首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of xylazine on the arrhythmogenic dose of epinephrine (ADE) was studied in 9 horses. Anesthesia was induced by administration of guaifenesin (50 mg/kg of body weight, IV) followed by thiamylal (4 to 6 mg/kg, IV) and was maintained at 1 minimal alveolar concentration (MAC) of halothane (0.89%). Base apex ECG and facial artery pressure were recorded. Epinephrine was infused in a sequence of arithmetically spaced increasing rates (initial rate 0.25 micrograms/kg/min) for a maximum of 10 minutes. The ADE was defined as the lowest epinephrine infusion rate to the nearest 0.25 micrograms/kg/min at which at least 4 premature ventricular depolarizations occurred in a 15-second period. Xylazine (1.1 mg/kg, IV) was administered after the control ADE was determined. Xylazine did not significantly alter the ADE (control, 1.12 +/- 0.38 micrograms/kg/min; xylazine, 1.21 +/- 0.46 micrograms/kg/min). Blood pressure increased transiently for 8 minutes after xylazine administration. Baseline systolic and diastolic arterial pressures and heart rate were not significantly different from control baseline pressures and heart rate 15 minutes after xylazine administration. Blood pressure and heart rate increased significantly during control and xylazine ADE determinations. Significant differences in pH, PaO2, PaCO2, or base excess were not observed between baseline and ADE in the control or xylazine groups. One horse developed atrial fibrillation, and 2 horses developed ventricular fibrillation during ADE determinations.  相似文献   

2.
Opioids may exert a protective effect against ventricular arrhythmias via a vagally mediated mechanism. This study evaluated the effects of the opioid remifentanil on arrhythmogenicity of epinephrine during halothane anesthesia. Eight dogs were assigned to 2 treatments in a randomized crossover design, with 1-week intervals between treatments. Anesthesia was maintained with 1.3% end-tidal halothane in oxygen and mechanical ventilation to maintain eucapnia. A constant rate infusion of remifentanil (0.72 microg/kg/min) was administered throughout the study in the experimental treatment, while control animals received physiologic saline as placebo. The arrhythmogenic dose of epinephrine (ADE), defined as 4 premature ventricular complexes (PVCs) within 15 s, was determined by administering progressively increasing infusion rates of epinephrine (2.5, 5.0, and 10 microg/kg/min), allowing 20 min intervals between each infusion rate. In both treatments, epinephrine infusions induced bradyarrhythmias and atrioventricular conduction disturbances, which were followed by escape beats and PVCs. In the remifentanil treatment, mean +/- s ADE values (11.3 +/- 4.9 microg/kg) did not differ from values observed in control animals (9.9 +/- 6.1 microg/kg). On the basis of the ADE model for assessing the arrhythmogenity of drugs during halothane anesthesia, the present study did not demonstrate a protective effect of remifentanil (0.72 microg/kg/min) against ventricular arrhythmias in dogs.  相似文献   

3.
The ventricular arrhythmogenic dose of epinephrine (ADE) was determined in 6 dogs anesthetized with halothane alone or with halothane after injection of tiletamine/zolazepam (TZ). Respiratory rate and tidal volume were controlled and sodium bicarbonate was administered to maintain arterial pH and blood gas values within reference range. Heart rate and arterial blood pressure were recorded during determination of the ADE. The ADE (mean +/- SD) was no different during anesthesia with use of halothane alone (8.9 +/- 4.3) than it was when injections of TZ preceded administration of halothane (6.7 +/- 2.8). Tiletamine/zolazepam was also administered IV immediately after determination of the ADE during halothane-induced anesthesia. The TZ administered in this manner did not alter the ADE. Blood pressure and heart rate were significantly greater during infusion of epinephrine than immediately prior to infusion. The administration of TZ did not alter blood pressure response. The ADE was also determined in 6 cats anesthetized with halothane preceded by administration of TZ. The ADE (mean +/- SD) was 0.7 +/- 0.23 micrograms/kg, a value similar to that reported for cats during anesthesia with halothane alone.  相似文献   

