首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo evaluate the effects of xylazole (an analogue of xylazine), also known as Jingsongling, alone and in combination with ketamine, on metabolic and neurohumoral responses in healthy dogs.Study designProspective randomized experimental study.AnimalsTwelve healthy mongrel dogs (7 male, 5 female, aged 13–20 months, weighing 12.8–15.4 kg).MethodsEach dog received one of two treatments: xylazole 4 mg kg?1 (group X n = 6); or xylazole 4 mg kg?1 plus ketamine 10 mg kg?1 (group XK; n = 6) intramuscularly. Pulse rate (PR), mean arterial pressure (MAP), respiratory rate (fR), and rectal temperature (RT) were recorded before and from 5 to 100 minutes after drug administration. Venous blood samples were taken before and at intervals from 0.5 to 24 hours after drug administration for determination of plasma concentrations of norepinephrine, epinephrine, β–endorphin, cortisol, insulin, and glucose. Statistical analyses employed anova for repeated measures for changes with time and anova for comparison between treatments.ResultsIn both treatment groups. PR, fR and RT decreased. MAP increased transiently. At some time points PR, MAP and RT were significantly lower in group X than group XK. Plasma norepinephrine, epinephrine, and insulin concentrations decreased, and β–endorphin and glucose concentrations increased with both treatments. Higher values of plasma norepinephrine, epinephrine, β–endorphin, and glucose concentrations were observed in the XK group compared with the X group.Conclusions and clinical relevanceThis study demonstrates that xylazole administered alone or in combination with ketamine in healthy dogs results in physiological, metabolic and neurohumoral responses similar to those seen after xylazine. Compared with xylazole alone, the combination of xylazole and ketamine reduced some of the responses.  相似文献   

2.
3.
The purpose of this study was to investigate and compare the effects of medetomidine and xylazine on some neurohormonal and metabolic variables in healthy cats. Five cats were used repeatedly in each of 11 groups, which were injected intramuscularly with physiological saline solution (control), 20, 40, 80, 160, and 320 microg/kg of medetomidine, and 0.5, 1, 2, 4, and 8 mg/kg of xylazine. Blood samples were taken over 24 h from the jugular vein for determination of plasma glucose, insulin, cortisol, epinephrine, norepinephrine, glucagon, and nonesterified fatty acid concentrations. Both medetomidine and xylazine induced remarkable hyperglycemia that was dose-dependent except for the response to medetomidine from 0 to 3 h. Both agents suppressed epinephrine and norepinephrine release but not in a dose-dependent manner at the tested dosages. Both agents inhibited insulin release and lipolysis, with similar potency, and tended to suppress cortisol release. The glucagon levels did not change significantly in any of the groups. These results suggest that the effects of medetomidine and xylazine on glucose metabolism and catecholamine release may not be due only to the actions mediated by alpha2-adrenoceptors.  相似文献   

4.
The effects of 2 different 8-hour continuous rate infusions (CRIs) of medetomidine on epinephrine, norepinephrine, cortisol, glucose, and insulin levels were investigated in 6 healthy dogs. Each dog received both treatments and a control as follows: MED1 = 2 μg/kg bodyweight (BW) loading dose followed by 1 μg/kg BW per hour CRI; MED2 = 4 μg/kg BW loading dose followed by 2 μg/kg BW per hour CRI; and CONTROL = saline bolus followed by a saline CRI. Both infusion rates of medetomidine decreased norepinephrine levels throughout the infusion compared to CONTROL. While norepinephrine levels tended to be lower with the MED2 treatment compared to the MED1, this difference was not significant. No differences in epinephrine, cortisol, glucose, or insulin were documented among any of the treatments at any time point. At the low doses used in this study, both CRIs of medetomidine decreased norepinephrine levels over the 8-hour infusion period, while no effects were observed on epinephrine, cortisol, glucose, and insulin.  相似文献   

