首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
实心瓜多竹(Guadua amplexifolia)隶属于瓜多竹属(Guadua),丛生,是南美洲主要栽培竹种之一,广泛分布于哥伦比亚、厄瓜多尔、巴西、阿根廷等国,竹材基部实心,高25m,径15cm左右,是较好的建筑用原料,耐短期零度低温,适应我国热带、南亚热带或中亚热带与南亚热带过渡区的气候条件(邹跃  相似文献   

2.
大木竹秆形结构的研究   总被引:15,自引:2,他引:13       下载免费PDF全文
调查了浙江南部大木竹的秆形状况,包括秆高、鲜秆质量、尖削度、竹壁厚和节间长等一系列指标.以毛竹为参比竹种,对数据进行统计分析并拟合曲线,结果发现:相同胸径下,大木竹的全高大于毛竹;尖削度较毛竹略小;壁厚随竹秆高度增大而减小的速率比毛竹快;拟合大木竹鲜秆质量-胸径的幂函数方程为:M=0.232 7(DBH)2.1899,与毛竹相比,同样胸径的大木竹鲜秆质量比毛竹大;大木竹的节间长度随高度的变化趋势呈二次曲线,在胸径为4~11cm范围内,节位数10~15处的节间长度最大,可达50~65 cm.  相似文献   

3.
撑篙竹秆形结构研究   总被引:1,自引:1,他引:0  
选取广西南宁市的撑篙竹作为研究对象,测定竹秆全高、秆材长、胸径和节间数,以及每节间直径、长度和壁厚等秆形指标,统计分析撑篙竹的秆形结构及变化规律。结果表明:撑篙竹全高、秆材长与胸径之间呈显著相关,节间的数量、长度和壁厚等因素与胸径、节间号等秆形指标之间呈显著相关,在拟合的相关方程中以幂函数和线性方程获得较高的估测精度;撑篙竹高径比值随着胸径的增加而降低;自基部至梢部,节间长度呈“短—长—短”的变化规律,最长节间出现在第15~20节;壁厚率呈“高—低—高”的变化规律,基部节间壁厚率大于50%,中部空腔大,壁厚率19%~21%,往梢部壁厚率逐渐增加至40%;节间直径呈“细—粗—细”的变化规律,最粗直径位于7~9节,处于胸高位置之上。秆形特征的研究可为撑篙竹林的抚育管理及竹材利用提供基础参考。  相似文献   

4.
This study tries to clarify the conflicting results from previous studies on cell wall thickening in bamboo culms by applying light and transmission electron microscopy in combination with image analysis. It focused on both fibre and parenchyma wall thickness of both temperate (Phyllostachys spp.) and tropical (Gigantochloa levis and Dendrocalamus asper) bamboo species of different ages in the light of their suitability for the wood industry. The observations indicated a great heterogeneity in cell wall thickness and cell wall layering pattern of fibres within one culm. Nested design ANOVA’s revealed a rising trend in wall thickness of late maturing fibres and parenchyma cells during the first year but significant wall thickening during later years could not be demonstrated. The high variability within one culm and between culms of the same age from 1 year on is partly masking a clear increased cell wall thickening at higher age. Nevertheless, the highest mean values for fibre wall thickness were recorded in culms of 44 months old or older, suggesting that some kind of late cell wall maturing can take place within one culm.  相似文献   

5.
寿竹的秆形结构研究   总被引:3,自引:0,他引:3  
采用抽样法,在重庆梁平县选取12个10 m × 10 m的无人或少人为干扰、林分较完整的寿竹林作为调查对象,检测了秆高、枝下高、全高、鲜秆质量、壁厚、节间长、竹节数等指标,进行寿竹的秆形结构分析,结果表明:(1)寿竹的胸径与秆高、枝下高、全高、壁厚、秆重、竹节数等秆形指标之间的相关性较为显著;其中一元二次方程最能反映胸径与秆高的相关性,复合函数方程最能反映胸径与枝下高、全高、秆重、壁厚、竹节数的相关性;(2)节间长度在竹秆上随着秆轴的升高表现出逐渐升高、基本稳定、逐渐下降的规律;最长竹节出现在寿竹的中下部.  相似文献   

