首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
精异丙甲草胺在土壤中的吸附行为及 环境影响因素研究   总被引:1,自引:1,他引:1  
采用平衡振荡法研究了精异丙甲草胺在粘壤土、粘土及砂壤土中的吸附和解吸附行为。结果表明,3种土壤的吸附等温线均属L型并符合Freundlich模型,吸附常数(Kf)分别为4.01、6.15及8.62,且Kf 和1/n(n为经验常数)的乘积与土壤有机质含量呈正相关性。解吸附实验结果表明,精异丙甲草胺在土壤中的解吸附与吸附并不一致,显示出明显的滞后性。温度及pH值等环境因素对吸附影响的结果显示,随温度升高精异丙甲草胺在土壤中的吸附量有所减少,中性环境下土壤吸附量较低。  相似文献   

2.
为研究三氟苯嘧啶的吸附-解吸附特性,采用振荡平衡法研究了三氟苯嘧啶在采集于吉林通化、江苏扬州、江西萍乡、广西南宁和海南海口等地的5种土壤中的吸附-解吸附行为及其环境影响因素。结果表明:三氟苯嘧啶在土壤中的吸附动力学符合Elovich模型,吸附和解吸附等温线符合Freundlich模型,吸附常数在1.886~7.626。温度的升高更有利于吸附,土壤对三氟苯嘧啶的吸附主要是物理吸附;随着溶液中pH值的升高,土壤对三氟苯嘧啶的吸附能力逐渐下降。除广西南宁黏壤土外,三氟苯嘧啶在5种土壤中的解吸附过程中存在滞后现象,不易在土壤中长期积累,具有一定的迁移特性。  相似文献   

3.
农药在土壤中的吸附和淋溶特性是评价其环境行为的重要指标。采用批量平衡法和土柱淋溶法,研究了双氟磺草胺在小麦种植区3种代表性土壤中的吸附和淋溶特性。结果表明:双氟磺草胺在安徽黏土、山东砂质壤土和河南砂质黏壤土中的吸附规律均可以较好地用Freundlich方程描述,其吸附系数(Kf)在0.39~0.62之间;土壤有机碳归一化吸附系数(Koc)在66.91~81.35之间,表明双氟磺草胺在3种土壤中均属于难吸附型;吸附自由能(ΔG)在-10.90~-10.42kJ/mol之间,均属于物理吸附。双氟磺草胺在3种土壤中的淋出率在71.7%~74.1%之间,说明其在3种土壤中的淋溶性均较强。双氟磺草胺初始添加量和腐殖酸对淋出率具有一定影响。综合试验结果,认为双氟磺草胺在3种土壤中的吸附和淋溶可能受土壤有机质含量、黏粒含量、阳离子交换量和土壤pH值等多个因素的综合影响,其对地下水的污染风险较大,因此应引起高度重视。  相似文献   

4.
毒死蜱和氰戊菊酯在土壤中的吸附与迁移   总被引:1,自引:2,他引:1       下载免费PDF全文
为评估被用作白蚁预防药剂的毒死蜱和氰戊菊酯在土壤中的移动性,采用平衡吸附法和薄层层析法分别测定了两种农药在浙江宁波地区的东钱湖土(粉砂质壤土)、青岭土(粉砂质壤土)和象山土(粉砂质黏壤土)3种土壤中的吸附常数(Kd)和迁移率(Rf)。结果表明,两种供试药剂在东钱湖土中的吸附等温线线性化程度均较高,而在青岭土和象山土中的吸附等温线均近似于 "L"型。从Kd和有机质吸附常数Koc的数值看,氰戊菊酯在土壤中的吸附作用主要受土壤有机质因素影响,而毒死蜱的吸附并非只受土壤有机质因素的影响。毒死蜱在3种供试土壤中的Kd和Rf值均高于氰戊菊酯。这表明由Kd值推测不同农药在土壤中的相对移动性可能会存在一定偏差。毒死蜱和氰戊菊酯在3种土壤中的Rf值由大到小的顺序为:东钱湖土>青岭土>象山土;而Kd值由大到小顺序为象山土>青岭土>东钱湖土。对Kd和Rf值与土壤理化性质的多元线性回归分析表明:1)土壤有机质含量和阳离子代换量在决定Kd和Rf值中所起的作用相互重叠;2)土壤有机质含量(或土壤阳离子代换量)和土壤黏粒含量是影响Kd和Rf值的关键因素,而土壤pH值对于Kd和Rf值无决定性影响。  相似文献   

