首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiradical activities of some flavonols (kaempferol, quercetin, robinetin, quercetagetin, and myricetin), flavones (apigenin, baicalein, and luteolin), flavanones (naringenin and dihydroquercetin), and flavanols [(+)-catechin and (-)-epicatechin] were determined by measuring the reaction kinetics with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and alpha,gamma-bisdiphenylene-beta-phenylallyl (BDPA) radicals. The reactions, which follow the mixed second-order rate law, were investigated under pseudo-first-order conditions by use of a large excess of flavonoids, and their stoichiometry was determined by spectrophotometric titration. The results confirm stoichiometric factors of 1, 2, and 3 for flavonoids with one, two, and three hydroxyl groups in the B-ring, respectively, excluding kaempferol, which, despite a single OH group in the B-ring, has a factor of 2, which is explained by the 3-OH group supporting the reaction with free radicals. Structure-activity considerations indicate for the present series of flavonoids the importance of multiple OH substitutions and conjugation. The logarithms of reaction rate constants with the OH, DPPH, and BDPA radicals correlate well with the reduction potential of the flavonoids.  相似文献   

2.
The main flavonols found in seven widespread Vitis vinifera red grape cultivars include the 3-glucosides and 3-glucuronides of myricetin and quercetin and the 3-glucosides of kaempferol and isorhamnetin. In addition, the methoxylated trisubstituted flavonols, laricitrin and syringetin, were predominantly found as 3-glucosides. As minority flavonols, the results suggest the detection of the 3-galactosides of kaempferol and laricitrin, the 3-glucuronide of kaempferol, and the 3-(6' '-acetyl)glucosides of quercetin and syringetin. The flavonol profiles based on the eight above-mentioned flavonols allowed the cultivar differentiation of the grape samples. With regard to flavonol biosynthesis in the berry skin, quercetin 3-glucuronide predominated at véraison, followed by quercetin 3-glucoside, and only trace amounts of trisubstituted flavonols were detected. The proportion of quercetin 3-glucoside remained almost constant during berry ripening, whereas the proportion of quercetin 3-glucuronide decreased and the other flavonols, especially myricetin 3-glucoside, increased their importance. In wines, flavonol 3-glycosides coexisted with their corresponding free aglycones released by hydrolysis. The presence of laricitrin, syringetin, and laricitrin 3-glucoside in red wines is reported here for the first time. The extent of hydrolysis was widely variable among wines made from the same grape cultivar, and the results suggest the influence of the type of aglycone and glycoside on the rate of hydrolysis. Due to hydrolysis, the differentiation of single-cultivar wines gave acceptable results only when aglycone-type flavonol profiles were used.  相似文献   

3.
Effects of domestic processing and storage on the flavonols quercetin, myricetin, and kaempferol in five berries were studied using an optimized RP-HPLC method with UV and diode array detection after an acid hydrolysis of the corresponding glycosides. In fresh berries, the total content of flavonols was highest in lingonberry (169 mg/kg) and black currant (157 mg/kg), intermediate in bilberry (41 mg/kg) and strawberry (17 mg/kg), and lowest in red raspberry (9.5 mg/kg). Cooking strawberries with sugar to make jam resulted in minor losses (quercetin 15%, kaempferol 18%). During cooking of bilberries with water and sugar to make soup, 40% of quercetin was lost. Traditional preservation of crushed lingonberries in their own juice caused a considerable (40%) loss of quercetin. Only 15% of quercetin and 30% of myricetin present in unprocessed berries were retained in juices made by common domestic methods (steam-extracted black currant juice, unpasteurized lingonberry juice). Cold-pressing was superior to steam-extraction in extracting flavonols from black currants. During 9 months of storage at 20 C, quercetin content decreased markedly (40%) in bilberries and lingonberries, but not in black currants or red raspberries. Myricetin and kaempferol were more susceptible than quercetin to losses during storage.  相似文献   

