首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
小麦穗部性状与产量密切相关,挖掘穗部性状基因及其关联分子标记具有重要意义。本研究以周8425B?小偃81衍生的RIL群体(F8)为材料,利用90k芯片标记构建的高密度遗传图谱对3个环境下的穗长、小穗数、不育小穗数、穗粒数、千粒重进行QTL定位。共检测到19条染色体上的71个QTL,变异解释率(PVE)范围为2.10%~45.25%,其中37个位点为主效QTL(PVE10%)。QSl.nafu-6A.2(穗长)、QSl.nafu-7A(穗长)、QSsn.nafu-2A.1(不育小穗数)、QSsn.nafu-2D(不育小穗数)和QGns.nafu-2B(穗粒数)在多个环境中被检测到,且LOD10,PVE20%。位于同一个基因簇中的QSl.nafu-6A.2(穗长)、QGns.nafu-6A(穗粒数)和QTgw.nafu-6A(千粒重)在多个环境中被检测到,且与已报道的相关位点位置相同或相近,在分子标记辅助育种中具有较大参考价值。  相似文献   

2.
小麦作为目前全球范围内种植最为普遍的粮食作物之一,在提供人类所需的热量与蛋白质方面发挥着至关重要的作用。然而,随着耕地面积的不断缩减以及气候变化的日益加剧,全球粮食安全正面临着前所未有的严峻挑战。选育优良小麦品种成为提升小麦产量的关键所在,是保障世界粮食安全的重要策略。影响小麦产量的主要因素包括每穗粒数、粒重和单位面积穗数,而这三要素均与穗部性状相关,一直以来受到研究者的高度关注。随着测序技术的不断革新,小麦基因克隆与功能研究领域迎来了一系列新的突破。具体而言,诸如 RNA-Seq(BSR-seq)和外显子组捕获测序等基因定位技术,以其高效且精确的特性,迅速成为关键基因定位的有力手段。同时,单核苷酸多态性芯片在基因分型和育种工作中得到了广泛应用,为研究者提供了丰富的遗传信息,基于 SNP 数据的全基因组关联分析正日益成为连接遗传位点与发育性状的重要桥梁。研究人员通过将基因共表达网络或数量性状位点分析与全基因组关联分析相结合,进一步提升了识别与表型相关候选基因的准确性和效率。这一系列的进步不仅推动了小麦遗传研究的深入发展,也为小麦育种和农业生产提供了新的思路和策略。对小麦穗部调控相关基因及穗部性状相关的数量性状位点进行分类与总结,旨在为小麦穗部性状遗传改良和育种奠定基础。  相似文献   

3.
为促进豇豆种质资源的高效利用和新基因发掘,本研究基于豇豆F2群体,利用重测序技术构建了包含2984个bin标记(142,146个SNP)的遗传连锁图谱。该图谱共11个连锁群,总长1333.48cM,平均图距0.45cM。不同连锁群的长度从84.63~183.15 cM不等,平均图距从0.27 cM至0.89 cM不等。根据F2、F3的表型调查,利用该图谱共检测到15个QTL,分别与百粒重、花色、荚长、荚形、荚质、籽粒颜色等14个性状相关。其中荚质、荚长、主茎分枝数等分别检测到1个主效QTL区间,其余性状检测到多个QTL区间。通过对区间内的基因注释分析,分别确定了与荚长、单株荚数、籽粒颜色构成等性状相关的候选基因。本研究中QTL分析结果将为豇豆属重要性状的标记辅助选择奠定基础,而候选基因筛选则有助于深入解析这些性状的遗传机理,提高豇豆分子遗传学研究水平。  相似文献   