5.
为评价氯胺嘧草醚的环境安全性,采用批量平衡法测定了氯胺嘧草醚在5种土壤中的吸附-解吸行为,并运用数学模型对其吸附-解吸特性及移动性能进行了分析。结果表明:氯胺嘧草醚在5种土壤中的等温吸附-解吸曲线符合Freundlich模型,吸附常数(Kf值)范围在6.991~18.49之间;不同土壤对其的吸附作用强弱依次为:黑土 > 水稻土 > 褐土 > 潮土 > 红土。氯胺嘧草醚在5种土壤中的有机碳吸附常数(KOC)范围在704.4~1 579之间,推测其在土壤中具有低移动性;薄层层析试验也表明,氯胺嘧草醚在土壤中的移动性较弱。氯胺嘧草醚在5种土壤中的吸附自由能绝对值均小于40 kJ/mol,表明其吸附机理主要是物理吸附。其Kf值与土壤有机质含量、黏粒含量呈正相关,而与土壤pH值呈负相关。解吸试验表明,氯胺醚在其中3种土壤中的解吸过程存在滞后现象。研究表明,在正常使用情况下,氯胺嘧草醚不易对地表水或地下水造成污染风险。  相似文献   

6.
咪鲜胺及其制剂在六种水稻土中的吸附   总被引:3,自引:1,他引:3  
研究了咪鲜胺(prochloraz)及其制剂施保克(Sportak,25%咪鲜胺乳油)在6种水稻土中的吸附行为和吸附机理。结果表明:咪鲜胺和施保克在水稻土中的吸附平衡时间为5~10 h,其吸附过程符合Freundlich吸附等温式;咪鲜胺和施保克在6种水稻土中有机质吸附常数(KOM)的平均值分别为 2 439和2 111,表明它们易被水稻土吸附,属难移动的物质,且吸附反应自由能的变化量均小于40 kJ/mol, 表现为物理吸附过程;吸附常数(Kf值)与土壤理化性质的相关性分析结果表明,咪鲜胺和施保克在土壤中的吸附主要受土壤有机质含量、阳离子交换量和粘粒含量的影响,并呈正相关;咪鲜胺在加工成制剂后,不但在土壤中的吸附量减少了,而且Kf值也下降了近1/3。  相似文献   

7.
磺酰脲类除草剂是应用较为广泛的农药之一,其在土壤中迁移、降解、转化和滞留等多个过程受其吸附、解吸行为的影响。本文以嗪吡嘧磺隆为研究对象,采用批量平衡法研究了其在8种不同类型土壤中的吸附、解吸附行为。结果表明:嗪吡嘧磺隆与土壤溶液接触4 h内为快速吸附阶段。Freundlich模型可较好地拟合嗪吡嘧磺隆在土壤中的等温吸附解吸过程,相关系数 (r) 值在0.9584~0.9973之间。8种土壤对嗪吡嘧磺隆的吸附能力均为弱,吸附常数 (Kf-ads) 在0.281~3.515之间。其中,以黑龙江白浆土对嗪吡嘧磺隆的吸附能力最强,且远高于其他土壤。除广西赤红壤外,嗪吡嘧磺隆在其他7种类型土壤中的滞后系数 (H) 均小于1,解吸过程存在滞后现象,存在潜在环境风险。单因素试验结果表明,嗪吡嘧磺隆在土壤中的吸附行为受腐殖酸的影响极显著 (P<0.01),受pH值和Mn2 + 的影响显著 (P<0.05),受高岭土和稻壳生物炭的影响不显著 (P>0.05)。采用中心复合试验设计,建立了具有一定预测功能的嗪吡嘧磺隆在土壤中的吸附过程BP神经网络模型,并进行了验证,拟合结果较好。  相似文献   