4.
The amounts of myricetin, quercetin, and kaempferol were analyzed in 16 red and 2 white berry and grape wines after acid hydrolysis using an RP-HPLC method with diode array detection. The red berry wines analyzed were made mainly from black currant, crowberry, and bog whortleberry, i.e., berries rich in flavonols. The red grape wines were made mainly from Cabernet Sauvignon or Merlot grapes in several countries. The white wines studied were gooseberry and white currant wines and Chardonnay and Riesling wines. The amount of myricetin ranged from 3.8 to 22.6 mg L(-1) in red berry wines and from 0 to 14.6 mg L(-1) in red grape wines. The amount of quercetin was from 2.2 to 24.3 mg L(-1) red berry wines and from <1.2 to 19.4 mg L(-1) in red grape wines. Low levels of kaempferol were found in all red berry wines and in 9 red grape wines. The total concentration of these flavonols was from 6 to 46 mg L(-1) (mean 20 mg L(-1)) in red berry wines and from 4 to 31 mg L(-1) (mean 15 mg L(-1)) in red grape wines. Small amounts of quercetin were found in white currant and gooseberry wines, whereas no flavonols were detected in white grape wines. These results demonstrate that the contents of flavonols in red  相似文献   

5.
A common flavonol, kaempferol, isolated from the fresh flower petals of Crocus sativus L. (Iridaceae) was found to inhibit the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by mushroom tyrosinase with an ID(50) of 67 microgram/mL (0.23 mM). Interestingly, its 3-O-glycoside derivatives did not inhibit this oxidation. The inhibition kinetics analyzed by a Lineweaver-Burk plot found kaempferol to be a competitive inhibitor, and this inhibitory activity presumably comes from its ability to chelate copper in the enzyme. This copper chelation mechanism can be applicable for all of the flavonols as long as their 3-hydroxyl group is free. However, quercetin, kaempferol, and galangin each affect the oxidation of L-tyrosine in somewhat different ways.  相似文献   

6.
Flavonols are products of the flavonoid biosynthetic pathway, which also give rise to anthocyanins and condensed tannins in grapes. We investigated their presence in the berry skins of 91 grape varieties (Vitis vinifera L.), in order to produce a classification based on the flavonol profile. The presence of laricitrin 3-O-galactoside and syringetin 3-O-galactoside in red grapes is reported here for the first time. In red grapes, the main flavonol was quercetin (mean = 43.99%), followed by myricetin (36.81%), kaempferol (6.43%), laricitrin (5.65%), isorhamnetin (3.89%), and syringetin (3.22%). In white grapes, the main flavonol was quercetin (mean = 81.35%), followed by kaempferol (16.91%) and isorhamnetin (1.74%). The delphinidin-like flavonols myricetin, laricitrin, and syringetin were missing in all white varieties, indicating that the enzyme flavonoid 3',5'-hydroxylase is not expressed in white grape varieties. The pattern of expression of flavonols and anthocyanins in red grapes was compared, in order to gain information on the substrate specificity of enzymes involved in flavonoid biosynthesis.  相似文献   

7.
Flavonols such as kaempferol and quercetin are believed to provide protection against ultraviolet (UV)-induced damage to plants. Recent in vitro studies have examined the ability of flavonols to protect against UV-induced damage to mammalian cells. Stability of flavonols in cell culture media, however, has been problematic, especially for quercetin, one of the most widely studied flavonols. As part of our investigations into the potential for flavonols to protect skin against UV-induced damage, we have determined the stability of a series of flavonols that differ only in the number of substituents on the B-ring. We measured the stability of these flavonols over time to UVA radiation, Dulbecco's modified Eagle's medium (DMEM), and Dulbecco's phosphate-buffered saline (DPBS) using high performance liquid chromatography with UV detection (HPLC-UV). The identification of the breakdown products of flavonols was accomplished by using a hybrid quadrupole linear ion trap mass spectrometer coupled with liquid chromatography. Tandem mass spectrometric analysis (MS/MS) of flavonol photoproducts was confirmed by comparing with the known standard samples. We have determined that flavonol stability decreases with increasing B-ring substitution, suggesting that future investigation of potential photoprotective flavonols will need to be cognizant of this trend.  相似文献   