4.
穗部性状和株高是小麦育种的重要指标。以扬麦13 (Yangmai 13,简称YM13)和CIMMYT引进种质人工合成小麦衍生系C615为亲本构建重组自交系群体为研究材料,基于小麦90K SNP芯片基因型数据,结合3个环境下表型结果,分别检测到1个每穗结实总小穗数、2个穗长、2个结实小穗着生密度和3个株高的位点。其中,每穗结实总小穗数位点QSN.yaas-3B与株高位点QPH.yaas-3B处于同一位置,穗长位点QSL.yaas-5A、结实小穗着生密度位点QSC.yaas-5A和株高位点QPH.yaas-5A处于同一位置,穗长位点QSL.yaas-6A和结实小穗着生密度的位点QSC.yaas-6A处于同一位置。比对结果显示QSN.yaas-3B/QPH.yaas-3B和QSL.yaas-6A/QSC.yaas-6A位点均未见报道。进一步将QSL.yaas-5A/QSC.yaas-5A/QPH.yaas-5A位点紧密连锁SNP标记转化为KASP标记QC615-5A-KASP,并在105份小麦品系中初步验证其育种效应。研究结果可为小麦产量相关性状分子育种提供参考。  相似文献   

5.
本研究以热带玉米骨干自交系T32和QR273为亲本构建的150份F2、F2∶3分离家系为材料,利用简化基因组测序技术(GBS)对F2单株的基因型鉴定,同时分别在甘肃张掖和贵州贵阳两环境条件下对F2∶3家系的穗长、穗粗、穗行数、行粒数和秃尖长等5个穗部相关性状进行表型评价,采用完备区间作图法进行QTL定位。结果表明,两个环境下共检测到46个穗部相关性状QTL,分布于10条染色体上,可分别解释表型变异范围为1.89%~17.18%,可解释穗部性状表型变异大于10%的QTL有6个。结合公共数据库,利用生物信息学分析策略,预测出6个控制穗部性状变异的候选基因(Zm00001d041072,Zm00001d053048,Zm00001d011355,Zm00001d041073,Zm00001d030086,Zm00001d030088),这些基因所编码的蛋白具有植物生长发育、激素合成、营养成分转运和其他许多生物学功能,可作为后续基因图位克隆和分子辅助育种的候选靶标。  相似文献   

6.
小麦籽粒产量及穗部相关性状的QTL定位   总被引:5,自引:7,他引:5  
由小麦品种花培3号和豫麦57杂交获得DH群体168个株系,种植于3个环境中,利用305个SSR标记对籽粒产量和穗部相关性状(穗长、穗粒数、总小穗数、可育小穗数、小穗着生密度、千粒重和粒径)进行了QTL定位。利用基于混合线性模型的QTLNetwork 2.0软件,共检测到27个加性效应和13对上位效应位点,其中 8个加性效应位点具有环境互作效应。相关性高的性状间有一些共同的QTL位点,表现出一因多效或紧密连锁效应。5D染色体区段Xwmc215–Xgdm63,检测到控制籽粒产量、穗粒数、总小穗数、可育小穗数和小穗着生密度5个性状的QTL位点,各位点的遗传贡献率较大且遗传效应方向相同,增效等位基因均来源于豫麦57,适用于分子标记辅助育种和聚合育种。控制千粒重与穗粒数的QTL位于染色体不同区段,有利于实现穗粒数与粒重的遗传重组。  相似文献   

7.
水稻穗部性状的QTL分析   总被引:2,自引:1,他引:2  
水稻穗部性状与产量关系密切。以粳稻品种日本晴和一个大穗籼稻材料H71D为亲本构建F2群体,于2011和2012年分别以172个单株和138个单株,对穗长、一次枝梗数、二次枝梗数、总粒数、穗着粒密度等5个穗部性状进行QTL定位。以LOD≥3为阈值,两年共检测到38个QTL,其中2011年21个,2012年17个,2年重复检测到的QTL为4个,占总数的10.5%。5个性状之间大都具有显著的表型相关性,相关性较强的性状之间具有较多相同或紧密连锁的QTL,效应值较大的QTL易于在不同群体和不同环境中被重复检测到。检测到的QTL为进一步进行元分析和精细定位打下了基础,也为通过分子标记辅助选择提高产量提供了有用信息。  相似文献   

