首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Manganese (Mn) deficiency often occurs in crops grown on well‐limed sandy soils of the Atlantic Coastal Plain region of the United States. This study was conducted to compare the responses of established alfalfa (Medicago sativa S.) to various application methods of manganese sulfate (MnSO4) fertilizer. Experiments conducted in farmers’ fields at three New Jersey locations determined the effects of applied Mn on forage yield, tissue Mn concentration, and leaf chlorophyll meter readings. An untreated control was compared to the following treatments: foliar Mn applied once before each harvest, foliar Mn applied twice before each harvest, and a one‐time broadcast Mn application in April Or May at 22.4 kg Mn/ha to the soil surface. The rate of foliar Mn used in 1990 was 1.12 kg Mn/ha and in 1991 was 0.56 kg Mn/ha at each treatment time. Forage yield increases were greater with foliar than soil‐applied Mn but there were no differences between foliar‐applied Mn treatments. Total seasonal forage yields were increased (P<0.05) at all three locations with foliar‐applied Mn but at only one location with soil‐applied Mn. When averaged across all locations, forage yields were 6.4% higher than the control for the foliar‐applied Mn treatments compared to 2.9% higher for the soil‐applied Mn treatment. A Mn concentration of 21 mg/kg was determined as the critical level in the upper 15 cm of alfalfa tissue at the early bloom growth stage. Foliar Mn applied twice between harvests most effectively increased tissue Mn concentrations. Soil‐applied Mn initially increased tissue Mn concentration, but there was little long‐term benefit from this treatment. Applied Mn was observed to improve leaf color and chlorophyll meter readings of Mn‐deficient alfalfa. Results indicate that foliar Mn applied before each harvest was a more effective treatment for correction of Mn deficiency of alfalfa than a one‐time soil application of Mn.  相似文献   

2.
Soil food webs depend almost exclusively on plant derived resources; however, it is still subject to debate how plants affect soil biota. We tested the effects on soil decomposers of three components of soil inputs of plant species identity: presence of live plants (representing rhizodeposits), identity of shoot litter input and identity of root litter input; using all combinations of these for Trifolium pratense and Plantago lanceolata. We assessed impacts on soil microorganisms, Collembola, Oribatida and earthworms in a full-factorial greenhouse experiment. Species identity of shoot litter input had greatest effect on decomposers, following by species identity of live plant. Microbial carbon use efficiency and Oribatida density were significantly higher in the presence of T. pratense shoot litter input than in that of P. lanceolata shoot litter input, while earthworm body mass ratio was significantly higher in the presence of P. lanceolata plants than in that of T. pratense plants. Oribatida density was at minimum in the presence of P. lanceolata plants, shoot and root litter input, resulting in a significant three-way interaction and pointing to the relevance of all investigated plant input pathways. Live plant identity effects were not due to differences in living root biomass among species and treatments. Detrimental P. lanceolata effects may have been due to significantly lower N concentrations than in T. pratense tissue. Our results indicate that both above- and below-ground plant inputs into soil determine the performance of decomposers, and thus suggest due consideration of both types of inputs fueling soil food webs in future studies.  相似文献   

3.
Lasius flavus is a dominant mound-building ant species of temperate grasslands that significantly modifies soil parameters. These modifications are usually the result of workers’ activities such as food accumulation and nest construction. An alternative hypothesis that could explain changes in soil is colony founding in areas of higher soil fertility.In our study we investigated several soil parameters sampled in 10 ant nests and adjacent (control) plots in mountain grassland in Slovakia. The alternative hypothesis was tested by comparing occupied and abandoned mounds. While we found increased concentrations of available P and K in the nests, concentrations of total C, total N, Ca2+ and Mg2+ were lower there. We propose that differences found between the soil of nests and control plots are entirely a product of ant activity during mound occupancy and not due to initial soil differences during nest establishment. This was confirmed by the comparison of occupied and abandoned nests in which the soil fertility of abandoned nests was similar to conditions in the surrounding soil.Along with the modification of soil chemistry, we recorded changes in soil physical properties and the vertical distribution of nutrients. Ant nests were characterized by the dominance of 0.02–0.1 mm particles and lower bulk density. In the same habitat, nutrient concentrations did not change along the vertical gradient in contrast to control plots where soil nutrients decreased and bulk density increased with depth. Root biomass followed the vertical pattern observed with nutrients: in control plots, most roots were concentrated in the uppermost layer (0–3 cm), whereas they were evenly distributed along the vertical gradient in the nests. We also found that rhizome internodes of Agrostis capillaris were thinner and longer in plants from the mounds. Changes in soil physical properties, vertical distribution of nutrients and root biomass in the nests are most probably a consequence of mounding and soil mixing (bioturbation), which has been less reported on in ant-soil studies.  相似文献   

