首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
为研究柔性杆件对空间并联机构动力特性的影响,以具有结构冗余的3-RRPaR空间并联机构为研究对象,提出建立冗余空间并联机构刚柔耦合动力学模型的通用方法。基于绝对节点坐标法建立了三维二节点梁单元模型,分析了机构的结构特征,利用拉格朗日乘子法推导了机构的刚柔耦合动力学方程,采用广义α方法在Matlab中对其动力学方程进行数值求解,得到不同弹性模量下的动力学响应曲线。结果表明,柔性杆件对机构输出特性产生重要的影响,弹性模量越小,对机构的影响越大,且弹性模量对动平台加速度的影响最为显著。本研究为空间并联机构的刚柔耦合动力学建模提供了研究思路。  相似文献   

2.
针对含柔性动平台的空间并联机器人刚柔耦合问题,基于Bézier三角形与绝对节点坐标法提出一种高阶柔性三角形厚板单元模型和连续性约束条件,基于该模型分析动平台变形状态及其对系统动力学特性的影响。利用自然坐标法与绝对节点坐标法建立刚柔耦合系统动力学模型,通过引入板单元第4个面积坐标的二阶梯度来描述厚度方向上的变形并解决泊松闭锁问题,结合广义-α法与牛顿迭代法求解动力学方程,并对系统静力学模型和动力学模型进行仿真分析。结果表明,动平台在运动过程中产生的周期性凹陷变形对机器人空间位姿的影响与机构布局方式、质量分布和负载作用方式完全一致,系统刚性构件与柔性动平台的运动耦合方式符合多体动力学模型的非线性规律;运动轨迹误差低于1.2×10-12 mm,动力学方程和约束方程迭代误差均小于设定阈值10-6和10-14,求解精度能满足工程应用要求;基于不同参数开展仿真对比分析,验证了所述方法的有效性和通用性。  相似文献   

3.
基于悬架刚柔耦合模型的汽车平顺性   总被引:4,自引:1,他引:3  
基于多体动力学理论,应用机械系统分析软件ADAMS/Car,建立了计及悬架下摆臂、纵向推力杆和横向稳定杆柔性的刚柔耦合整车模型,其中柔性杆件的模态通过有限元分析获得.对车身、下摆臂垂直加速度功率谱密度以及悬架动行程和轮胎动位移进行了分析.并与多刚体模型的仿真结果进行了比较.研究结果表明:与刚体模型相比,刚柔耦合的作用使车身垂直加速度功率谱密度的幅值降低了21.5%,下摆臂垂直加速度功率谱密度的峰值减小71.3%,轮胎动载荷减小约10%,悬架动行程增大15%~20%;刚柔耦合模型之间的差异随车速提高,悬架构件的柔性在汽车平顺性分析中不可忽视.  相似文献   

4.
柔顺机构PR伪刚体动力学建模与特性分析   总被引:3,自引:0,他引:3  
基于伪刚体模型,综合考虑柔性杆的横向变形和轴向变形的影响,建立了末端受力作用下柔顺机构的PR伪刚体动力学模型,应用拉格朗日方程推导了其动力学方程.从方程特征、响应曲线等方面显示了PR伪刚体动力学模型的性能变化.数值分析结果表明:PR伪刚体模型引入了P副来模拟柔性杆件的轴向运动,可以更真实地体现出柔顺机构的动力学特性,更适合于柔顺机构的动力学分析与设计.  相似文献   

5.
机械臂连杆柔性、关节柔性等非线性变形的综合影响,导致其末端位置发生偏离而产生误差。本文以IRB1410型串联机械臂为研究对象,采用理论分析、仿真分析与实验验证相结合的方式,对机械臂末端位置误差进行分析与补偿研究。首先,建立机械臂刚柔耦合理论误差模型,并运用Newmarkβ法进行数值仿真分析;联合ANSYS和ADAMS进行刚柔耦合机械臂末端位置运动误差仿真;为了实现快速补偿,提出基于BP神经网络的伪目标点法对位置误差进行补偿,补偿后其位置误差均方根减小了68.3%,说明该方法具有较好的补偿效果;最后,自主设计并搭建了测量实验平台,采用所提算法进行了误差补偿实验,对比补偿前后距离误差,补偿后误差均方根减小了77.01%,验证了伪目标点法对柔性误差补偿的有效性。  相似文献   