5.
This study aimed to compare the antagonistic effects of atipamezole (40, 120, and 320 μg/kg, IM), yohimbine (110 μg/kg, IM), and saline on neurohormonal and metabolic responses induced by medetomidine (20 μg/kg, IM). Five beagle dogs were used in each of the 5 experimental groups in randomized order. Blood samples were taken for 6 h. Medetomidine significantly decreased norepinephrine, epinephrine, insulin, and nonesterified fatty acid levels, and increased plasma glucose levels. Both atipamezole and yohimbine antagonized these effects. The reversal effect of atipamezole was dose-dependency, except on epinephrine. Yohimbine caused prolonged increases in plasma norepinephrine and insulin levels compared to atipamezole, possibly because of its longer half-life elimination. Only yohimbine increased the cortisol levels. Neither glucagon nor lactate levels changed significantly. Based on these findings, when medetomidine-induced sedation is antagonized in dogs, we recommend using atipamezole IM, from 2- to 6-fold the dose of medetomidine, unless otherwise indicated.  相似文献   

6.
The aim of this study was to compare the antinociceptive effects of epidural buprenorphine (EB), epidural medetomidine (EM) or epidural buprenorphine–medetomidine (EBM). Eight cats were studied. Thermal thresholds (TT) were measured by increasing the temperature of a probe placed on the thorax. Mechanical thresholds (MT) were measured through inflation of a modified blood pressure bladder to the cat's forelimb. After baseline measurements, EB (0.02 mg/kg), EM (0.01 mg/kg) or half of the doses of each drug (EBM) were administered. Data were analysed using anova ( P  < 0.05) and 95% confidence interval (CI). TT increased from 30 min to 1 h after EB and at 45 min after EM. MT increased from 45 min to 2 h after EB, from 15 min to 1 h after EM and at 30, 45 min and at 2 h after EBM. MT were significantly lower after EB than EM at 30 min. TT were above the upper 95%CI from 15 min to 24 h after EB, from 15 min to 4 h after EM and from 15 min to 8 h after EBM. MT were above the upper 95%CI from 15 min to 5 h, and at 8, 12 and 24 h after EB, from 15 min to 6 h after EM and from 15 min to 6 h and at 12 and 24 h after EBM. All treatments had similar onset. Overall, EB presented longer period of action than EBM and EM. The same magnitude of analgesia was achieved, but with fewer side effects when EBM was compared with EM.  相似文献   

7.
ObjectiveTo evaluate the effects of dexmedetomidine alone or in combination with different opioids on intraocular pressure (IOP) in dogs.Study designExperimental, prospective, crossover, randomized, blinded study.AnimalsA total of six Beagle dogs (two males and four females) aged 2 years and weighing 15.9 ± 2.9 kg (mean ± standard deviation).MethodsDogs were distributed randomly into seven treatments (n = 6 per treatment) and were administered dexmedetomidine alone (10 μg kg–1; Dex) or in combination with butorphanol (0.15 mg kg–1; DexBut), meperidine (5 mg kg–1; DexMep), methadone (0.5 mg kg–1; DexMet), morphine (0.5 mg kg–1; DexMor), nalbuphine (0.5 mg kg–1; DexNal) or tramadol (5 mg kg–1; DexTra). All drugs were administered intramuscularly. IOP was measured before drug injection (time 0, baseline) and every 15 minutes thereafter for 120 minutes (T15–T120).ResultsThere were significant reductions in IOP compared with baseline in treatments Dex and DexMep at times T30–T120, and in treatment DexMet at T15–T90. IOP decreased compared with baseline in treatments DexBut, DexNal and DexTra at all evaluation times. No changes in IOP were seen in treatment DexMor. The mean IOP values in treatment DexMet at T105–T120 were higher than those for other treatments.Conclusions and clinical relevanceDexmedetomidine alone or in combination with butorphanol, meperidine, methadone, nalbuphine or tramadol resulted in decreased IOP for 120 minutes in dogs. The magnitude of the reduction was small and lacked clinical significance.  相似文献   

8.
Antagonistic effects of atipamezole (ATI), flumazenil (FLU) and 4-aminopyridine (4AP) alone and in various combinations after administration of medetomidine-midazolam-ketamine (MED-MID-KET) were evaluated in cats. Animals were anaesthetised with MED (50 microg/kg), MID (0.5 mg/kg) and KET (10 mg/kg) given intramuscularly. Twenty minutes later, physiological saline, ATI (200 microg/kg), FLU (0.1 mg/kg), 4AP (0.5 mg/kg), ATI-FLU, FLU-4AP, ATI-4AP or ATI-FLU-4AP was administered intravenously. FLU, 4AP alone, or FLU-4AP did not effectively antagonise the anaesthesia, hypothermia, bradycardia, and bradypnoea induced by MED-MID-KET. ATI alone was effective. ATI-FLU, ATI-4AP and ATI-FLU-4AP combinations produced an immediate and effective recovery from anaesthesia. The combination of ATI-FLU-4AP was the most effective in antagonising the anaesthetic effects, but was associated with tachycardia, tachypnoea, excitement, and muscle tremors. Combinations with ATI are more effective for antagonising anaesthesia, but ATI-FLU-4AP is not suitable.  相似文献   