4.
The ecosystem consequences of intraspecific genetic variation is an emerging field of research that strengthens the link between population and ecosystem ecology. Despite recent advances, it remains unclear under what conditions (abiotic and biotic) plant genetic variation will be important to belowground processes. Forest canopy herbivores can have large influences on soil processes by altering the timing, quantity, and quality of forest floor inputs. We demonstrate that the frass inputs from canopy folivores (forest tent caterpillars and gypsy moths) reflect the intraspecific variation in green leaf chemistry (C:N, condensed tannins) of the aspen clones on which they fed. We then varied the genotype and nutrient availability of aspen and monitored the decomposition of both gypsy moth frass and senesced leaf litter in laboratory microcosms for 63 days. Aspen genotype influenced the short-term, frass-induced soil respiration as well as the longer-term, litter-induced respiration. In addition, aspen genotype interacted with nutrient availability to influence the activity of extracellular enzymes measured at the end of the experiment. These results suggest that in aspen forests, canopy herbivores can mediate the influence of intraspecific variation on ecosystem processes through frass deposition. Intraspecific variation is likely more important to ecosystem functioning than previously thought when trophic interactions are also taken into account. The potential for genetic variation within a single plant species to influence the ecosystem effects of herbivores highlights the importance of understanding how and when genetic variation matters to ecosystem processes.  相似文献   

5.
Recent research has shown that agricultural management affects microbial biomass and community composition. We investigated the functional implications of such effects in terms of barley biomass production and nutrient acquisition, and whether changes in barley nutrient status affected aphid fecundity. Soils were collected from conventional, ley and organic arable fields and used as inocula in a glasshouse experiment. We determined microbial biomass and community composition using PLFA. We investigated barley growth and nutrient responses to the different soil inoculums, and the impact of excluding arbuscular mycorrhizal fungi (AMF). Aphids were applied to plants within clip cages and numbers of offspring counted. Microbial biomass and community composition were unaffected by agricultural management. The microbial communities altered root and shoot biomass and nutrient allocation, but had no effect on grain yield. Exclusion of AMF significantly increased shoot biomass but reduced grain yield. Aphid fecundity was not significantly affected by the microbial community or shoot nitrogen. We conclude that agricultural intensification does not necessarily have negative consequences for above- and below-ground interactions, and microbial communities from conventionally managed soils may offer equal benefit to crop productivity and nutrition as those from organically managed soils.  相似文献   

6.
This study was designed to determine the adequate copper (Cu) foliar spray concentration to correct Cu deficiency on barley (Hordeum vulgare L.) when grown in a calcareous soil. Five Cu foliar spray solution levels were tested (0% or control; 0.03%, 0.06%, 0.13%, and 0.33%). Copper was applied in the sulfate form at the early boot stage. The results showed that Cu flag leaf concentration was increased with the highest Cu application (0.33%), while Cu concentration in the grain was increased with a spray of 0.03%. An antagonism between Cu, Zn, and Fe leaf concentration was observed. Grain yield and harvest index showed a linear positive response to Cu foliar spray concentrations. A significant increase of 19.6% on grain yield was recorded with a foliar spray 0.33% of Cu.  相似文献   