8.
采用振荡平衡法研究了Cu(Ⅱ)和温度对丁吡吗啉在内蒙砂土,北京壤土,广西粘土中吸附等温线的影响。结果表明,丁吡吗啉添加Cu(Ⅱ)前后在3种土壤中的吸附均可以采用Langmuir方程和Freundlich方程较好的描述,Cu(Ⅱ)降低了3种土壤对丁吡吗啉的吸附,3种土壤对丁吡吗啉的吸附量及Cu(Ⅱ)对土壤吸附丁吡吗啉影响的大小顺序为:粘土壤土砂土。根据综合试验结果,Cu(Ⅱ)与丁吡吗啉在占用土壤的吸附位点上可能存在竞争,土壤有机质含量高有利于Cu(Ⅱ)的吸附,丁吡吗啉与Cu(Ⅱ)之间的相互作用减少了土壤对丁吡吗啉的固定量,增加了其在土壤中的活动性;在10、25、35℃,丁吡吗啉在3种土壤中的吸附规律亦可以较好的用Langmuir方程和Freundlich方程描述,丁吡吗啉在3种土壤中的吸附会受到温度的影响,丁吡吗啉的吸附常数Kd和吸附自由能△G的绝对值随着温度的升高而减小,说明温度的升高不利于土壤对丁吡吗啉的吸附。  相似文献   

9.
微塑料可以吸附环境中的有机污染物,可能会影响农药在土壤中的降解、吸附和迁移等环境行为,其影响与微塑料和农药的类型有关。为明确微塑料对异菌脲在土壤中环境行为的影响,通过室内模拟试验,研究了聚酰胺 (PA) 和聚甲基丙烯酸甲酯 (PMMA) 微塑料对异菌脲在土壤中吸附、迁移、淋溶和降解的影响。研究结果表明:含2% (质量分数,下同) PMMA土壤和含2% PA土壤的土壤吸附常数 (Kf) 分别是对照土壤的2.9倍和1.2倍;在pH 4 ~ 7范围内,土壤对异菌脲的吸附容量随pH值的增加而增加;异菌脲在对照土壤、含2% PA土壤、含2% PMMA土壤中的比移值 (Rf) 分别为0.12、0.097和0.091,在第一段土柱中的含量分别为85.4%、100%和100%;异菌脲在对照土壤、含2% PA土壤和含2% PMMA土壤中的降解半衰期分别为19.8、26.7和40.8 d。研究表明,微塑料通过提高土壤对农药异菌脲的吸附能力,抑制了异菌脲在土壤中的迁移和淋溶,延长了其在土壤中的降解半衰期,因而可能会加剧其对表层土壤环境的威胁。  相似文献   

10.
啶虫脒和阿维菌素在4种不同类型土壤中的吸附及迁移   总被引:1,自引:0,他引:1  
采用薄层层析和平衡振荡法,分别测定了啶虫脒和阿维菌素在紫色土、砖红土、黄壤土和黑土4种不同类型土壤中的迁移率(Rf )和吸附常数(Kd),比较了2种农药在单用及混用下迁移和吸附行为的差异。结果表明:2种农药在单用及混用下的迁移行为几乎不存在差异,在4种土壤中的Rf 值大小顺序均为:黄壤土>紫色土>黑土>砖红土;2种农药的吸附过程均符合经典的Freundlich模型,混用时阿维菌素对啶虫脒的吸附无影响,但啶虫脒的存在会减少土壤对阿维菌素的吸附,表现为竞争吸附作用。  相似文献   

11.
Flumioxazin adsorption kinetics were described using a Greenville sandy clay loam soil. Adsorption kinetics experiments showed that 72% of total herbicide was absorbed after 1 h of continuous shaking and continued to increase to 78% after 72 h. Flumioxazin adsorption was then tested on seven agriculturally important soils throughout the southern USA. Adsorption isotherms for all soils had K(f) (Freundlich distribution coefficient) values that ranged from 8.8 to 0.4, with many near 1.5. Soil organic matter content was the parameter most highly correlated with flumioxazin adsorption (r(2) = 0.95, P < 0.001). Sorption to clay minerals had K(f) values ranging from 50 for bentonite to 4.7 for kaolinite. However, normalizing K(f) for sorbent surface area revealed that aluminum hydroxide (gibbsite) possessed the greatest flumioxazin sorption per unit area. Sorption to anionic exchange resin (K(f) 676) was greater than cationic exchange resin (K(f) 42). Molecular model calculations were performed to elucidate why sorption was greater to anionic exchangers. These calculations indicated that a region of dense electronegativity exists on the 3-dione moiety of the molecule. This would lead to greater flumioxazin sorption by positively charged surface sites. Desorption isotherms from soil exhibited no effect of hysteresis. Desorption from clay minerals was very rapid and flumioxazin in solution was undetectable after three desorption steps. From these data it was concluded that flumioxazin can become readily available in soil solution with increase in soil water content.  相似文献   