8.
The flavonoid composition of immature leaves of pak choi [Brassica rapa L. ssp. chinensis L. (Hanelt.)] was investigated. Flavonol aglycone content was measured in 11 pak choi varieties, indicating significant differences (P < 0.05) in content between varieties and relatively high contents of kaempferol and isorhamnetin. Levels of quercetin ranged from 3.2 to 6.1 mg/100 g of dry weight (DW), whereas levels of isorhamnetin and kaempferol were significantly higher (8.1-35.1 and 36.0-102.6 mg/100 g of DW, respectively). A large number of glycoside and hydroxycinnamic acid derivatives of quercetin, kaempferol, and isorhamnetin were identified in cv. 'Shanghai' by LC/UV-DAD/ESI-MS/MS. The UV-DAD data allowed identification of hydroxycinnamic acid derivatives, but detailed MS/MS fragmentations were required for the structure elucidation. Pak choi could be a potentially important source of dietary flavonols, in particular, kaempferol and isorhamnetin.  相似文献   

9.
The effects of 1:1 flavonoid-Cu(2+) complexes of four flavonoids with different C-ring substituents, quercetin (QU), luteolin (LU), taxifolin (TA), and (+)-catechin (CA), on bovine serum albumin (BSA) were investigated and compared with corresponding free flavonoids by spectroscopic analysis in an attempt to characterize the chemical association taking place. The results indicated that all of the quenching mechanisms were based on static quenching combined with nonradiative energy transfer. Cu(2+) chelation changed the binding constants for BSA depending on the structures of flavonoids and the detected concentrations. The reduced hydroxyl groups, increased steric hindrance, and hydrophilicity of Cu(2+) chelation may be the main reasons for the reduced binding constants, whereas the formation of stable flavonoid-Cu(2+) complexes and synergistic action could increase the binding constants. The changed trends of critical energy transfer distance (R(0)) for Cu(2+) chelation were contrary to those of binding constants.  相似文献   

10.
Nineteen apparent flavonoids were determined by HPLC-DAD in foliage of a chemotype (G-type) of Barbarea vulgaris , and four were isolated. Two were novel tetraglycosylated flavonols with identical glycosylation patterns, kaempferol 3-O-(2,6-di-O-β-d-glucopyranosyl)-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (1) and quercetin 3-O-(2,6-di-O-β-d-glucopyranosyl)-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (2). The identification of d/l configuration was tentatively based on susceptibility to α-l-rhamnosidase and β-d-glucosidases. A characteristic feature of 1 and 2 was appreciable water solubility, an expected consequence of the extensive glycosylation. A less complex pair of flavonols comprised 3-O-β-d-glucopyranoside-7-O-α-l-rhamnopyranosides of kaempferol and quercetin. Two natural chemotypes of B. vulgaris differed in levels of 1 and 2, with the P-type deficient in 1 and 2 and the insect-resistant G-type rich in 1 (ca. 3-4 μmol/g dry wt) and with moderate levels of 2 (ca. 0.3-0.8 μmol/g dry wt). However, there was only modest seasonal variation in flavonols 1 and 2, in contrast to a strong seasonal variation in insect resistance.  相似文献   

11.
The interaction between ilaprazole and bovine serum albumin (BSA) has been investigated in the absence and presence of four popular flavonoids with different C-ring structures, quercetin, luteolin, taxifolin, and (+)-catechin, by means of fluorescence spectroscopy. The results indicated that ilaprazole had a strong ability to quench the intrinsic fluorescence of BSA, and site marker competitive experiments indicated that the binding of ilaprazole to BSA primarily took place in subdomain IIA. The quenching process of ilaprazole with BSA was easily affected by flavonoids,; however, they did not change the quchenching mechanism of ilaprazole with BSA, whereas all of the fluorescence quenching was initiated by a static quenching procedure combining with nonradiative energy transfer. The presence of flavonoids decreased the quenching constants of ilaprazole with BSA from 2.2 to 23.7% and decreased the binding constants from 73.7 to 98.3%, which depended on the different flavonoids' structures. The decreased binding constants and unchangeable spatial distance of ilaprazole with BSA by the introduction of quercetin, luteolin, and taxifolin may result from the competition of flavonoids and ilaprazole binding to BSA, whereas in the presence of (+)-catichin, decreased binding constants and increased spatial distance possibly resulted from the formation of a ternary ilaprazole-BSA-(+)-catechin complex. All of these results may have relevant consequences in rationalizing the interferences of common food to gastric ulcer treatments.  相似文献   