6.
通过对机器人臂杆的分析研究,把机器人臂杆当作一个柔性杆进行处理,分别求出其拉伸、扭转和弯曲的挠度,运用误差参数建立运动学模型,从而求得臂杆末端挠度的映射模型,并结合机器人各关节传动误差在机器人操作末端上的挠度误差映射,最终在机器人操作末端叠加关节挠度和臂杆挠度,通过刚度的定义求解出机器人总的操作空间刚度。建立的机器人刚度模型可为机器人切削加工过程中刀具的误差补偿提供依据。  相似文献   

7.
刚柔耦合空间闭链机器人轨迹跟踪与振动抑制研究   总被引:1,自引:0,他引:1  
张青云  赵新华  刘凉  戴腾达 《农业机械学报》2021,52(2):401-407,415
针对含多变量高维度空间刚柔耦合闭链机器人的轨迹跟踪和振动抑制问题,提出了一种基于前馈补偿的PD控制方法。首先,采用有限元法对柔性空间构件进行离散,基于浮动坐标系描述柔性构件位移场矢量,并根据Lagrange方程建立考虑刚性末端执行器微小位移的刚柔耦合空间并联机器人动力学模型;然后,利用前馈控制对预先求出的含耦合效应的控制力矩进行补偿,提高刚柔耦合控制系统的响应速度及跟踪性能,同时通过PD控制律保证空间闭链机器人的轨迹精度,并对不同末端载荷作用下的轨迹跟踪精度进行分析;最后,与位置PID算法进行了比较。结果表明:与位置PID算法相比,基于控制算法作用下的刚性末端执行器轨迹精度得到提高,其中,X方向误差降低了89.7%,Y方向误差降低了4.3%,Z方向误差降低了12.9%,柔性空间构件产生的振动得到了有效抑制。  相似文献   

8.
为了研究摩擦力对并联机构运动过程的影响,对3-PRS并联机构进行了基于关节摩擦力的动力学分析。对3-PRS并联机构进行末端理论运动轨迹规划,采用矢量法对机构进行了运动学分析。提出3种不同的关节摩擦模型,包括库伦摩擦模型、库伦-粘性摩擦模型以及库伦-粘性-静摩擦模型,在考虑关节间摩擦的情况下,基于牛顿-欧拉法建立了3-PRS并联机构的动力学分析模型。逆动力学实例分析表明,负载越大,摩擦力越大,在有无摩擦力的情况下,3个移动副驱动力的最大误差分别为1.40%、1.51%、1.49%。通过正动力学实例分析了不同情况下关节间摩擦模型对末端运动轨迹的影响,结果表明,不同关节摩擦模型对3-PRS并联机构末端的运动轨迹有较大的影响。  相似文献   

9.
研究重力场作用下3-R[TXX-]RS并联机构半解析静刚度建模方法。建模中同时考虑运动部件重力和末端外载荷对关节反力的影响,以及支链分布重力和所有构件/铰链弹性对关节变形的影响,并基于各部件在关节空间中的刚度模型建立机构末端静刚度模型。通过算例得到3-R[TXX-]RS并联机构末端静刚度和重力引起的末端变形在工作空间的分布规律;通过研究各构件刚度和重力分别对末端静刚度和变形的影响,得出为实现轻质高刚的结构设计应从球副和转动副刚度相匹配、主动臂和从动臂的驱动和约束刚度相匹配以及动平台轻量化设计等方面入手。  相似文献   

10.
通过齐次坐标变换建立了机械手的运动学模型,并对正运动学以及逆运动学分别进行了求解,通过初始位姿对运动学正反解进行了初步验证;利用矢量积法求解了机械手的雅克比矩阵,建立了机械手关节速度与末端执行器速度的瞬时对应关系;由机械手的具体结构设计出发,利用Pro/E 建立了机械手的实体样机模型,并导入仿真软件 ADAMS 中对其进行运动学仿真验证,使机械手整个运动过程直观化;同时分析了仿真过程中机械手各关节的驱动与机械手末端点运动变化的关系.仿真结果表明机械手的运动学方程解完全正确.  相似文献   