9.
The effects of buprenorphine in combination with acepromazine, midazolam or medetomidine were compared in dogs. Induction and recovery times, heart rate, respiratory rate and body temperature were measured. Posture, reaction to noise, analgesia and muscle relaxation were assessed and a global score of "sedation-analgesia" was calculated. There were 3 groups of 4 animals: group 1 received 0.1 mg.kg-1 acepromazine IM and 20 minutes later, 10 g.kg-1 buprenorphine IV; group 2 received 1 mg.kg-1 midazolam IV simultaneously with 10 ig.kg-1 buprenorphine IV and group 3 received 1 mg/m2 body surface area medetomidine IM and 20 minutes later, 10 Hg.kg-1 buprenorphine IV. Only one dog given acepromazine and buprenorphine reached a "sedation-analgesia" stage, denned as the inability to stand together with the absence of reaction to stimulation, including pain. Animals in this group showed a decrease in respiratory rate and in body temperature. None of the dogs given midazolam and buprenorphine became sedated or showed signs of analgesia. Following this combination, the dogs were excited and showed dysphoric reactions which disappeared within 20 minutes.
All of the dogs given medetomidine and buprenorphine showed good sedation and analgesia lasting more than 20 minutes. This drug combination produced a decrease in heart and respiratory rates and body temperature.  相似文献   

10.
The effects of aspirin (75 mg orally/average-size cat) and propranolol (5 mg orally every 8 hours/average-size cat) alone and in combination on hemostatic determinants in healthy cats were studied. In cats, aspirin alone did not cause a significant effect in platelet numbers, plasma fibrinogen, activated partial thromboblastin time, prothrombin time, thrombin time, or platelet aggregation response to adenosine diphosphate. Aspirin did, however, significantly reduce the degree of aggregation induced by acid soluble collagen. Propranolol alone or in combination with aspirin did not cause a significant effect on platelet numbers, plasma fibrinogen, activated partial thromboblastin time, prothrombin time, thrombin time, or platelet aggregation in response to acid soluble collagen, adenosine diphosphate, or adrenaline. It was concluded that aspirin alone at the recommended dosage of one-quarter of a 5-grain tablet (1.25 grains or 75 mg) every other day will significantly affect platelet function and may be of value in the prevention of thromboembolic disease in the cat.  相似文献   

11.
OBJECTIVE: To characterize cardiorespiratory effects for a combination of medetomidine, butorphanol, and midazolam and to compare magnitude of cardiorespiratory depression with that induced by a commonly used inhalation anesthetic regimen (acepromazine-butorphanol-thiopental-halothane). ANIMALS: 10 clinically normal dogs (2 groups of 5). PROCEDURE: In treated dogs, medetomidine was administered (time, 0 minutes); midazolam and butorphanol were administered when effects of medetomidine were maximal (time, 20), and atipamezole was administered subsequently (time 60). In control dogs, drugs were administered after allowing effects of each agent to be achieved: acepromazine was given at time 0, butorphanol and thiopental were administered at time 35, and halothane was administered from time 45 until 110. Various cardiorespiratory and hematologic variables were measured or calculated. RESULTS: Respiratory rate, arterial and venous pH, venous oxygen content, oxygen consumption, and oxygen delivery decreased significantly below baseline values for treated dogs; end-tidal CO2, arterial and venous P(CO)2, and O2 extraction increased significantly above baseline values. Compared with data obtained after anesthesia, arterial HCO3- concentration, venous P(O2) and S(O2), cardiac output, oxygen extraction, and oxygen delivery appeared more modified in treated dogs. Oxygen consumption and physiologic shunt fraction were less modified in treated dogs than control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine-butorphanol-midazolam combination induced respiratory depression, comparable in magnitude to that induced by a widely used inhalation anesthetic regimen. Respiratory variables remained within acceptable limits during anesthesia; however, those associated with cardiovascular function were more severely affected.  相似文献   