12.
The interaction between four flavonoids (catechin, epicatechin, rutin, and quercetin) and bovine serum albumin (BSA) was investigated using tryptophan fluorescence quenching. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between the flavonoids and BSA. The binding affinity was strongest for quercetin and ranked in the order quercetin > rutin > epicatechin = catechin. The pH in the range of 5-7.4 does not affect significantly (p < 0.05) the association of rutin, epicatechin, and catechin with BSA, but quercetin exhibited a stronger affinity at pH 7.4 than at lower pH (p < 0.05). Quercetin has a total quenching effect on BSA tryptophan fluorescence at a molar ratio of 10:1 and rutin at approximately 25:1. However, epicatechin and catechin did not fully quench tryptophan fluorescence over the concentration range studied. Furthermore, the data suggested that the association between flavonoids and BSA did not change molecular conformation of BSA and that hydrogen bonding, ionic, and hydrophobic interaction are equally important driving forces for protein-flavonoid association.  相似文献   

13.
There is current interest in the use of naturally occurring flavonoids as antioxidants for the preservation of foods and the prevention of diseases such as atherosclerosis and cancers. To establish the molecular characteristics required for maximum antioxidant activity, electron spin resonance (ESR) spectroscopy has been used to determine the stoichiometry and kinetics of the hydrogen-donating ability of 15 flavonoids and d-alpha-tocopherol to galvinoxyl, a resonance-stabilized, sterically protected aryloxyl radical. The second-order reaction rates, which will be governed by O-H bond dissociation energies, were myricetin > morin > quercetin > fisetin approximately catechin > kaempferol approximately luteolin > rutin > d-alpha-tocopherol > taxifolin > tamarixetin > myricetin 3',4',5'-trimethyl ether > datiscetin > galangin > hesperitin approximately apigenin. Reactivity is highly dependant on the configuration of OH groups on the flavonoid B and C rings, there being little contribution from the A ring to antioxidant effectiveness. Highest reaction rates and stoichiometries were observed with flavonols capable of being oxidized to orthoquinones or extended paraquinones. However, rates and stoichiometries did not always correlate and the data suggest that kinetic factors may be of greater importance within a biological context.  相似文献   

14.
The effect of postharvest treatment with enantiomers of methyl jasmonate (MJ) in conjunction with ethanol on bioformation of myricetin, quercetin and kaempferol in red raspberry was studied. For comparison, postharvest treatment with the commercial stereoisomeric mixture of MJ in conjunction with ethanol was simultaneously accomplished. The levels obtained were contrasted with those determined in untreated (control) samples. Exogenous (+)-MJ induced an enhancement in the levels of myricetin, quercetin and, particularly, kaempferol whereas the exposition to (-)-MJ exhibited the opposite effect. Enzymatic assays were carried out in presence and absence of (-)-MJ and (+)-MJ to evaluate possible changes in the activity of the enzymes regulating the bioformation of flavonols in red raspberries as a consequence of the treatments. From the results of the assays both (-)-MJ and (+)-MJ inhibited the activity of flavanone 3β-hydroxylase (FHT) and flavonol synthase (FLS), which are directly involved in the formation of flavonols from (-/+)-naringenin. From these results, it is speculated that the activity of phenylalanine ammonia lyase (PAL) regulating the formation of (-/+)-naringenin from l-phenylalanine by (+)-MJ in conjunction with ethanol is promoted. Postharvest treatment of red raspberry with (+)-MJ in ethanol is proposed as a mean to increase flavonol content in red raspberries.  相似文献   