4.
Repeat determinations of the arrhythmogenic dose of epinephrine (ADE) were made over two 6 h periods on 2 separate days during halothane and isoflurane anesthesia. Each of 6 dogs underwent 4 trials (2 halothane and 2 isoflurane). During each trial, the ADE was determined at baseline, 3 and 6 h. Epinephrine was infused for 3.0 min at increasing dose rates (2.5, 5.0, 10.0 and 20.0 mg/kg/min) until the arrhythmia criterion (4 or more intermittent or continuous premature ventricular contractions) was reached. The inter-infusion interval was 20 min. There were no significant differences in the measured cardiovascular parameters (SBP, DBP, MBP, and HR), arterial blood gases, or acid-base status prior to each determination during a single trial. The cardiovascular responses to epinephrine infusion were not significantly different between inhalants or determinations. The range of the ADE determined over both trials during isoflurane anesthesia was 30.12 +/- 12.21 micrograms/kg to 50.83 +/- 9.17 micrograms/kg. The baseline ADE during Day 1 of halothane anesthesia (6.70 +/- 1.36 micrograms/kg) was significantly greater than ADE determinations at 3 (4.65 +/- 0.88 micrograms/kg) and 6 h (4.61 +/- 0.87 micrograms/kg). The reduction in the ADE over time during day 2 of halothane anesthesia was not statistically significant (P = 0.0669). These results suggest that during halothane anesthesia, the ADE is not repeatable over time, and they may influence our interpretation of the results of investigations that measure alterations in the ADE due to pharmacological manipulations without repeated control ADE determinations.  相似文献   

5.
The arrhythmogenic dose of epinephrine (ADE) was determined in heartworm-infected and noninfected (control) dogs during thiamylal-induced and halothane-maintained anesthesia to assess the myocardial sensitization. The ADE in heartworm-infected dogs (2.42 +/- 0.26 micrograms/kg of body weight) was significantly lower than that for the controls (3.36 +/- 0.29 micrograms/kg). After 2 weeks, ADE was determined again in these dogs after atropine treatment. Atropine treatment lowered the ADE to 1.76 +/- 0.33 micrograms/kg and 1.77 +/- 0.19 micrograms/kg in heartworm-positive and -negative dogs, respectively. After 2 weeks more, the ADE was determined after administration of prazosin, an alpha 1-antagonist. Only 2 of 6 controls and 3 of 6 heartworm-positive dogs had arrhythmias after a threefold increase of ADE. The mean ADE in the dogs that responded to treatment were 7.4 micrograms/kg and 7.2 micrograms/kg for heartworm-positive and -negative dogs, respectively. The finding of this study indicated that ADE in heartworm-infected dogs were lower than those in the control dogs, which makes the heartworm-infected dogs more vulnerable to arrhythmia during anesthesia. Atropine did not protect the dogs of either group. However, prazosin protected the dogs of both groups by significantly increasing the threshold of the ADE. On the basis of our findings, to reduce the risk of arrhythmia, we suggest that routine screening of dogs for heartworm infection be done before anesthetics are used.  相似文献   

6.
Observations following intravenous xylazine administration in steers   总被引:1,自引:0,他引:1  
Xylazine was used on 84 occasions to anaesthetise 34 steers, (17 Herefords and 17 Friesians) between 10 and 24 months of age with bodyweights ranging from 209 to 563 kg. Xylazine as a 2 per cent solution was injected intravenously; the mean dose for the Hereford steers was 0.228 mg/kg and for the Friesian steers 0.274 mg/kg. On 21 occasions xylazine only was used. On the other occasions the xylazine was supplemented with local or regional analgesia. The Hereford steers became recumbent after injection of xylazine more readily than the Friesian steers and took longer to recover. In addition the Hereford steers showed fewer reactions to surgical stimulation than the Friesians. It is concluded that xylazine should be supplemented with some form of effective analgesia whenever a surgical operation is performed.  相似文献   

7.
Recent evidence has linked alpha-receptor and beta-receptor activations with ventricular arrhythmia genesis. In order to assess the relative contribution of specific adrenoceptors (alpha 1, alpha 2, beta 1) on ventricular arrhythmogenic activity during xylazine (1.1 mg X kg-1 X hr-1)-halothane (1.35%) anesthesia, the arrhythmogenic dose of epinephrine (ADE) was repeatedly determined before and after prazosin (alpha 1 antagonist; 0.1 mg X kg-1), metoprolol (beta 1 antagonist; 0.5 mg X kg-1), and yohimbine (alpha 2 antagonist; 0.125 mg X kg-1) administration in 6 dogs. The ADE was expressed as infusion rate and total dose. The ADE was defined as the dose which produced 4 or more intermittent premature ventricular contractions within 15 s during a 3-minute infusion period or within 1 minute from end of infusion. Control ADE was 2.69 +/- 0.372 (micrograms X kg-1 X min-1) and 4.17 +/- 0.544 (micrograms X kg X -1) for infusion rate and total dose, respectively. The ADE significantly increased after prazosin (P less than 0.005), metoprolol (P less than 0.005), and yohimbine (P less than 0.05) administration. The ADE values increased to 5.42 +/- 1.22 (rate) and 8.10 +/- 1.95 (dose) after alpha 2 blockade, but were significantly less than the alpha 1 and beta 1 blockade ADE values. In conclusion, although both alpha- and beta-adrenoceptor blockade depressed ventricular arrhythmia genesis in xylazine-halothane-anesthetized dogs, alpha 2 blockade, which was achieved with the recommended dose of yohimbine for reversal of anesthetic-induced CNS depression, was not as protective as alpha 1 (prazosin) or beta 1 (metoprolol) blockade.  相似文献   