12.
A search was made forRhizoctonia solani-suppressive soils by establishing many small experimental plots, half of which were planted withRhizoctonia-infected seed potatoes and the other half with disinfected seed stock. The sclerotium index of the harvested tubers was compared witht that of the seed potatoes. In suppressive soils, the sclerotium index of the harvest is much lower than that of the seed potatoes. None of the plots on holocene marine soils (loamy sand, sandy loam, clay loam and clay) proved to be suppressive in 1978 and 1979. Only on pleistocene, slightly acid sandy soil suppressiveness was observed. In 1978, four out of twelve plots showed suppressiveness when the plots were planted with seed potatoes produced on a sandy soil. In 1979, only two out of thirtyone plots were slightly suppressive when planted with seed potatoes produced on a young clay loam from a new polder. A higher percentage of sclerotia on tubers from sandy soils proved to be infected with antagonistic fungi (73%) than of those on tubers from marine clay or loam soils (25%). Factors that influence suppressiveness are suggested.  相似文献   

13.
The persistence of [14C]sethoxydim (2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexene-1-one) at the 2 μg g?1 level was studied under laboratory conditions in three soils at 20°C and 85% of their field capacity moistures. Following extraction of the soils with methanol, the herbicide remaining was determined using radiochemical techniques. Loss of radioactivity was more rapid on moist clay loam and sandy loam, where the half-lives were 12 days, than on heavy clay in which the half-life was 26 days. Loss of radioactivity from air-dried soils (15% of field capacity) was negligible with over 94% of the applied activity being recovered after 28 days. The persistence of sethoxydim at a rate of 1 kg ha?1 was investigated under field conditions using small plots at three prairie locations for 3 successive years. Using an oat-root bioassay procedure, no residues were detected in the 0–10 cm depths of any soils, any year, in September following May treatments.  相似文献   

14.
Eleftherohorinos  I.  Dhima  K.  Vasilakoglou  I. 《Phytoparasitica》2004,32(3):274-285
Petri dish bioassays, based on root response of corn grown in soil or in perlite, were used to study the activity, adsorption, mobility and field persistence of sulfosulfuron in a silty clay loam and a sandy loam soil. Both bioassays indicated that activity of sulfosulfuron increased with increasing herbicide concentration, and to a slightly greater degree in sandy loam soil than in silty clay loam soil. More sulfosulfuron was adsorbed on the sandy loam (not biologically available) than on the silty clay loam soil. Consequently, slightly greater amounts of sulfosulfuron were leached through the silty clay loam than through the sandy loam soil. Biologically available sulfosulfuron was not detected at depths below 40 cm after application in sandy loam, but this was not the case for the silty clay loam soil. In 2002, all sulfosulfuron rates showed field persistence of less than 5 months. On the other hand, in 2003, biologically available sulfosulfuron was detected in the 0–10-cm soil depth 150 days after application. http://www.phytoparasitica.org posting May 6, 2004.  相似文献   

15.
The persistence of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), [14C]dicamba (3,6-dichloro-2-methoxybenzoic-7-14C acid) and propanil [N-(3,4-dichlorophenyl)propionamide] at rates equivalent to 1 kg ha?1, were studied under laboratory conditions in a clay loam, a heavy clay and a sandy loam at 85% of field capacity and at 20±1°C, both singly and in the presence of herbicides normally applied with these chemicals as tank-mix or split-mix components. The degradation of bromoxynil was rapid with over 90% breakdown occurring within a week in the heavy clay and sandy-loam soils, while in the clay-loam approximately 80% of the bromoxynil had broken down after 7 days. In all three soils degradation was unaffected by the presence of asulam, diclofop-methyl, flamprop-methyl, MCPA, metribuzin or propanil. Propanil underwent rapid degradation in all soil treatments, with over 95% of the applied propanil being dissipated within 7 days. There were no noticeable effects on propanil degradation resulting from applications of asulam, barban, bromoxynil, dicamba, MCPA, MCPB, metribuzin or 2,4-D. The breakdown of [14C]dicamba in a particular soil was unaffected by being applied alone or in the presence of diclofop-methyl, flampropmethyl, MCPA, metribuzin, propanil or 2,4-D. The times for 50% of the applied dicamba to be degraded were approximately 16 days in both the clay loam and sandy loam, and about 50 days in the heavy clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号