15.
Common human plasma proteins (CHPP), also called blood proteins, are proteins found in blood plasma. The molecular structure/property-affinity relationships of dietary polyphenols noncovalently binding to CHPP were investigated by comparing the binding constants obtained from the fluorescence titration method. An additional methoxy group in flavonoids increased their binding affinities for CHPP by 1.05 to 72.27 times. The hydroxylation on the 4' position (ring B) of flavones and flavonols and the 5 position (ring A) of isoflavones weakened the binding affinities; however, the hydroxylation on other positions of flavonoids slightly enhanced or little affected the binding affinities for CHPP. The glycosylation of flavonoids weakened or slightly affected the affinities for CHPP by 1 order of magnitude. The hydrogenation of the C2═C3 double bond of flavone, 6-hydroxyflavone, 6-methoxyflavone and myricetin decreased the binding affinities about 10.02 to 17.82 times. The galloylation of catechins significantly improved the binding affinities with CHPP about 10 to 1000 times. The esterification of gallic acid increased its binding affinity. The binding affinities with CHPP were strongly influenced by the structural differences of dietary polyphenols. Polyphenols with higher affinities for purified HSA also showed stronger affinities with CHPP. The hydrophobic force played an important role in binding interaction between polyphenols and CHPP.  相似文献   

16.
The aqueous extract of Eucommia ulmoides leaves has been commonly known as Du-zhong tea as a functional health food for the treatment of hypertension, hypercholesterolemia, and fatty liver. This study developed a centrifugal ultrafiltration-high-performance liquid chromatography (HPLC) method for screening and identification of bioactive compounds in E. ulmoides leaves binding with bovine serum albumin (BSA). Six active compounds were screened, isolated, and elucidated by their ultraviolet (UV), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) data as geniposidic acid (1), caffeic acid (2), chlorogenic acid (3), quercetin-3-O-sambubioside (4), rutin (5), and isoquercitrin (6). The interaction between active compounds and BSA was investigated in the absence and presence of other compounds by quenching the intrinsic BSA fluorescence. The results indicated that the structures significantly affected the binding process. The values of binding constants for compounds 2-6 were in the range of 10(5)-10(6) mol L(-1), while geniposidic acid (1) hardly quenching the BSA intrinsic fluorescence. However, the quenching process of geniposidic acid was easily affected in the presence of other active compounds. The formation of the geniposidic acid-phenylpropanoid (flavonoid) complex could increase the binding affinity of geniposidic acid with BSA; however, the increased steric hindrance of the complex may make phenylpropanoid or flavonoid dissociate from BSA and then decrease their affinities.  相似文献   

17.
Under acidic conditions, nitrite is protonated to nitrous acid (pK(a) = 3.2-3.4) that can be transformed into nitric oxide by self-decomposition and reduction. When sodium nitrite was mixed with quercetin at pH 1-2, quercetin was oxidized producing nitric oxide. In addition to quercetin, kaempferol and quercetin 4'-glucoside were also oxidized by nitrous acid, but oxidation of apigenin, luteolin, and rutin was slow compared to oxidation of the above flavonols. These results suggested that flavonols, which have a free hydroxyl group at carbon position 3, can readily reduce nitrous acid to nitric oxide. When the pH of saliva was decreased to 1-2, formation of nitric oxide was observed. The nitric oxide formation was enhanced by quercetin, and during this process quercetin was oxidized. These results indicate that there is a possibility of reactions between phenolics and nitrous acid derived from salivary nitrite in the stomach.  相似文献   