8.
Epinephrine-induced arrhythmias were studied in 4 cats (group A), using a 4 X 4 Latin square design. Each cat was anesthetized 4 times, 1 week apart, with halothane (1.5% end expired), isoflurane (2.0% end expired), and halothane or isoflurane preceded by ketamine administered IM (8.8 mg/kg). Lead II of the ECG and femoral artery pressure were recorded. Epinephrine was infused in progressively doubled rates (initial rate = 0.125 micrograms/kg/min) for a maximum of 2.5 minutes or until at least 4 ventricular premature depolarizations occurred within 15 s of each other. The arrhythmogenic dose of epinephrine (ADE; micrograms/kg) was calculated as the product of infusion rate and time to arrhythmia. The ADE (means +/- SD) during anesthesia with halothane alone and with ketamine-halothane anesthesia were 1.33 +/- 0.65 and 1.37 +/- 0.59 micrograms/kg, respectively; during anesthesia with isoflurane alone and ketamine-isoflurane anesthesia, the ADE were 9.34 +/- 1.29 and 16.16 +/- 3.63 micrograms/kg, respectively. The ADE was significantly greater (P less than 0.05) during isoflurane anesthesia and ketamine-isoflurane anesthesia than during halothane anesthesia. The percentages of change in systolic blood pressure (means +/- SD) at the ADE during halothane, ketamine-halothane, isoflurane, and ketamine-isoflurane were 31 +/- 34, 41 +/- 17, 127 +/- 27, and 148 +/- 57, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Alterations in the arrhythmogenic dose of epinephrine (ADE) were determined following administration of medetomidine hydrochloride (750 micrograms/M2) and a saline placebo, or medetomidine hydrochloride (750 micrograms/M2), followed by specific medetomidine reversal agent, atipamezole hydrochloride (50 micrograms/kg) 20 min later, in halothane-anesthetized dogs (n = 6). ADE determinations were made prior to the administration of either treatment, 20 min and 4 h following medetomidine/saline or medetomidine/atipamezole administration. Epinephrine was infused for 3 min at increasing dose rates (2.5 and 5.0 micrograms/kg/min) until the arrhythmia criterion (4 or more intermittent or continuous premature ventricular contractions) was reached. The interinfusion interval was 20 min. There were no significant differences in the amount of epinephrine required to reach the arrhythmia criterion following the administration of either treatment. In addition, the ADE at each determination was not different between treatment groups. In this study, the administration of medetomidine to halothane-anesthetized dogs did not alter their arrhythmogenic response to infused epinephrine.  相似文献   

10.
Cardiovascular effects of butorphanol (0.2 mg/kg of body weight, IV) and responses associated with subsequent administration of naloxone (0.04 mg/kg, IV) were studied in halothane (1.2% end-tidal concentration)-anesthetized dogs. Transient, but statistically significant (P less than 0.05), decreases in heart rate, mean and diastolic arterial blood pressures, and rate-pressure product were observed after butorphanol administration. Cardiac index, stroke volume, and systemic vascular resistance did not change significantly. Except for the decrease in heart rate, changes in the values of the cardiovascular variables measured after butorphanol administration did not appear to be clinically relevant. Sixty minutes after butorphanol administration, naloxone was given. Statistically significant (P less than 0.05) increases in heart rate, arterial blood pressures, cardiac index, and rate-pressure product, along with dysrhythmias were observed. Stroke volume and systemic vascular resistance remained unchanged after administration of naloxone. Naloxone administration was associated with changes indicative of increased myocardial oxygen consumption.  相似文献   