12.
This study was designed to compare the cardiovascular effects of equipotent maintenance of anesthetic doses (determined in a previous study) of propofol and propofol/ketamine, administered with and without noxious stimulation. Six healthy adult cats were anesthetized with propofol (loading dose 6.6 mg kg?1, infusion 0.22 mg kg?1 minute?1), and instrumented to allow determination of blood gas and acid–base balance and measurement of blood pressures and cardiac output. The propofol infusion was continued for a further 60 minutes after which measurements were taken prior to and during application of a noxious stimulus. The propofol infusion was decreased to 0.14 mg kg?1 minute?1, and ketamine (loading dose 2 mg kg?1, infusion 23 µg kg minute?1) was administered. After a further 60 minutes, measurements were again taken prior to and during application of a noxious stimulus. The data were analyzed, using several Repeated Measures anova (first, ketamine/propofol and noxious stimulation were each treated as within‐subject factors; secondly, the levels of these two factors were combined into a single within‐subject factor). Mean arterial pressure, CVP, PAOP, SI, CI, SVRI, PVRI, oxygen delivery index, oxygen consumption index, oxygen utilization ratio, PvO2, pHa, PaCO2, bicarbonate concentration, and BD values collected during propofol administration were not changed by addition of ketamine and reduction of propofol concentration or by application of a noxious stimulus under propofol alone. Application of a noxious stimulus under propofol alone did, however, significantly increase HR and PaO2, and these responses were not blunted by the addition of ketamine. Compared with propofol, administration of ketamine and reduction of propofol concentration significantly increased PAP and venous admixture, and significantly decreased PaO2. Although application of a noxious stimulus to cats under propofol alone did not significantly change CVP, SI, CI, PVRI, oxygen delivery index, and oxygen consumption index, significant differences were found in these variables between propofol and propofol/ketamine. In conclusion, propofol alone provided cardiopulmonary stability; addition of ketamine did not improve hemodynamics but did decrease oxygenation.  相似文献   

13.
14.
OBJECTIVE: To examine stress-related neurohormonal and metabolic effects of butorphanol, fentanyl, and ketamine administration alone and in combination with medetomidine in dogs. ANIMALS: 10 Beagles. PROCEDURE: 5 dogs received either butorphanol (0.1 mg/kg), fentanyl (0.01 mg/kg), or ketamine (10 mg/kg) IM in a crossover design. Another 5 dogs received either medetomidine (0.02 mg/kg) and butorphanol (0.1 mg/kg), medetomidine and fentanyl (0.01 mg/kg), medetomidine and ketamine (10 mg/kg), or medetomidine and saline (0.9% NaCI) solution (0.1 mL/kg) in a similar design. Blood samples were obtained for 6 hours following the treatments. Norepinephrine, epinephrine, cortisol, glucose, insulin, and nonesterified fatty acid concentrations were determined in plasma. RESULTS: Administration of butorphanol, fentanyl, and ketamine caused neurohormonal and metabolic changes similar to stress, including increased plasma epinephrine, cortisol, and glucose concentrations. The hyperglycemic effect of butorphanol was not significant. Ketamine caused increased norepinephrine concentration. Epinephrine concentration was correlated with glucose concentration in the butorphanol and fentanyl groups but not in the ketamine groups, suggesting an important difference between the mechanisms of the hyperglycemic effects of these drugs. Medetomidine prevented most of these effects except for hyperglycemia. Plasma glucose concentrations were lower in the combined sedation groups than in the medetomidine-saline solution group. CONCLUSIONS AND CLINICAL RELEVANCE: Opioids or ketamine used alone may cause changes in stress-related biochemical variables in plasma. Medetomidine prevented or blunted these changes. Combined sedation provided better hormonal and metabolic stability than either component alone. We recommend using medetomidine-butorphanol or medetomidine-ketamine combinations for sedation or anesthesia of systemically healthy dogs.  相似文献   

