Whether examined explicitly or implicitly, the literature includes studies of interactions between treatments, such as tillage and residue management. No-tillage (NT) treatments have been compared with various tillage practices under a range of conditions with mixed results. The trend, if any, is for NT to increase macropore connectivity while generating inconsistent responses in total porosity and soil bulk density compared with conventional tillage practices. This corresponds to a general increase in ponded or near-zero tension infiltration rates and saturated hydraulic conductivities. Similarly, controlled equipment traffic may have significant effects on soil compaction and related hydraulic properties on some soils, but on others, landscape and temporal variability overwhelm wheel-track effects. Spatial and temporal variability often overshadows specific management effects, and several authors have recognized this in their analyses and interpretations. Differences in temporal variability depend on spatial locations between rows, within fields at different landscape positions, and between sites with different climates and dominant soil types. Most tillage practices have pronounced effects on soil hydraulic properties immediately following tillage application, but these effects can diminish rapidly. Long-term effects on the order of a decade or more can appear less pronounced and are sometimes impossible to distinguish from natural and unaccounted management-induced variability. New standards for experimental classification are essential for isolating and subsequently generalizing space–time responses. Accordingly, enhanced methods of field measurement and data collection combined with explicit spatio-temporal modeling and parameter estimation should provide quantitative predictions of soil hydraulic behavior due to tillage and related agricultural management.  相似文献   

14.
Abstract. Current tillage erosion models account for the influence of tillage direction in the magnitude of the soil (tillage) transport coefficient. It is argued here that this is counter-intuitive and causes significant problems in modelling tillage erosion in areas of complex terrain. This article examines whether a re-modelling of tillage erosion is possible that separates tillage direction (an interaction with the landform) from the soil transport coefficient (a measure of tillage intensity representing the combination of implement erosivity and soil erodibility). Experimental data for mouldboard ploughing upslope, downslope and cross-slope at Coombe Barton Farm, Devon are examined. Integration of data for all directions into a single relationship, which relates translocation in the direction of tillage to slope in the direction of tillage and translocation perpendicular to tillage to slope perpendicular to tillage, is not possible using previously published methods of analysis. However, when total translocation distance is regressed against the tangent of the slope at 45° to the tillage direction (bisecting the tillage direction and the direction of overturning) it is found that a single relationship can be used to describe tillage in all three directions. Therefore, this relationship is used to determine a single value of the soil transport coefficient ( k fTa) for constant soil and implement conditions but different tillage directions. This redefinition of tillage is important both for true estimation of tillage erosion severity, the adirectional coefficient being 40% larger than the directional coefficient, and for modelling of tillage erosion in complex terrain. These improvements are vital when tillage erosion simulation is used to direct soil conservation strategies.  相似文献   

15.
The effect of soil aggregation on stress distribution in structured soils The mechanical compressibility of arable soils can be described by preconsolidation load value and by the shear resistance parameters of the bulk soil and single aggregates. In order to quantify the effective stress equation must be also known the hydraulic properties of the soil in dependence of the intensity, kind, and number of loading events. The soil reacts as a rigid body at very fast wheeling speed inclusive a very pronounced stress attenuation in the top soil while stresses will be distributed in the soil threedimensionally to deeper depths at slower speed. These variations can be explained by the mechanical as well as by the hydraulic parameters of the bulk soil and single aggregates. Thus, the pore water pressure value of the bulk soil as a parameter of the effective stress equation further depends on the hydraulic properties of the inter- and intraaggregate pore system and continuity. As can be derived from the results the pore water pressure values are identical irrespective of the predessication for clayey polyhedres at high load while in coarse textured prisms the pore water pressure value depends on load and predryness. The consequences for soil strength under dynamic loading are shortly discussed.  相似文献   

16.
Volumetric stress and strain distribution in soils — theory and experimental data Theoretical reflections on stress distribution and soil deformation as well as practical measurement results are presented. It can be demonstrated that under idealized soil bin conditions a loading capacity always leads to compression and shearing. Quantifying the volumetric deformation and the volume-constant deformation indicates that up to 60% can be determined as a vertical deformation whereas up to 40% must be defined as volume-constant deformation. The consequences for soil properties are subject of a short discussion.  相似文献   

