首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A map of visual space induced in primary auditory cortex   总被引:7,自引:0,他引:7  
Maps of sensory surfaces are a fundamental feature of sensory cortical areas of the brain. The relative roles of afferents and targets in forming neocortical maps in higher mammals can be examined in ferrets in which retinal inputs are directed into the auditory pathway. In these animals, the primary auditory cortex contains a systematic representation of the retina (and of visual space) rather than a representation of the cochlea (and of sound frequency). A representation of a two-dimensional sensory epithelium, the retina, in cortex that normally represents a one-dimensional epithelium, the cochlea, suggests that the same cortical area can support different types of maps. Topography in the visual map arises both from thalamocortical projections that are characteristic of the auditory pathway and from patterns of retinal activity that provide the input to the map.  相似文献   

2.
The receptive fields of single cells in area 5 of monkey parietal cortex were studied by extracellular recording. Cells were driven primarily by gentle manipulation of multiple joints residing on one or more limbs. Both excitatory and inhibitory convergence were demonstrated. It is postulated that the multijoint receptive fields of area 5 are the result of convergence from single-joint cells of the primary receiving area. An analogy is drawn between the modification of information in the visual and somatosensory systems.  相似文献   

3.
The organization of the visual cortex has been considered to be highly stable in adult mammals. However, 5 degrees to 10 degrees lesions of the retina in the contralateral eye markedly altered the systematic representations of the retina in primary and secondary visual cortex when matched inputs from the ipsilateral eye were also removed. Cortical neurons that normally have receptive fields in the lesioned region of the retina acquired new receptive fields in portions of the retina surrounding the lesions. The capacity for such changes may be important for normal adjustments of sensory systems to environmental contingencies and for recoveries from brain damage.  相似文献   

4.
Many cells in the intermediate and deep gray layers of the superior colliculus of the cat respond to both auditory and visual stimuli. These cells have similar receptive fields for both modalities and are directionally selective for both modalities, requiring stimuli moving laterally away from the animal. Perhaps cells that integrate auditory and visual information participate in the control of orienting and following responses to stimuli of both modalities.  相似文献   

5.
Neural basis of orientation perception in primate vision   总被引:4,自引:0,他引:4  
Orientational differences in human visual acuity can be related parametrically to the distribution of optimal orientations for the receptive fields of neurons in the striate cortex of the rhesus monkey. Both behavioral measures of acuity and the distribution of receptive fields exhibit maximums for stimuli horizontal or vertical relative to the retina; the effect diminishes with distance from the fovea. The anisotropy in the neuronal population and in visual acuity appear to be determined by postnatal visual experience.  相似文献   

6.
The development of orderly connections in the mammalian visual system depends on action potentials in the optic nerve fibers, even before the retina receives visual input. In particular, it has been suggested that correlated firing of retinal ganglion cells in the same eye directs the segregation of their synaptic terminals into eye-specific layers within the lateral geniculate nucleus. Such correlations in electrical activity were found by simultaneous recording of the extracellular action potentials of up to 100 ganglion cells in the isolated retina of the newborn ferret and the fetal cat. These neurons fired spikes in nearly synchronous bursts lasting a few seconds and separated by 1 to 2 minutes of silence. Individual bursts consisted of a wave of excitation, several hundred micrometers wide, sweeping across the retina at about 100 micrometers per second. These concerted firing patterns have the appropriate spatial and temporal properties to guide the refinement of connections between the retina and the lateral geniculate nucleus.  相似文献   

7.
Selective attention gates visual processing in the extrastriate cortex   总被引:56,自引:0,他引:56  
Single cells were recorded in the visual cortex of monkeys trained to attend to stimuli at one location in the visual field and ignore stimuli at another. When both locations were within the receptive field of a cell in prestriate area V4 or the inferior temporal cortex, the response to the unattended stimulus was dramatically reduced. Cells in the striate cortex were unaffected by attention. The filtering of irrelevant information from the receptive fields of extrastriate neurons may underlie the ability to identify and remember the properties of a particular object out of the many that may be represented on the retina.  相似文献   