6.
The bending properties of split bamboo culm were compared with those of spruce and beech wood specimens. The bamboo allowed large flexural deformation since its outer layer retains the tensile stress while the softer inner layer undergoes large compressive deformation. The results suggested that the combination of the fiber-rich outer part and the compressible inner part was responsible for the flexural ductility of split bamboo. To clarify the compressible nature of the inner part of bamboo, the longitudinal surfaces of the bamboo and wood specimens were microscopically observed before and after a large longitudinal compression. Although the wood specimens showed serious and localized buckling, the inner part of the bamboo specimens showed no such visible buckling. In the latter case, the foam-like parenchyma cells absorbed the large compressive deformation by their microscopic buckling and simultaneously, the alignment of sclerenchyma fibers was maintained by the surrounding parenchyma matrix. The flexural elasticity of the bamboo was compared to that of the wood in respect of remaining strain during cyclic bending tests. No clear difference was recognized between their remaining strains. This fact indicated that the bamboo was not so flexible elastically, although its fiber–foam combination and intelligent fiber distribution improve flexural ductility.  相似文献   

7.
竹材结构的防腐   总被引:2,自引:0,他引:2  
由于在露天环境中遭遇生物腐蚀,竹秆的持久性差,所以需要采取化学手段增强其耐力.但是它的解剖构造使化学物质难以像木材那样容易进入竹材.竹秆的外部由其表皮保护防水,不像木材那样有径向渗透的途径.而其内部腔隙也有保护性纤维.化学物质的主要渗透途径位于竹秆根部微管束的后生木质部.这些渗透途径分布于横剖面,很不均匀,且少,只占总面积的8~10%,而且在通过竹节时改变方向.由于在采伐时砍伤竹秆,通向导管的细胞腔被堵塞,渗透途径也受影响.周围的薄壁细胞是竹秆组织的主要部分,它们通过微小的纹孔互相连接,只能通过弥散进入.它们所含的淀粉是昆虫和某些真菌的食品.对纤维的保护也有赖于弥散.用化学物质进行保护,对于新鲜的含水量高的竹秆效果最好.就像简单的根部处理,或技术性较强的细胞液改善.新鲜竹秆的薄壁组织和纤维也能通过垂直弥散的方法得到保护.如进行滴渍和浸渍工作,最好在竹材含水分时劈开,因为薄壁组织容易接受弥散.技术措施如竹秆的水分储存和熏蒸的过程,与竹秆的自然结构,尤其是薄壁组织有关.  相似文献   

8.
在广西南宁市测量粉单竹竹秆的全高、材长、胸径、节间数量及每节间三要素(直径、长度和壁厚)等秆形指标,对砍倒的立竹进行分段称重,研究这些指标与竹材生物量的关系。结果表明:材长、节间数量及三要素均与胸径相关密切,幂函数和线性方程拟合程度高。最长节间出现在第9~12节,最粗直径多在第4~6节。全株生物量中竹秆所占份额最大,为76.82%,各器官生物量依次为秆 > 蔸 > 枝 > 叶。单株竹秆鲜质量与胸径高度显著相关,可用二次线性方程进行较精确估算。研究秆形结构变化规律、全株及每段竹秆鲜质量分配格局,有利于促进粉单竹竹秆科学利用。  相似文献   

9.
【目的】试验不同长度热消散探针(TDP)测量毛竹液流的可行性,分析年龄对立竹液流的影响,并据此对立竹液流进行尺度扩展,估算桂北毛竹林的蒸腾耗水,为区域毛竹林的生态水文效应研究和指导关键生态功能区植被结构调整提供依据。【方法】显微镜观察毛竹输水结构在竹壁上的径向分布。基于热消散方法,用5 mm和10 mm长度的TDP探针对1~2年生立竹和3龄以上立竹的基部液流进行连续测量,并同步测定环境因子。【结果】维管束在毛竹竹壁上不均匀分布,竹壁外侧维管束小而密,导管分化不完全,竹壁内侧维管束大而疏,导管分化完全,直径较大。10 mm TDP探针测得的液流密度显著高于5 mm探针,其平均液流密度是5 mm探针的4.03倍。在生长旺季的7月,基于10 mm TDP探针测量的1~2年生立竹正午液流密度显著高于3龄以上立竹,而在早上和傍晚二者基本相同。1~2年生立竹液流的平均日通量在测量生长季内均高于3龄以上立竹,二者的平均日液流通量分别为51.15和33.80 g·cm-2 d-1。以立竹年龄和基径作为液流尺度扩展依据估测的桂北毛竹林日蒸腾耗水量在观测生长季内为0.01~0.72 mm·d-1,平均日蒸腾耗水量为0.31 mm·d-1。【结论】10 mm长度的TDP探针较5 mm探针更适宜用于毛竹液流的测量。1~2年生立竹比3龄以上立竹具有更高的液流密度和日液流通量,因此年龄是毛竹液流由立竹到林分尺度扩展时除立竹直径外另一个必须要考虑的因素。  相似文献   