8.
小麦穗部性状与单株产量密切相关。本研究以小麦骨干亲本燕大1817与优良品系北农6号衍生的269个重组自交系为材料,通过在北京和河北石家庄的2年田间试验数据,利用本实验室已构建的高密度SNP和SSR遗传连锁图谱进行穗长、穗粒数和穗粒重QTL定位。采用完备复合区间作图法共检测到29个穗部性状加性效应QTL,其中10个穗长QTL分布于1B、2D、3A、3B、4A、5A、5B、6A和7D染色体上,解释的表型变异率为2.96%~9.63%,QSl.cau-4A.2在所有5个环境中均能被检测到,解释的表型变异为5.89%~9.62%,另有7个QTL能在2个或2个以上环境中被检测到;8个穗粒数相关QTL分布于1A、3A、3D、4A和5B染色体上,解释的表型变异为4.06%~11.17%,为单个环境QTL。11个与穗粒重相关QTL分布于1A、1B、2A、2D、3A、4D、5A、5B和6B染色体上,解释的表型变异为2.79%~16.12%,其中QGws.cau-1B、QGws.cau-3A和QGws.cau-6B.2在2个或者2个以上环境中能被检测到。另外,鉴定出6个分布于1A、2D、3A、4A和5B染色体上的QTL富集区段。  相似文献   

9.
蓖麻种子大小直接影响产量,不同的蓖麻材料间种子大小差异较大,深入研究蓖麻种子大小性状的遗传机制对蓖麻种子产业的发展具有重要意义。本研究以蓖麻两性自交系SL1为父本,雌性系HCH1为母本1(组合1)、雌性系HCH3为母本2(组合2),分别构建F2、BC1群体。首先,分析2组遗传群体种子大小性状间的相关性。其次,利用全基因组测序技术(whole genome sequencing,WGS)对组合1的F2群体中的150个单株进行测序分析,构建高密度遗传图谱并结合种子大小性状表型数据进行数量性状座位(quantitative trait locus, QTL)定位分析。最后,对QTL区间包含的基因进行BLAST同源比对和KEGG通路富集分析确定候选基因。结果表明,不同组合群体的种子大小各性状间的相关性有差异,种子的长度和宽度相关性最显著。共检测到种子大小性状相关QTL位点18个,其中种子长度2个QTLs、种子宽度5个QTL、种子厚度4个QTL、百粒重7个QTL,分别分布在连锁群1、4、7、8、9、10上, LOD值介于3.77~...  相似文献   

10.
采用中SNP160K芯片对丰收24×通交83-611 F2群体252个植株及其亲本进行基因分型,构建了一张由5861个SNP标记组成的全长为3661.46 cM的高密度遗传连锁图谱。利用完备区间作图法(ICIM)定位到7个株高QTL,每个QTL可解释2.56%~10.41%的株高变异。qPH-6-1具有最高的表型变异贡献率和显性效应,可解释10.41%的株高变异,加性效应和显性效应分别为–1.72和18.94; qPH-18-1贡献率次之,可解释9.64%的株高变异,但具有最高的加性效应,达-12.42。在F2群体中筛选出11个qPH-6-1和qPH-18-1基因型为Q6Q6/Q18Q18的单株,平均株高167.00 cm;筛选出16个基因型为q6q6/q18q18的植株,平均株高为91.25 cm。在qPH-18-1定位区间内外增加23个SNP标记,将定位区间由766.97kb缩小至66.03kb,包含8个基因,结合基因注释和相对表达量差异分析,推测Glyma.18G279800和Glyma.18G280200可能与大豆的株高相关。本研究为大豆株型的改良提供了分子参考依据和遗传基础。  相似文献   