11.
Effects of xylazine (1.1 mg/kg of body weight, IV bolus, plus 1.1 mg/kg/h infusion) and subsequent yohimbine (0.125 mg/kg, IV bolus) administration on the arrhythmogenic dose of epinephrine (ADE) in isoflurane (1.8% end-tidal)-anesthetized dogs were evaluated. The ADE was defined as the total dose of epinephrine that induced greater than or equal to 4 premature ventricular contractions within 15 seconds during a 3-minute infusion period or within 1 minute after the end of infusion. Total ADE values during isoflurane anesthesia, after xylazine administration, and after yohimbine injection were 36.6 +/- 8.45 micrograms/kg, 24.1 +/- 6.10 micrograms/kg, and 45.7 +/- 6.19 micrograms/kg, respectively. Intravenous xylazine administration significantly (P less than 0.05) increased blood pressure and decreased heart rate, whereas yohimbine administration induced a significant (P less than 0.05) decrease in blood pressure. induced a significant (P less than 0.05) decrease in blood pressure. After yohimbine administration, the ADE significantly (P less than 0.05) increased above that after isoflurane plus xylazine administration. After yohimbine administration, blood pressure measured immediately before epinephrine-induced arrhythmia was significantly (P less than 0.05) less than the value recorded during isoflurane plus xylazine anesthesia. Heart rate was unchanged among treatments immediately before epinephrine-induced arrhythmia. Seemingly, yohimbine possessed a protective action against catecholamine-induced arrhythmias in dogs anesthetized with isoflurane and xylazine.  相似文献   

12.
Hemodynamic effects of spontaneous ventilation, intermittent positive-pressure ventilation (IPPV), and high-frequency oscillatory ventilation (HFOV) were compared in 6 dogs during halothane anesthesia. Anesthesia was induced with IV thiamylal Na and was maintained with halothane (end-tidal concentration, 1.09%). During placement of catheters, dogs breathed spontaneously through a conventional semiclosed anesthesia circuit. Data were collected, and dogs were mechanically ventilated, using IPPV or HFOV in random order. Ventilation was adjusted to maintain PaCO2 between 38 and 43 mm of Hg during IPPV and HFOV. Cardiac index, aortic blood pressure, and maximum rate of increase of left ventricular pressure were significantly (P less than 0.05) less during HFOV than during spontaneous ventilation, whereas right atrial and pulmonary artery pressure were significantly greater during HFOV than during spontaneous ventilation. During IPPV, only the maximum rate of increase of left ventricular pressure was significantly less than that during spontaneous ventilation.  相似文献   

13.
14.
The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).  相似文献   

15.
To quantitate acetylpromazine-induced alpha-adrenergic receptor blockade, phenylephrine was infused into dogs. The amount of phenylephrine necessary to increase the mean arterial blood pressure (MAP) 50% above base line, with or without the prior administration of acetylpromazine, served to quantify the degree of acetylpromazine-induced alpha-adrenergic receptor blockade. Seven dogs were anesthetized with thiopental, maintained on halothane in oxygen, and mechanically ventilated. All infusions were made through a catheter in the cephalic vein. Continuous recordings were made of MAP and a lead II ECG. After induction of anesthesia, instrumentation, and stabilization of heart rate, MAP, and ventilation, 6 group I dogs were infused with phenylephrine until a 50% increase in MAP was recorded (phenylephrine control). On subsequent research days, each dog was anesthetized, instrumented as described, and given (IV) 1 of 3 dosages of acetylpromazine in the following order--0.05, 0.125, and 0.25 mg/kg. The dose of phenylephrine necessary to increase MAP 50% in the presence of acetylpromazine was recorded. Five group II dogs were studied as in group I, but each dog was given (IM) atropine (0.04 mg/kg) before anesthetization. Two dosages of acetylpromazine were studied in the following order--0.05 and 0.25 mg/kg. Group I dogs, when compared with their phenylephrine controls, were given significantly more phenylephrine to raise MAP 50% at each dose of acetylpromazine studied. The same trend was observed in group II dogs, but at smaller doses of phenylephrine, probably as a result of the positive chronotropic effect of atropine on the heart.  相似文献   

16.
Effects of the drug xylazine were determined on arterial pH, arterial oxygen pressure (PaO2), arterial carbon dioxide pressure (PaCO2), aortic blood pressure, aortic flow, heart rate, pulse pressure, stroke volume, and peripheral resistance of dogs. The drug was given intravenously (IV) with and without atropine and was given intramuscularly (IM) without atropine. After IV administration of xylazine (1.1 mg/kg), arterial pH, PaO2, and PaCO2 values were not changed from control values. However, the drug did produce a statistically significant decrease in heart rate, decrease in aortic flow, initial increase in blood pressure followed by decrease, and increase in peripheral resistance. Stroke volume and pulse pressure were not significantly changed. Atropine (0.02 mg/kg, IV) did not significantly change any of the effects produced by xylazine. Intramuscular administration of xylazine (2.2 mg/kg) did not produce significant changes in arterial pH, PaO2, or PaCO2. Heart rate and aortic flow decreased significantly, but statistically significant changes did not occur in aortic blood pressure or peripheral resistance; however, the changes in these last 2 values were in the same direction and were of similar magnitude as those which occurred afger IV administration of xylazine.  相似文献   