11.
空间闭链机器人的柔性连杆在高速运行状态下产生的弹性变形对系统振动效应具有重要影响.为准确分析柔性连杆对空间柔性闭链机器人振动特性的影响,采用有限单元法对柔性构件进行离散,基于浮动坐标系法描述构件位移场,最后通过Lagrange方程建立空间刚柔耦合闭链机器人动力学模型及振动方程,并分析系统固有频率和振型函数.基于同等参数...  相似文献   

12.
针对大型水力发电机组传统上忽略轴系扭转变形的假设可能导致轴系振动分析出现较大偏差的问题,采用Lagrange方法建立轴系振动方程和含轴系扭转效应的转子运动方程,通过定义广义动量,将这2个方程构建为统一形式的一阶微分方程组.以发电机转子上的阻力矩和水轮机转轮上的动力矩为纽带,构建包括水力系统、发电机、励磁、调速系统在内的完整水力机组模拟运行系统,并采用二阶Runge-Kutta法进行仿真计算.计算结果表明,在机组故障扰动条件下,计入轴系的弹性对轴系横向振动的影响不大,主轴扭转刚度对稳定工况下轴的扭转变形影响较大;故障扰动下,发电机转子和水轮机转轮之间的扭转角变化趋势与有功变化趋势基本一致.仿真表明,所建立的轴系扭振模型能反映轴系振动的基本特征,模型是合理的.  相似文献   

13.
轮-腿复合移动机器人RUPU-RUPR球面并联腿机构动力学研究   总被引:1,自引:0,他引:1  
提出了一种二自由度球面并联腿机构,并以该机构为基础,设计了一种结构简单且越障性能良好的轮-腿复合移动机器人。阐述了该机构的组成,采用解析几何法和闭环约束方程构建了RUPU-RUPR球面并联腿机构的位置逆解、工作空间、速度和加速度模型,并验证了其准确性。运用牛顿-欧拉法建立了RUPU-RUPR球面并联腿机构的动力学模型。在给定动平台的运动规律和外力后,通过动力学方程求解出RUPR驱动支链驱动力,RUPU驱动支链驱动力矩以及RUPR驱动支链约束力矩,并给出动力学模型仿真解。结果表明该机构具有良好的工作性能。  相似文献   

14.
果实采摘是农业种植生产过程中最耗时费力的环节。为了实现果实的良好抓取,本研究设计了一款结构精简、具有自适应性的柔性机械手。该机械手由柔性手指、气动元件、手腕和底座组成,基于3D打印制作,装配简单。其中,气动元件和柔性手指由柔性材料TPU和PLA打印而成,手腕为具有柔性的一体件打印而成;利用气动元件的伸缩功能实现对手腕的驱动,带动柔性手指自适应变形抓取果实。结合常曲率变形和D-H坐标法建立了单手腕的运动学模型。在此基础上,进行了柔性机械手功能性验证试验和安全测试试验。试验结果表明,柔性机械手具有适应果实的形状进行自适应抓取的功能,对表皮较为脆弱的果实没有损伤;气动元件满足使用要求,可以完成对手腕的动作驱动。研究结果将为机械手柔性抓取结构的设计提供参考价值。  相似文献   

15.
设计了一种采用伸长型气动人工肌肉的三自由度柔性驱动器,该驱动器的驱动装置与本体复合一体,主要由3根对称分布的人工肌肉并联组成。根据力和力矩分析,考虑了驱动器伸长量、弯曲方向和弯曲角度的综合影响,建立了驱动器伸长量、弯曲方向和弯曲角度的非线性理论模型。通过试验对理论模型进行了验证,获得了柔性驱动器在不同通气方式下的形变性能。结果表明:该柔性驱动器弯曲时近似圆弧状,具有较高灵活性,能够实现轴向伸长和空间内任意方向弯曲,可作为执行部件应用于农业机器人和果蔬采摘机械手等仿生机械上。  相似文献   