8.
Binocularly driven neurons in visual cortex of split-chiasm cats   总被引:3,自引:0,他引:3  
In cats with midsagittal section of the optic chiasm, some visual cortex neurons can be driven not only by the ipsilateral eye, through the direct geniculocortical pathways, but also by the contralateral eye, through the opposite visual cortex and corpus callosum. The receptive fields and the response characteristics observed upon stimulation of the contralateral eye are very similar to those observed upon stimulation of the ipsilateral eye; the two monocular receptive fields of a given cell lie in corresponding points of heteronymous halves of the visual field in close contact with the vertical meridian, thus adding in visual space and forming a binocular receptive area which crosses the vertical meridian and extends equally on either side of it.  相似文献   

9.
A neural map of auditory space in the owl   总被引:11,自引:0,他引:11  
Auditory units that responded to sound only when it originated from a limited area of space were found in the lateral and anterior portions of the midbrain auditory nucleus of the owl (Tyto alba). The areas of space to which these units responded (their receptive fields) were largely independent of the nature and intensity of the sound stimulus. The units were arranged systematically within the midbrain auditory nucleus according to the relative locations of their receptive fields, thus creating a physiological map of auditory space.  相似文献   

10.
Visual receptive fields of neurons in inferotemporal cortex of the monkey   总被引:3,自引:0,他引:3  
Neurons in inferotemporal cortex (area TE) of the monkey had visual receptive fields which were very large (greater than 10 by 10 degrees) and almost always included the fovea. Some extended well into both halves of the visual field, while others were confined to the ipsilateral or contralateral side. These neurons were differentially sensitive to several of the following dimensions of the stimulus: size and shape, color, orientation, and direction of movement.  相似文献   

11.
Cats were raised from birth with one eye viewing horizontal lines and one eye viewing vertical lines. Elongated receptive fields of cells in the visual cortex were horizontally or vertically oriented-no oblique fields were found. Units with horizontal fields were activated only by the eye exposed to horizontal lines; units with vertical fields only by the eye exposed to vertical lines.  相似文献   

12.
Some neurons in the visual cortex of awake monkeys visually tracking a moving target showed receptive fields that were excited only by stimulus motion relative to a background, while other neurons responded to any kind of stimulus motion. This result was found with two methods, one in which tracking eye movements were identical in both relative-motion and absolute-motion conditions, and another in which stimulus motions on the retina were identical in both conditions. This response pattern can differentiate translation of the retinal image during eye movement from motion of objects in the world.  相似文献   

13.
Acuity falls sharply and predictably in man as fixation is shifted away from the test stimulus. If the same "eccentricity" function applies to the monkey, then it can be shown that striate cortex lesions produce a smaller acuity impairment than is predicted by electrophysiological maps of the projection of retina onto the cortex. It is seen in this study that retinal lesions of the fovea and adjacent parafovea produce a more severe drop in acuity than corresponding cortical lesions, and therefore the surprisingly slight effects of the latter cannot be explained in terms of a relatively higher parafoveal acuity in the monkey. The discrepancy between retinal and cortical effects is unlikely to be due to the development of "supersensitivity" at the edge of the cortical lesions. An explanation is proposed in terms of lateral spread of information at retinal and/or geniculate stages of the visual system.  相似文献   

14.
Lasting modifications of the receptive fields of neurons in the visual cortex can be induced by pairing visual stimuli with iontophoretic application of the neuromodulators acetylcholine and noradrenaline or the excitatory amino acids N-methyl-D-aspartate (NMDA) and L-glutamate. The modifications are obtained in less than 1 hour and persist for more than 40 minutes. Thus, acetylcholine and norepinephrine have a permissive role in use-dependent neuronal plasticity. These results support the notion of a postsynaptic threshold for neuronal malleability that differs from that of sodium-dependent action potentials.  相似文献   