10.
实验观测了青皮竹(Bambusa textilis McClure)和慈竹(B.emeiensis)不同发育期(竹笋、幼竹和成年竹)的解剖特征,包括组织比量、基本组织、维管束及纤维形态的变化。结果表明,随着发育成熟,2个竹种的基本组织比量都呈现下降趋势,而输导组织和纤维组织则呈现不同程度的增长趋势。基本组织的减小量基本上等于纤维组织和输导组织的增加量。在同一发育期慈竹的维管束密度大于青皮竹。纤维长度随着竹龄的增加而变长和增宽,在同一发育期,纤维细胞的直径中部大于基部和顶部。竹子发育期间,纤维直径、双壁厚、长宽比及腔径比都随竹龄增加而增大,壁腔比则呈现下降趋势。2种竹材维管束的径向宽度均大于其弦向宽度。  相似文献   

11.
油樟油细胞和粘液细胞发育的超微结构   总被引:1,自引:0,他引:1  
利用超薄切片法和透射电镜研究油樟油细胞和粘液细胞发育过程。依据油细胞3层细胞壁的发育将其分为4个阶段。阶段1:仅有初生纤维素壁层,又可分为原始细胞和细胞液泡化二时期。质体内具白色小泡和黑色嗜饿滴,细胞质中有黑色或灰色的嗜饿物质,以及嗜饿物质与液泡的融合。阶段2:栓质化壁层的形成。片层状的栓质叠加在初生纤维素壁内侧。阶段3:内纤维素壁层的形成。较厚而结构松散的内纤维素壁层逐步形成,并叠加在栓质化壁层的内侧,大液泡成为充满嗜饿油脂的油囊。阶段4:油细胞成熟及细胞质解体。杯形构造由内纤维素壁层向细胞腔内突起形成,油囊由液泡包被连接到杯形构造中。解体的细胞质变得电子不透明或呈杂乱状态。粘液细胞发育方式有两种:一种是由内纤维素形成以后的油细胞发育而来,其细胞质中不断产生以同心圆或螺旋线方式排列的多膜结构,并充满整个细胞腔,最后多膜结构解体而成为丝状或颗粒状的粘液;另一种是由已完全成熟的油细胞发育而来,其油囊中的油呈不均匀的状态,并产生局部降解点,逐步扩大,最后油完全降解成颗粒成或丝状的粘液。  相似文献   

12.
毛竹材积主要构件因子关系研究及材积表编制   总被引:8,自引:1,他引:7  
通过毛竹立竹材积构件因子及立竹胸径与立竹实际材积的关系研究,结果表明:立竹全高、胸高竹壁厚与立竹胸径呈显著的正相关,是立竹胸径的从属因子;竹秆相对高度竹壁厚与秆径呈一致性变化趋势,立竹径级与竹秆相对壁厚无相关;构建了立竹胸径与立竹实际材积的数学模型:V=0.007351-0.001875D+0.000291D2,编制出竹林林分结构易测因子立竹胸径的对应材积表。  相似文献   

13.
对毛竹材弧形竹片的干燥特性进行了研究,结果表明:干燥温度越高,干缩率越大,弦向平均干缩率大于径向平均干缩率;弦向竹青侧干缩率高于竹黄侧干缩率;当含水率降至5%以下时,干缩率趋于稳定;随着干燥温度的升高,弧形竹片依次产生翘曲、皱缩及开裂等现象。  相似文献   

14.
本文用实测标准地法分析研究武陵毛竹林分各项因子相关关系,着重研究了竹株生长规律,竹株直径,竹高,内外径与用材长关系,提出经济用材长概念,并通过标准竹轮 ,叶片数,叶片面积,叶片重,求出生长效率及与经济利用关系,经济材长与不同地区竹株效益比较。  相似文献   

15.
锥形量热仪(简称CONE)是当前用以表征材料燃烧性能的主要试验仪器,能同时获得材料燃烧时有关释热、点燃时间、释烟、毒性、质量变化参数等多种重要的动态信息,其实验的结果与大型燃烧实验结果之间存在良好的相关性,已成为评价材料燃烧性能的主要手段.  相似文献   