16.
六自由度模块化机器人手臂奇异构型分析   总被引:1,自引:0,他引:1  
对六自由度模块化机器人手臂工作空间内的奇异构型进行了分析。首先搭建模块化机器人手臂系统,并采用DH法对其进行结构建模,得到正运动学方程;其次,结合机器人手臂的正运动学方程,采用基于机器人连杆速度的方法构造其雅可比矩阵,再基于雅可比矩阵求解机械臂出现奇异状态的所有构型情况,得到所有奇异点并分别给出相应的手臂构型;最后,基于可操作度灵活性指标和最小奇异值灵活性指标应用Robotics工具箱对机械臂的奇异情况进行仿真分析,并考察机械臂处于奇异位型时末端参考点的可操作度椭球情况。仿真结果表明该机械臂共有3种奇异情况,验证了上述机械臂奇异位型分析的正确性,为后续模块化机械臂的轨迹规划研究和奇异点规避研究奠定了基础。  相似文献   

17.
单摆铲栅收获装置的驱动转矩为4组单体转矩的耦合叠加且随负载周期变化,最大驱动转矩及转矩波动度直接影响了拖拉机功率匹配与功率利用效率。为研究收获装置驱动转矩特性,在工作单体受力分析基础上建立了单体转矩、驱动转矩、比功耗解析方程,结合离散元仿真分析了收获装置驱动转矩时域响应特点:单体转矩呈现每周期双峰、相邻周期强弱变化规律,受组间振动平衡与土壤粘塑性作用,驱动转矩呈现每周期双峰、相邻周期微变的规律,峰值约为单体转矩的1.2~2.3倍。为明确相关参数对驱动转矩的影响,开展了四因素三水平Box-Behnken仿真试验,建立了最大驱动转矩、转矩波动度、比功耗预测数学模型,仿真试验结果表明:振幅、振动频率、挖掘深度、前进速度、振幅与振动频率交互项均是最大驱动转矩、比功耗的主要影响因素,振动频率、挖掘深度对转矩波动度有较大影响。甘草收获田间试验结果表明:当挖掘深度为450~500mm时(工况1),驱动转矩呈现每周期双峰、相邻周期强弱变化的规律,最大驱动转矩为797.17N·m、转矩波动度为2.54、比功耗为122.06kJ/m3、收净率为96.42%;当挖掘深度为350~400mm时(工况2),最大驱动转矩较工况1下降约39.44%,转矩波动度下降约27.95%,比功耗与收净率基本不变。该研究可为单摆铲栅收获装置结构参数优化及根茎作物振动减阻节能收获研究提供参考。  相似文献   

18.
针对柔性机械手研究中未将控制器和机械结构之间的耦合同时加以考虑的问题,在整体优化目标下,通过使用适用于各种几何约束的自适应迭代算法来获取机械臂状态和控制器参数,以结构优化为外循环,以LQR控制律优化为内循环,设计了全局优化设计方法,将柔性机械手机械结构的设计与控制算法的设计有机结合在一起.并以单关节柔性臂的设计为例进行了仿真,仿真结果表明,将控制律与结构优化综合考虑的方法有效、可行.  相似文献   

19.
对一种3T1R解耦并联机构的动力学性能及其惯量耦合强度进行了分析。对机构进行运动学分析,给出了机构的位置正反解方程,得到动平台的雅可比矩阵,推导了机构各构件的速度、加速度;基于牛顿-欧拉法,考虑构件重力以及外负载,建立了机构逆向动力学模型,并用ADAMS软件进行了仿真验证;基于所建的逆向动力学模型,分析了加速度和动平台姿态角对支链驱动力的影响;基于关节空间的惯量矩阵,建立了惯量耦合强度评价指标,分析了其在工作空间内的分布规律,并与降耦前Quadrupteron机构的惯量耦合强度进行了对比分析。结果表明,结构降耦不仅降低了支链间的耦合强度,而且整个工作空间内惯量耦合强度的分布更为一致,提升了机构动态性能的各向同性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号