18.
Acacia confusa is traditionally used as a medicinal plant in Taiwan. In this study, phytochemicals and antioxidant activities of extracts from flowers of A. confusa were investigated for the first time. In addition, a rapid screening method, online RP-HPLC-DPPH system, for individual antioxidants in complex matrices was developed. Accordingly, six antioxidants including gallic acid ( 1), myricetin 3-rhamnoside ( 2), quercetin 3-rhamnoside ( 3), kaempferol 3-rhamnoside ( 4), europetin 3-rhamnoside ( 5), and rhamnetin 3-rhamnoside ( 6) were detected using the developed screening method. Of these, compounds 2, 3, and 5 were found to be major bioactive phytochemicals, and their contents were determined as 11.3, 6.7, and 8.7 mg/g of crude extract, respectively. By comparison with quercetin, a well-known antioxidant, these compounds had the order of compound 2 > compound 5 > quercetin > compound 3 for DPPH radical-scavenging activity. Their IC 50 values were 3.0, 3.2, 4.5, and 7.4 microM, respectively. Moreover, the same order was observed for superoxide radical-scavenging activity, and their IC50 values were 2.6, 2.7, 4.3, and 5.3 microM, respectively. However, for lipid peroxidation, quercetin, an aglycon, showed the best inhibitory activity. The IC50 values of quercetin, compound 2, compound 5, and compound 3 were 46.7, 88.5, 90.7, and 124.6 microM, respectively. These results indicated that a rhamnoside at the C3 position of flavonoids had a negative effect on radical-scavenging activity and antilipid peroxidation. In contrast, the number of hydroxyl groups on the B-ring exhibited a positive relationship with their inhibitory activities.  相似文献   

19.
Almond hulls and grape pomace are residues abundantly generated by agricultural industries, which could be processed to obtain bioactive products. To this purpose, crude ethanol extracts from both agricultural byproducts were attained and subsequently fractionated in order to obtain an organic/water fraction (FOW). Extracts and fractions were analyzed for antioxidant power and their phenolic components tentatively identified by HPLC-MS. Chromatographic peaks of almond hull extracts showed the occurrence of hydroxybenzoic and cinnamic acid derivatives, with minor presence of flavan-3-ols (ECG, EGCG), whereas the FOW fraction offered the additional presence of epicatechin (EC) and glycosylated flavonols. In the composition for extracts of white and red grape pomace several of these compounds were also detected but basically consisted of glycosylated flavonols (quercetin, kaempferol). As a difference between both grape pomaces, myricetin glycosyde was found in that from the red variety, whereas flavan-3-ols (EC, afzelechin) were only identified in white pomace. When their FOW fractions were analyzed, gallic acid and some hydroxybenzoic acids were additionally detected. Antioxidant activity was assessed by DPPH and TBARS assays. Almond hulls showed inhibition percentages lower than 50% in both assays, while the inhibition percentage ranged from 80% to 90% in pomace extracts. Red grape pomace extract was the most efficient antioxidant, with an EC50 value of 0.91 g/L for TBARS and 0.20 g/L for DPPH. Even appearing as two quite different vegetal matrixes, the composition of phenolics in grape pomace and almond hulls is quite similar, the main difference being the major occurrence of flavonols in grape pomace. This fact could presumably explain the lower antiradical activity of hull extracts.  相似文献   

20.
The structure of flavonoids in food plants affects bioactivity and important nutritional attributes, like micronutrient bioavailability. This study investigated flavonol and anthocyanin compositions of cowpea (Vigna unguiculata) of varying genotypes. Black, red, green, white, light brown, and golden brown cowpea phenotypes were analyzed for anthocyanins and flavonols using ultra performance liquid chromatography-tandem quadrupole mass spectrometry. Eight anthocyanins and 23 flavonols (15 newly identified in cowpea) were characterized. Mono-, di-, and tri(acyl)glycosides of quercetin were predominant in most phenotypes; myricetin and kaempferol glycosides were present only in specific phenotypes. The red phenotypes had the highest flavonol content (880-1060 μg/g), whereas green and white phenotypes had the lowest (270-350 μg/g). Only black (1676-2094 μg/g) and green (875 μg/g) phenotypes had anthocyanins, predominantly delphinidin and cyanidin 3-O-glucosides. Cowpea phenotype influenced the type and amount of flavonoids accumulated in the seed; this may have implications in selecting varieties for nutrition and health applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号