7.
Both plants and microbes influence soil nutrient cycling. However, the links between plants, microbes and nutrient cycling are poorly understood. In this study, we investigated how plant identity and interspecific competition influence soil nitrogen cycling and attempted to link plant identity and interspecific competition to community structures of bacterial and archaeal ammonia oxidizers based on terminal restriction fragment length polymorphism analysis (T-RFLP) of bacterial and archaeal ammonia monooxygenase (amoA) genes. Faba bean and maize monocultures and a faba bean/maize mixture were planted with two nitrogen levels (0 and 100 mg N kg−1 soil as urea). Soil mineral nitrogen, ammonia oxidizer function (potential nitrification activity, PNA) and community structures were measured 28 and 54 days after plant emergence. Faba bean and maize substantially differed in their influences on mineral nitrogen concentrations and PNA in rhizosphere soils. Soil mineral nitrogen and PNA in the rhizosphere soils of the faba bean/maize mixture were closer to those of the maize monoculture than to those of the faba bean monoculture. T-RFLP with restriction enzymes BsaJI and Hpy8I distinguished variations in bacterial and archaeal ammonia oxidizers community structure, respectively, and detected both between-cluster and within-cluster variations in bacterial ammonia oxidizers. T-RFLP data showed that nitrogen addition favored part of a Nitrosospira cluster 3b sequence type and suppressed part of a cluster Nitrosospira 3a sequence type of bacterial ammonia oxidizers, while it had no influence on the archaeal ammonia oxidizer community structure. Although multivariate analysis showed that the function and community structure of bacterial ammonia oxidizers were significantly correlated, plant species and interspecific competition did not significantly change the community structure of bacterial and archaeal ammonia oxidizers. These results indicate that plant species and interspecific competition regulate soil nitrogen cycling via a mechanism of other than alteration in the community structure of ammonia oxidizers as investigated by DNA based methods.  相似文献   

8.
The influence of plant-growth-promoting rhizobacteria (PGPR) and spruce seedlings on the composition and activity of forest soil microbial communities was studied in a microcosm experiment in which sterile, sand-filled 25mm×150mm glass tubes were treated with a forest soil suspension containing Bacillus or Pseudomonas PGPR and 2-week-old spruce seedlings. Eighteen weeks after treatments were established, bacterial, actinomycete and fungal population sizes were determined by dilution plating, as were seedling dry weights and soil carbon substrate utilization profiles using Biolog plates. PGPR inoculation had little influence on the population sizes of actinomycetes or fungi. However, significant effects were detected on the total bacterial population size, primarily in microcosms without seedlings. Euclidean distances between treatments plotted on two dimensions by multidimensional scaling showed that the introduction of PGPR strains changed the type of microbial community, particularly when inoculated into soil without seedlings. Significant changes were also detected in one soil type in the presence of seedlings. Our results suggest that the type of soil community and the presence of seedlings are significant factors influencing the responses of soil communities to bacterial inoculation, and that for some soil communities, the presence of seedlings may mitigate perturbations caused by the introduction of PGPR. Received: 24 February 1997  相似文献   

9.
To test a hypothesis that the effects of defoliation on plant ecophysiology and soil organisms depend on the timing of defoliation within a growing season, we established a greenhouse experiment using replicated grassland microcosms. Each microcosms was composed of three plant species, Trifolium repens, Plantago lanceolata and Phleum pratense, growing in grassland soil with a diverse soil community. The experiment consisted of two treatment factors—defoliation and plant growth phase (PGP)—in a fully factorial design. Defoliation had two categories, i.e. no trimming or trimming a total of four times at 2 week intervals. The PGP treatment had four categories, i.e. 1, 3, 7 or 13 weeks growth following planting before the first defoliation (subsequently referred to as PGP1, PGP2, PGP3 and PGP4, respectively). In each PGP treatment category, microcosms were harvested 1 week after the final defoliation. Harvested shoot and root mass and total shoot production (including trimmed and harvested shoot mass) increased with time and were lower in defoliated than in non-defoliated systems. The fraction of root biomass of harvested plant biomass decreased with time but was increased by defoliation at PGP3 and PGP4. The proportion of T. repens in total shoot production increased and those of P. lanceolata and P. pratense decreased with time. Defoliation increased the proportions of P. lanceolata and P. pratense in total shoot production at PGP3 and PGP4. Root N and C concentrations increased and root C-to-N ratio decreased with time in non-defoliated systems. Defoliation increased root N concentration by 38 and 33% at PGP1 and PGP2, respectively, but decreased the concentration by 22% at PGP4. In contrast, defoliation reduced root C concentration on average by 1.5% at each PGP. As with the effects on root N concentration, defoliation decreased the root C-to-N ratio at PGP1 and PGP2 but increased the ratio at PGP4. Among soil animal trophic groups, the abundance of herbivorous nematodes was higher at PGP4 than at PGP1-3 and that of predacious nematodes higher at PGP2-4 than at PGP1, while the abundance of bacterivorous, fungivorous and omnivorous nematodes and that of detritivorous enchytraeids did not differ between the PGP categories. Among bacterivorous nematodes, however, Acrobeloides, Chiloplacus and Protorhabditis species decreased and that of Plectus spp. increased with time. Defoliation did not affect the abundance of soil animal trophic groups, but reduced the abundance of herbivorous Coslenchus spp. at each PGP and raised the abundance of herbivorous Rotylenchus spp. and bacterivorous Eucephalobus spp. at PGP4. Confirming our hypothesis, the results suggest that the effects of defoliation on the attributes of grassland plants, such as biomass allocation between roots and shoots and root quality, may depend on the timing of defoliation within a growing season. However, contradicting our hypothesis, the results suggest that significant changes in plant attributes after defoliation may not always lead to substantial changes in the abundance of belowground organisms.  相似文献   