11.
为了探究控制玉米穗夹角的遗传基础,本试验以BYD和MX两个玉米重组自交系群体为材料,采用高密度SNP和连锁分析,对调控玉米穗夹角性状的基因进行QTL定位和可能的功能基因分析。结果表明,穗夹角性状具有较高的遗传性,受基因型和环境的影响。穗夹角经过多环境的调查表明,在两个分离群体中均呈正态分布;共定位到调控穗夹角性状27个QTL,包括5个主效QTL,分别位于2号、4号和7号染色体上,两个来自BYD群体,3个来自MX群体,穗夹角性状QTL的表型贡献率从5.7%(qBYDEA2)到6.9%(qMXEA2-2);进一步通过bin图谱法缩进主效QTL区间,共发掘7个穗夹角性状候选基因,它们主要编码转录调控和代谢的酶。本研究结果首次揭示了玉米穗夹角的遗传基础,并有助于未来通过分子育种应用从而提高玉米优良穗夹角的品种。  相似文献   

12.
小麦茎秆断裂强度相关性状QTL的连锁和关联分析   总被引:3,自引:0,他引:3  
小麦茎秆断裂强度与倒伏特性关系密切,并对产量有很大影响。本研究旨在解析茎秆断裂强度的遗传机制,开发与该性状紧密连锁/关联的分子标记。利用山农01-35′藁城9411重组自交系(RIL)群体(含173个F8:9株系)和由205个品种(系)构成的自然群体,借助90 k小麦SNP基因芯片、DArT芯片及传统分子标记技术,在2个环境中对两群体的茎秆断裂强度相关性状进行连锁分析和全基因组关联分析。利用已构建的高密度连锁图谱,在4B染色体的TDURUM_CONTIG63670_287–IACX557和EX_C101685–RAC875_C27536等区段上,检测到9个控制小麦茎秆断裂强度、株高、茎秆第2节间充实度、茎秆第2节壁厚相关性状的加性QTL,可解释表型变异9.40%~36.30%。同时,利用包含24 355个SNP位点的复合遗传图谱,在自然群体中检测到37个与茎秆断裂强度相关性状(P0.0001)的标记,分别位于1A、1B、2B、2D、3A、3B、4A、4B、5A、5B、5D、6B、7A、7B和7D染色体,可解释表型变异7.76%~36.36%。在4B染色体上,以连锁分析检测到控制茎秆断裂强度的RAC875_C27536与关联分析检测到的Tdurum_contig4974_355标记,在复合遗传图谱上的距离为6.7 cM,说明该区段存在控制小麦茎秆断裂强度的重要基因。  相似文献   

13.
以普通小麦品种川农16与人工合成小麦衍生品种川麦42为亲本构建了含有127个株系的重组自交系(RIL)群体,将2008和2009年收获的种子用玉米象(Sitophilus zeamais)虫卵进行接种,并于2009年11月开始储藏,次年8月和10月进行虫害调查。利用复合区间作图法(CIM)对RIL群体的抗虫性进行QTL定位分析。利用2008年收获群体检测到位于3B、2D和3D染色体的3个QTL,贡献率依次为10.2%、8.5%和8.3%;利用2009年收获群体检测到位于3D和4B的2个QTL,贡献率分别为8.5%和11.3%。位于3D染色体Xbarc6–Xgwm112标记区间内的QTL在年度间重复检测到,贡献率为8.3%~8.5%,抗性位点来自川农16。  相似文献   

14.
Puccinia triticina引起的叶锈病是小麦主要病害之一, 引进种质C615具有叶锈病成株期抗性, 但其抗病性遗传机制尚不清楚。本研究以抗病亲本C615与高感叶锈病亲本宁麦18构建的F2:7代重组自交系群体为材料, 利用337对多态性SSR标记构建遗传连锁图谱, 结合2016、2017连续两年的叶锈病鉴定结果进行复合区间作图, 结果在1BL、2DS、3BS、4DL和6BS染色体上共发现了5个抗性QTL, 暂命名为QLr.njau-1BLQLr.njau-2DSQLr.njau-3BSQLr.njau-4DLQLr.njau-6BS。其中, QLr.njau-1BLQLr.njau-3BSQLr.njau-4DL在两年均被检测到, 分别解释10.1%~15.7%、10.9%~13.5%和8.2%~9.0%的表型变异; 另2个QTL只在一年被检测到, 解释6.2%和9.2%的表型变异。除QLr.njau-2DS外的4个抗性QTL均来源于抗病亲本C615。QLr.njau-1BLQLr.njau-4DL分别与已报道的慢病性基因Lr46Lr67在同一区域, QLr.njau-3B可能为一个新的抗叶锈病QTL。此外, 本研究在C615/扬麦13 (轮回亲本)BC4F5回交群体中选出了15个农艺性状优良且抗叶锈病的株系, 利用与C615所含抗性QTL紧密连锁的7个SSR标记对其进行基因型检测, 结果显示所有这15个株系均含有来自C615的抗性QTL, 且有3个株系聚合了全部抗性位点, 表明C615可作为抗源亲本用于高产、抗病育种。本研究结果将为分子标记选育抗叶锈品种提供材料和技术支撑。  相似文献   