17.
OBJECTIVE: To determine pharmacokinetics of buprenorphine in dogs after i.v. administration. ANIMALS: 6 healthy adult dogs. PROCEDURES: 6 dogs received buprenorphine at 0.015 mg/kg, i.v. Blood samples were collected at time 0 prior to drug administration and at 2, 5, 10, 15, 20, 30, 40, 60, 90, 120, 180, 240, 360, 540, 720, 1,080, and 1,440 minutes after drug administration. Serum buprenorphine concentrations were determined by use of double-antibody radioimmunoassay. Data were subjected to noncompartmental analysis with area under the time-concentration curve to infinity (AUC) and area under the first moment curve calculated to infinity by use of a log-linear trapezoidal model. Other kinetic variables included terminal rate constant (k(el)) and elimination half-life (t(1/2)), plasma clearance (Cl), volume of distribution at steady state (Vd(ss)), and mean residence time (MRT). Time to maximal concentration (T(max)) and maximal serum concentration (C(max)) were measured. RESULTS: Median (range) values for T(max) and MRT were 2 minutes (2 to 5 minutes) and 264 minutes (199 to 600 minutes), respectively. Harmonic mean and pseudo SD for t(1/2) were 270+/-130 minutes; mean +/- SD values for remaining pharmacokinetic variables were as follows: C(max), 14+/-2.6 ng/mL; AUC, 3,082+/-1,047 ng x min/mL; Vd(ss), 1.59+/-0.285 L/kg; Cl, 5.4+/-1.9 mL/min/kg; and, k(el), 0.0026+/-0.0,012. CONCLUSIONS AND CLINICAL RELEVANCE: Pharmacokinetic variables of buprenorphine reported here differed from those previously reported for dogs. Wide variations in individual t(1/2) values suggested that dosing intervals be based on assessment of pain status rather than prescribed dosing intervals.  相似文献   

18.
Disposition of ciprofloxacin following intravenous administration in dogs   总被引:2,自引:0,他引:2  
The pharmacokinetics of ciprofloxacin (CIP) following intravenous administration m dogs nave been mvestisated. The drug was administered at three doses (2.5,5 and 10 mg/kg body weight) and was assayed in biological fluid samples (plasma and urine) by an HPLC method. The plasma concentration-time curves ere best described by a two-compartment open pharmacokinetic model. The was widely distributed (Vd(area) almost 3 1/kg), being distributed in the dog more rapidly than in other species (t1/2(λ1) 3 min approximately). The elimination half-life (t1/2λ2)) was 129–180 min which is similar to values obtaine in other species. The unchanged drug eliminated in urine was less than 37% of the administered dose, which is less than the values obtained in humans, calves and pigs. The glomerular filtration rate and the renal clearance of CIP in the dog suggest that renal elimination probably occurs mainly by glomerular filtration. The results showed that the pharmacokinetics of CIP, as in other species, was linear in dogs in the dose range studied.  相似文献   

19.
Intramuscular injections of atipamezole (200 micrograms/kg), doxapram (2.5 mg/kg) and saline (0.1 ml/kg) were compared for their ability to reverse xylazine sedation in dogs. Atipamezole effectively reversed the sedative effects and partially reversed the cardiopulmonary effects of xylazine. Doxapram did not arouse the dogs as much as atipamezole, but it shortened the time taken for them to stand although the dogs were still ataxic.  相似文献   

20.
Ketorolac tromethamine (Toradol) is a relatively new, potent, non-narcotic analgesic with cyclooxygenase (COX) inhibitory activity and has been associated with gastric and renal toxicity in people and dogs. The objectives of this study were to establish whether endogenous PGE2 exists in the plasma of healthy dogs and to determine if, and to what magnitude, ketorolac alters PGE2 plasma concentrations after administration. Enzyme immunoassay measurement of a stable PGE2 derivative, bicyclo PGE2, showed that after i.v. administration of 0.5 mg/kg ketorolac tromethamine, 1 and 24 h plasma samples contained significantly (P < or = 0.01) less PGE2 than did plasma samples collected from dogs before the drug treatment. After p.o. administration, 1 h plasma samples contained significantly (P < or = 0.01) less PGE2 than did pretreatment samples, and the 24 h post-drug administration samples contained significantly (P < or = 0.01) less plasma PGE2 than the 96 h plasma samples. The results of this study suggest that a clinically effective single i.v. or p.o. dose of ketorolac tromethamine to healthy dogs causes a significant but reversible decrease in endogenous PGE2 production which may partially explain the drug's low therapeutic index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号