10.
A greenhouse pot experiment was conducted to investigate the influence of soil moisture content and plant species on soil microbial community structure using cultivation-independent methods. White clover and ryegrass were grown individually or in a mixture. Plants were subjected to soil moisture content corresponding to 60% field capacity (FC) and 80% FC. Total plant biomass of white clover and ryegrass increased with increasing soil moisture contents. At a given soil moisture content, total biomass of white clover was lower in the ryegrass–clover (RC) mixture compared with those grown individually, while total biomass of ryegrass was higher. Microbial community structure assessed by phospholipid fatty acid analysis (PLFA) was more affected by plant species than soil moisture. Community level physiological profiles (CLPP), in terms of diversity of substrate utilization and average well colour development (AWCD) were affected by plant species and soil moisture. Soil moisture effects were more pronounced in clover than in ryegrass. AWCD and diversity of substrate utilization in the ryegrass–clover mix were similar to those of sole clover while they differed from that of ryegrass suggesting a dominant effect of clover in the mix.  相似文献   

11.
12.
The productivity and diversity of plant communities are affected by soil organisms such as arbuscular mycorrhizal fungi (AMF), root herbivores and decomposers. However, it is unknown how interactions between such functionally dissimilar soil organisms affect plant communities and whether the combined effects are additive or interactive. In a greenhouse experiment we investigated the individual and combined effects of AMF (five Glomus species), root herbivores (wireworms and nematodes) and decomposers (collembolans and enchytraeids) on the productivity and nutrient content of a model grassland plant community as well as on soil microbial biomass and community structure. The effects of the soil organisms on productivity (total plant biomass), total root biomass, grass and forb biomass, and nutrient uptake of the plant community were additive. AMF decreased, decomposers increased and root herbivores had no effect on productivity, but in combination the additive effects canceled each other out. AMF reduced total root biomass by 18%, but decomposers increased it by 25%, leading to no net effect on total root biomass in the combined treatments. Total shoot biomass was reduced by 14% by root herbivores and affected by an interaction between AMF and decomposers where decomposers had a positive impact on shoot growth only in presence of AMF. AMF increased the shoot biomass of forbs, but reduced the shoot biomass of grasses, while root herbivores only reduced the shoot biomass of grasses. Interactive effects of the soil organisms were detected on the shoot biomasses of Lotus corniculatus, Plantago lanceolata, and Agrostis capillaris. The C/N ratio of the plant community was affected by AMF.In soil, AMF promoted abundances of bacterial, actinomycete, saprophytic and AMF fatty acid markers. Decomposers alone decreased bacterial and actinomycete fatty acids abundances but when decomposers were interacting with herbivores those abundances were increased. Our results suggests that at higher resolutions, i.e. on the levels of individual plant species and the microbial community, interactive effects are common but do not affect the overall productivity and nutrient uptake of a grassland plant community, which is mainly affected by additive effects of functionally dissimilar soil organisms.  相似文献   

13.
To increase understanding of mechanisms by which fish populations respond to water chemistry changes resulting from acidification, it is necessary to link the results of laboratory studies of the effects of pH, Al, and Ca on the survival, growth, and reproduction of individual fish to responses of fish populations in the field. Our framework for achieving this goal is based on the types of data commonly available from both laboratory and field studies. One of the models (PHALCA) in this framework estimates the number of fish surviving as a function of time, given pH, Al, and Ca levels. A second model (FISHEGGS) evaluates the reduction in reproductive potential of a fish population attributable to the effects of pH, Al, and Ca on the survival of young-of-the-year and older fish and on fecundity. Preliminary results from these two models are presented, and the entire framework will be applied and tested over the next year using data for brook trout and lakes in the Adirondacks. The framework and models are a complementary alternative to the statistical analysis of survey data on water chemistry and on presence or absence of a fish species.  相似文献   