17.
A quasi-theoretical soil compaction model is presented which gives good estimates (r2=0.980−0.995, P<0.001) of the complete density-stress compression line for soils of variable initial moisture content under static loads from 0 to 1.0 MPa. The 3 unknown parameter coefficients of the generalized model equation are shown to be highly correlated to several soil properties such as moisture content, pre-compression (initial) void ratio, texture, organic matter content ans the Atterberg consistenct limits. A 3-tier classification for partition consisteny limits. A-tier claasificaton for pationing soils into groupings of response to compressive stress is proposed for soil compaction modeling. This categorization is based on soil plasticity and the existence of a “compaction threshold“ sensitivity threshold” in most soils.  相似文献   

18.
Effect of mechanical stress on structure and productivity of a loess‐derived Luvisol with conventional and conservation tillage In Germany farmers are committed to caring for the land by a soil protection law. Yet vehicles with ever increasing axle load endanger productivity and environmental quality of arable soils. In spring of 1995 a field experiment was startet on a wet silty Luvisol to test the effect of single mechanical loading on soil and crop characteristics, when managed by mouldboard ploughing (PL) or conservation tillage (CT). CT soils are considered to be more resistant against compactive stresses and to recover from degeneration more rapidly than PL soils. Beside an unwheeled control the loading treatments were light (2 × 2.5 t; number of wheel passes times wheel load); medium (2 × 5 t) and high (6 × 5 t). In 1995 even light loading of the PL soil caused a significant yield decline by 50% in spring barley, but this happened on CT soil only with high loading. In subsequent years with winter wheat and winter barley yield decline was less distinct. Loading of PL soil reduced total root length (from 4 to 1 km m−2) and rooting depth (from 70—90 to 40—70 cm), but on CT soil only root length was diminished by high loading. A tillage‐traffic pan (30—35 cm) hindered subsoil rooting in PL, which was favored in CT by earthworm channels. High loading caused compaction to at least 50 cm depth. Within the pan of the PL soil, penetration resistance attained 5 MPa and bulk density 1.65 g cm−3. In the CT soil the zone of maximum compaction was closer to the surface (15—25 cm). In PL soil the saturated hydraulic conductivity and the O2‐diffusion coefficient gradually decreased with loading, but in CT soil only with heavy loading. The compacted top soil was broken in subsequent years by ploughing (PL: 25 cm) or rotary implements (CT: 5—8 cm). With PL, structure in the pan layer and subsoil did not recover, and rooting depth was still limited. Some restoration, however, was indicated with CT. Here transmitting properties increased in time, which was attributed to the reconstruction of root and earthworm channels, as demonstrated by computer tomography. We conclude that in silty soils compacted layers below ploughing depth will hardly be regenerated by internal processes. CT soils are less susceptible to loading, but high stresses are harmful too. Therefore recommending CT as a measure for protecting soil from compaction would not be enough, considering the present development towards heavy field machinery.  相似文献   

19.
Any soil deformation induced by agricultural machinery is transmitted three‐dimensionally and the “kneading effect” of tractor wheeling further rearranges soil particles and aggregates anisotropically. In this work, we investigated how heterogeneous soil structure remained 10 y after a complete wheeling of fields in 1995 with a single pass of 2 × 2.5 Mg and of 6 × 5 Mg on a silty loam Luvisol derived from loess. Control plots received no tractor wheeling. We also analyzed how soil physical properties responded to the tractor wheeling under two management systems: continuous conservation tillage (chisel plow = CS) with mulch cover and conventional tillage (plowing to 25 cm depth annually = CT). We compared three sampling dates: done before wheeling in 1995, after wheeling in 1995, and in 2004. Results showed that applying tractor wheeling in 1995 not only reduced total soil‐pore volume but also increased soil strength as expressed by precompression stress. The reduction of total pore volume at 30 cm depth was more pronounced in CS than in CT. After 10 y of continuous use of the two tillage systems, the precompression stress of the wheeled soils was greater in the vertical direction than in the horizontal direction. This anisotropy of soil strength and its load dependency were also more pronounced in CS than in CT. The effect of wheeling on the fluxes of gas and water was covered up by the effects of biochannels, causing a prevailing vertical passage. From this study, we conclude that heavy, agricultural machinery causes soil degradation, which is more evident in CS than in CT.  相似文献   

20.
Selected oxygen-related processes in soil are reviewed with regard to different soil management and tillage systems. The processes under consideration comprise gas transport in the atmosphere–plant–soil continuum, soil air composition, redox transformations under anoxic conditions and environmental consequences such as emission of trace greenhouse gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号