15.
Centrifugal effects in the avian retina   总被引:2,自引:0,他引:2  
Electrical stimulation of the centrifugal fibers to the avian retina can disturb the balance between the excitatory and inhibitory system within the receptive fields of individual retinal ganglion cells. Although the mechanisms may vary from one unit to another, the effect is always to make them fire more readily and to a wider range of visual inputs.  相似文献   

16.
Fu YX  Djupsund K  Gao H  Hayden B  Shen K  Dan Y 《Science (New York, N.Y.)》2002,296(5575):1999-2003
The circuitry and function of mammalian visual cortex are shaped by patterns of visual stimuli, a plasticity likely mediated by synaptic modifications. In the adult cat, asynchronous visual stimuli in two adjacent retinal regions controlled the relative spike timing of two groups of cortical neurons with high precision. This asynchronous pairing induced rapid modifications of intracortical connections and shifts in receptive fields. These changes depended on the temporal order and interval between visual stimuli in a manner consistent with spike timing-dependent synaptic plasticity. Parallel to the cortical modifications found in the cat, such asynchronous visual stimuli also induced shifts in human spatial perception.  相似文献   

17.
Theoretical studies suggest that primary visual cortex (area V1) uses a sparse code to efficiently represent natural scenes. This issue was investigated by recording from V1 neurons in awake behaving macaques during both free viewing of natural scenes and conditions simulating natural vision. Stimulation of the nonclassical receptive field increases the selectivity and sparseness of individual V1 neurons, increases the sparseness of the population response distribution, and strongly decorrelates the responses of neuron pairs. These effects are due to both excitatory and suppressive modulation of the classical receptive field by the nonclassical receptive field and do not depend critically on the spatiotemporal structure of the stimuli. During natural vision, the classical and nonclassical receptive fields function together to form a sparse representation of the visual world. This sparse code may be computationally efficient for both early vision and higher visual processing.  相似文献   

18.
用辣根过氧化物酶(HRP)法研究了6只仔猪薛氏回和外薛氏回的传入联系。此二回接受蓝斑、脑干网状结构、中脑中央灰质、中缝背核、内侧膝状体、膝上核、丘脑枕、柜内核、纹状体、薛氏回和外薛氏回的传入纤维,薛氏回前部还接受缘回、外缘回、冠状回和十字回的传入纤维。  相似文献   

19.
Anatomical and physiological observations in monkeys indicate that the primate visual system consists of several separate and independent subdivisions that analyze different aspects of the same retinal image: cells in cortical visual areas 1 and 2 and higher visual areas are segregated into three interdigitating subdivisions that differ in their selectivity for color, stereopsis, movement, and orientation. The pathways selective for form and color seem to be derived mainly from the parvocellular geniculate subdivisions, the depth- and movement-selective components from the magnocellular. At lower levels, in the retina and in the geniculate, cells in these two subdivisions differ in their color selectivity, contrast sensitivity, temporal properties, and spatial resolution. These major differences in the properties of cells at lower levels in each of the subdivisions led to the prediction that different visual functions, such as color, depth, movement, and form perception, should exhibit corresponding differences. Human perceptual experiments are remarkably consistent with these predictions. Moreover, perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.  相似文献   

20.
The visual system is able to accurately represent the spatiotemporal relations among the elements of a changing visual scene as the image moves across the retinal surface. This precise spatiotemporal mapping occurs despite great variability in retinal position and conduction velocity even among retinal ganglion cells of the same physiological class-a variability that would seem to reduce the precision with which spatiotemporal information can be transmitted to central visual areas. There was a strong negative relation between the intraretinal and extraretinal conduction time for axons of individual ganglion cells of the X-cell class. The effect of this relation was to produce a nearly constant total transmission time between the soma of a retinal X cell and its central target site. Thus, the variation in the conduction velocities of retinal ganglion cell axons may ensure that, regardless of the constraints imposed by retinal topography, a precise spatiotemporal central representation of the retinal image is maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号