14.
It has been established that the plant leaves and other above‐ground parts are capable of absorbing chemicals and nutrients. However, there is great paucity of information regarding the mechanisms of ion uptake by leaves and their transport to other parts. Equally not well understood is the phenomenon of retranslocation of elements from one leaf to another during the different stages of plant growth. The results of investigations carried out in this area of foliar uptake and translocation in the last few years are described. In this review, the importance of future studies to investigate the mechanisms involved in foliar transport, the influence of plant growth substances, and the effectiveness of timely supply of specific nutrients during the grain development stage, is stressed.  相似文献   

15.
This paper reports on open-top chamber studies investigating the effects of different O3 exposures on native herbaceous plant species. Plants were grown up from seeds, potted into natural soils and exposed to near-ambient O3 levels during one growing season. A wide range of visible symptoms was apparent during the exposures. Species such as Rumex obtusifolius, Senecio vulgaris or Sonchus asper showed leaf colorations (e.g. reddish pigmentation) that probably indicate a non-specific stress response. In other species especially of the genera Malva and Cirsium the symptoms produced by O3 appeared to be similar to those characteristic for O3-specific foliar injury (stippling, flecking). In almost all species tested, O3 caused premature leaf senescence, which was sometimes associated with premature leaf abscission. However, earlier senescence did not necessarily result in changes in plant growth. Of all species tested, Malva sylvestris was found to be the most sensitive in terms of growth reduction and lower seed production.  相似文献   

16.
In fragmented landscapes plant species are often confined to remnants of formerly more widespread habitats, with many of their populations being small and isolated. This study experimentally examined the effects of population size and isolation on pollination, herbivory and reproductive success in the forest herb Phyteuma spicatum (Campanulaceae). In an experiment in which population size and isolation were manipulated using plants from the same origin, population size positively affected pollinator visitation, but did not alter the generally high levels of herbivory. As a result, seed production was higher in large populations. Conversely, plants originating from 14 natural populations of varying size and degree of isolation did not differ in reproductive success when grown in the same environment, suggesting similar attractiveness to pollinators and reproductive potential. The intensity of herbivory, however, was higher in progeny of small populations, at least in terms of the proportion of biomass removed. In both experiments, there were no effects of population isolation. The results suggest (1) that small population size decreases reproductive success via direct negative effects on plant-pollinator interactions, (2) that this pattern is not offset by herbivory, but (3) that herbivory enforces fragmentation effects on pollination by further reducing the number of flowering individuals and (4) that habitat fragmentation may influence plant fitness by affecting plant response to herbivory. The effects of habitat fragmentation on plant populations in present-day landscapes are thus complex, illustrating the need for more integrated studies in conservation biology that take into account both mutualistic and antagonistic plant-animal interactions.  相似文献   

17.

Background

Soil aggregation and organic carbon (OC) content are important indicators of soil quality that can be improved with plant residue amendments. The extent of the effects of plant residue amendments on soil aggregation and OC content across different plant residue and soil types is not fully understood.

Aim

In this meta-analysis, we evaluated the effects of plant residue amendments on soil aggregation and OC content for different plant residues (fresh, charred) and soil types varying in clay content, initial OC content, and pH.

Methods

Our meta-analysis included 50 published studies (total of 299 paired observations). We estimated the response ratios of mean weight diameter (MWD) and separate aggregate size classes, total soil OC (TSC), and aggregate-associated OC. We also considered the effect of experimental factors (study duration, residue type, residue amount, initial soil OC, clay content, and pH).

Results

The benefit of plant residue amendment on soil aggregation was larger in soils with initially low OC content and neutral pH. Initial soil OC content and pH were more important than soil clay content for OC storage in soil aggregates. Both fresh and charred plant residue amendments were effective in forming aggregates, whereas charred residues were more effective in increasing TSC. We found only a weak positive relationship between the response ratio of TSC and MWD indicating that other factors besides soil aggregation contributed to the increase in soil C storage.