15.
通过对小麦面粉膨胀势进行初步定位,可以为小麦品质遗传改良和相关基因的精细定位和克隆提供理论依据。以小麦‘花培3号’和‘漯麦4号’的双单倍体群体为材料,通过一年两点试验,研究了面粉膨胀势的遗传方式,并采用复合区间作图法对其进行QTL分析。结果发现,面粉膨胀势由微效多基因控制,为数量性状。QTL定位结果表明,在北京点定位到2个与面粉膨胀势相关QTLs,位于4A染色体上。这两个位点均来自母本‘花培3号’等位基因的增效作用,其效应值分别为0.4298和0.5948。河南点只检测到1个与面粉膨胀势相关QTL,也位于4A染色体上。该位点来自母本‘花培3号’等位基因的减效作用,其效应值为0.3024。3个QTLs位于4A染色体上的不同标记区间,共解释面粉膨胀势37.92%的表型变异。两地没有检测到共同的QTL。尽管北京点的两个位点贡献率分别为11.29%和21.48%,但不是稳定的QTL,可能在小麦面粉膨胀势分子标记辅助选择上应用不是很大。  相似文献   

16.
本研究以低茎秆含糖量的粒用高粱品系LR625(P1)和高茎秆含糖量的甜高粱品系Rio(P2)杂交获得的234个F2:3家系为试验材料,构建了含有92个高粱SSR标记、6个玉米SSR标记和自主开发的28个INDEL标记的遗传连锁图谱,并进行了茎汁混合锤度、茎秆重和出汁率性状的QTL定位。研究结果显示:共检测到7个与茎汁混合锤度有关的QTL,分布在高粱的第LG-3、LG-5、LG-7和LG-9连锁群上,解释的总表型变异为62.45%;4个与茎秆重有关的QTL,分布在高粱的第LG-2、LG-5、LG-6和LG-7连锁群上,解释的总表型变异为60.92%;8个与出汁率有关的QTL,分布在高粱的第LG-1、LG-2、LG-3、LG-6、LG-7和LG-9连锁群上,解释的总表型变异为99.75%。研究结果有助于深入理解茎秆含糖量遗传基础,为茎秆含糖量QTL精细定位和基因挖掘提供依据。  相似文献   

17.
芒长是普通小麦的重要农艺性状,受多个基因控制。本研究利用长芒的普通小麦郑麦9023与无芒的西藏半野生小麦Q1028构建一个重组自交系群体(186个株系);采用SSR和DAr T分子标记,构建覆盖小麦全基因组的遗传图谱(2597 cM)。基于重组自交系群体两年芒长表型数据,采用ICIM作图法对小麦芒长性状进行QTL定位分析。共检测到2个与芒长相关的QTL,即Qwa.sau-4AS和Qwa.sau-5AL。它们分别位于4AS和5AL染色体上,可分别解释7.4%和27.3%的表型变异。这2个QTL效应可能分别来源于钩芒基因Hd与抑芒基因B1。利用连锁标记进行基因型分析,表明Qwa.sau-4AS与Qwa.sau-5AL对芒长的抑制效果具有累加效应,且Qwa.sau-5AL效应强于Qwa.sau-4AS。本研究将为精细定位及克隆这2个QTL奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号