16.
石竹地上部生物量的研究   总被引:2,自引:2,他引:0  
对不同秆径石竹的枝下高、冠幅、节数、最长节、第七节、枝盘数、壁厚、叶重、枝重、竿重、竿径、竿高 12个因子的生物量进行测定 ,得出各因子的平均值。分析结果表明 :各因子间大多存在着显著的相关关系。同时 ,测定了石竹叶片单位重量的叶面积为 82 .11cm2 / g;竿、枝、叶的含水率分别为 35.9%、2 8.3%、37.9% ;竿、枝、叶生物量分别占地上部的 74 .9%、16 .7%、8.4 %。  相似文献   

17.
以毛竹为研究对象,通过对不同尺寸的样品进行顺纹压缩测试,分析样品尺寸对竹材顺纹压缩模量和顺纹抗压强度的影响。结果显示:竹材的顺纹压缩模量与竹壁厚度、样品高度、弧度呈正相关关系,顺纹抗压强度与竹壁厚度、样品高度、弧度呈负相关关系。在弹性变形阶段,样品尺寸的增加会提高维管束的组织比量而增大竹材顺纹压缩模量的计算值,在塑性变形阶段,样品尺寸和弧度会导致提前失稳而降低竹材的顺纹抗压强度。  相似文献   

18.
花吊丝竹地上部分生物量分配及立竹生态构件关系特征   总被引:1,自引:0,他引:1  
在福建省华安县竹类植物园研究了1~3年生花吊丝竹地上部分生物量分配和主要生态构件因子间的关系。结果表明:立竹地上部分器官含水率为竹叶>竹枝>竹秆,竹秆、竹枝含水率随立竹年龄的增长而降低,不同年龄立竹竹叶含水率无显著差异;1~3 a立竹器官生物量分配比例均为竹秆>竹枝>竹叶,竹秆生物量比例随立竹年龄的增长呈"V"型变化,竹枝、竹叶生物量比例随立竹年龄的增长而提高;立竹全高、枝下高是立竹胸径的从属因子,器官和地上部分总生物量与立竹胸径、全高呈显著或极显著正相关,可以用生物量相对生长模型模拟;立竹壁厚率从竹秆基部到顶部呈高—低—高分布规律,与立竹胸径、立竹全高分别呈极显著、显著负相关,与立竹胸径的关系方程式为AWT=0.2899-0.0539D+0.0041D2。  相似文献   

19.
调查研究江西省中北部6个毛竹林(Ⅲ度竹)的胸径、全株杆鲜重、全株枝叶鲜重、杆长、全杆节数、枝下节数、枝盘数、枝下高、叶长和叶宽、叶片长宽比、胸径处竹壁厚度、竹腔径、壁腔比、竹材含水率等表型特征。运用SAS8.1软件进行多元线性回归分析和偏相关分析,研究表明:全株杆鲜重、全株枝叶鲜重和胸径处竹壁厚呈现随经度变化的地理模式,其它表型特征随经度的变化不明显;所调查的表型特征均没有表现随纬度和海拔的变化而变化的地理变异模式。  相似文献   

20.
2013年5月,抽样调查了盈江县铜壁关自然保护区的天然缅竹,测量其全高( H )、枝下高( h )、胸径(D)、基径(d)、秆重(G)、分段秆重(g)、节间直径(dj)、节位数(N)和节壁厚(T)等因子,对缅竹进行秆形结构分析,并将缅竹与毛竹进行对比。研究结果显示:缅竹的基径对胸径的拟合方程为: ln ( d)=ln 1.406+0.885 ln (D)(R2=0.880);秆重对胸径的拟合方程为: ln (G)=ln 86.544+2.797 ln (D)(R2=0.907);壁厚对高度的拟合方程为: T=3.487-0.433 ln ( Hx)( R2=0.832);节间直径对高度的拟合方程为: dj =8.803-0.004 Hx ( R2=0.745)。这些因子间均表现出较好的相关性,其它秆形结构因子间的相关性不显著。胸径相同时,缅竹全高、秆重均大于毛竹;从基部到33节时,缅竹节间长明显大于毛竹。表明在竹材的加工利用方面,缅竹与毛竹相比具有较高的利用率和较大的开发潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号