Conclusions

While plant residue amendments can enhance soil aggregation and TSC, these effects are likely governed by the type of plant residue and soil properties such as the initial soil pH and OC content.  相似文献   

18.
Responsive genotypes, timing and mode of nitrogen application are important for realizing potential yield of winter baby corn. Soil application of nitrogen is a common practice. Foliar application enhances absorption and utilization of nitrogen particularly after anthesis. We investigated combined approach in management of nitrogen for the first time including soil applications followed by foliar urea spray to enhance baby corn yield and profitability. To determine these, 2-year study conducted with three genotypes and six schedules of recommended dose of nitrogen (RDN). Growth characters, productivity traits, harvest period and yields recorded. Nitrogen content and uptake, protein content and harvest were determined. Genotype HM-4 produced 4.6% and 4.1% more cobs and corn weight over HQPM-1. Combined approach resulted higher yield attributes, yields, N uptake, protein harvest and monetary returns. RDN in 4 splits with more basal (B) dose increased cob and corn yield by 4.8% and 5.1% than 3 splits (50% B). Results suggest that HM-4 be grown using RDN 50% as B, 25% at knee height stage, 20% at tassel emergence followed by 5% foliar spray after first picking as urea solution (3%) for achieving higher yield and net returns. More studies needed under diverse conditions.  相似文献   

19.
Soil compaction has deleterious effects on soil physical properties, which can affect plant growth, but some soils are inherently resilient, whereby they may recover following removal of the stress. We explored aspects of soil physical resilience in a field‐based experiment. We subjected three soils of different texture, sown with winter wheat or remaining fallow, to a compaction event. We then monitored soil strength, as a key soil physical property, over the following 16 months. We were also interested in the associated interactions with crop growth and the microbial community. Compaction had a considerable and sustained effect in a sandy loam and a sandy clay loam soil, resulting in an increase in strength and decreased crop yields. By contrast compaction had little effect on a clay soil, perhaps due initially to the buoyancy effect of pore water pressure. Fallow clay soil did have a legacy of the compaction event at depth, however, suggesting that it was the actions of the crop, and rooting in particular, that maintained smaller strengths in the cropped clay soil rather than other physical processes. Compaction generally did not affect microbial communities, presumably because they occupy pores smaller than those affected by compaction. That the clay soil was able to supply the growing crop with sufficient water whilst remaining weak enough for root penetration was a key finding. The clay soil was therefore deemed to be much more resilient to the compaction stress than the sandy loam and sandy clay loam soils.  相似文献   

20.

Purpose

This work investigated changes in priming effects and the taxonomy of soil microbial communities after being amended with plant feedstock and its corresponding biochar.

Materials and methods

A soil incubation was conducted for 180 days to monitor the mineralization and evolution of soil-primed C after addition of maize and its biochar pyrolysed at 450 °C. Responses of individual microbial taxa were identified and compared using the next-generation sequencing method.

Results and discussion

Cumulative CO2 showed similar trends but different magnitudes in soil supplied with feedstock and its biochar. Feedstock addition resulted in a positive priming effect of 1999 mg C kg?1 soil (+253.7 %) while biochar gave negative primed C of ?872.1 mg C kg?1 soil (?254.3 %). Linear relationships between mineralized material and mineralized soil C were detected. Most priming occurred in the first 15 days, indicating co-metabolism. Differences in priming may be explained by differences in properties of plant material, especially the water-extractable organic C. Predominant phyla were affiliated to Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes, Planctomycetes, Proteobacteria, Verrucomicrobia, Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Zygomycota, Euryarchaeota, and Thaumarchaeota during decomposition. Cluster analysis resulted in separate phylogenetic grouping of feedstock and biochar. Bacteria (Acidobacteria, Firmicutes, Gemmatimonadetes, Planctomycetes), fungi (Ascomycota), and archaea (Euryarchaeota) were closely correlated to primed soil C (R 2?=??0.98, ?0.99, 0.84, 0.81, 0.91, and 0.91, respectively).

Conclusions

Quality of plant materials (especially labile C) shifted microbial community (specific microbial taxa) responses, resulting in a distinctive priming intensity, giving a better understanding of the functional role of soil microbial community as an important driver of priming effect.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号