15.
16.
Captive cheetah (Acinonyx jubatus) scheduled for either general health examination or dental surgery were immobilised with combinations of medetomidine-ketamine (K/DET, n = 19), midazolam-ketamine (K/MID, n = 4) or medetomidine-tiletamine-zolazepam (Z/DET, n = 5). Induction time and arterial blood pressure was not statistically significantly (P > 0.05) different between treatment groups. Transient seizures were observed in the K/DET treated animals during induction. Hypertension was present in all groups during anaesthesia with mean (+/- SD) systolic pressure of 30.7 +/- 5.0 kPa for the K/DET group, 27.7 +/- 2.7 kPa for the K/MID group, and 33.1 +/- 4.6 kPa for the Z/DET group. Heart rate was statistically significantly (P < 0.05) lower in the K/DET group (69 +/- 13.2 beats/min) compared to the K/MID group (97 +/- 22.6 beats/min), and ventilation rate was statistically significantly (P < 0.05) lower in the K/MID group (15 +/- 0.0 breaths/min) compared with the K/DET group (21 +/- 4.6). A metabolic acidosis and hypoxia were observed during anaesthesia when breathing air. Oxygen (O2) administration resulted in a statistically significant (P < 0.05) increase in the arterial partial pressure of carbon dioxide (hypercapnoea), arterial partial pressure of O2, and % oxyhaemoglobin saturation.  相似文献   

17.
ObjectiveTo evaluate the sedative effects of intravenous (IV) medetomidine (1 μg kg?1) and butorphanol (0.1 mg kg?1) alone and in combination in dogs.Study designProspective, blinded, randomized clinical trial.AnimalsSixty healthy (American Society of Anesthesiologists I) dogs, aged 6.2 ± 3.2 years and body mass 26 ± 12.5 kg.MethodsDogs were assigned to four groups: Group S (sodium chloride 0.9% IV), Group B (butorphanol IV), Group M (medetomidine IV) and Group MB (medetomidine and butorphanol IV). The same clinician assessed sedation before and 12 minutes after administration using a numerical scoring system in which 19 represented maximum sedation. Heart rate (HR), respiratory rate, pulse quality, capillary refill time and rectal temperature were recorded after each sedation score assessment. Sedation scores, sedation score difference (score after minus score before administration) and patient variables were compared using one-way anova for normally distributed variables and Kruskal–Wallis test for variables with skewed distributions and/or unequal variances. Where significance was found, further evaluation used Bonferroni multiple comparisons for pair-wise testing.ResultsBreed, sex, neuter status, age and body mass did not differ between groups. Sedation scores before substance administration were similar between groups (p = 0.2). Sedation scores after sedation were significantly higher in Group MB (mean 9.5 ± SD 5.5) than in group S (2.5 ± 1.8) (p < 0.001), group M (3.1 ± 2.5) (p < 0.001) and group B (3.7 ± 2.0) (p = 0.003). Sedation score difference was significantly higher in Group MB [7 (0–13)] than in Group S [0 (?1 to 4)] (p < 0.001) and Group M [0 (0–6)] (p < 0.001). HR decreased significantly in Groups M and MB compared with Group S (p < 0.05).Conclusion and clinical relevanceLow-dose medetomidine 1 μg kg?1 IV combined with butorphanol 0.1 mg kg?1 IV produced more sedation than medetomidine or butorphanol alone. HR was significantly decreased in both medetomidine groups.  相似文献   

18.
ObjectiveThe aim of the present study was to compare intranasal (INS) and intramuscular (IM) routes of administration of a ketamine-midazolam combination in cats.Study designRandomized block design.AnimalsTwelve healthy mixed breed cats (six males and six females).MethodsThe drug combination was ketamine (14 mg kg−1) and midazolam (0.5 mg kg−1). In the IM group, drugs were injected into quadratus femoris muscle; in the INS. group, the combination dropped equally into the two nostrils. Pulse and respiratory rates, peripheral haemoglobin oxygen saturation (SpO2) and rectal temperature were monitored before and at intervals after drug administration. Time to onset and duration of sedation and, during recovery to head up, sternal recumbency and recovery were recorded.ResultsThere were no significant differences between the groups in any time measured except for recovery to sternal recumbency, where time was lower in the INS than in the IM (p = 0.034). Respiratory rate was greater in the INS than in the IM group (p = 0.029), but there was no difference between groups in other physiological parameters. In both groups SpO2 was low before and fell further during sedation.ConclusionsThe results substantiated that INS ketamine-midazolam can produce effective sedation in cats.Clinical relevanceIntranasal (INS) administration of ketamine-midazolam is atraumatic, and its use may avoid the pain of injection of ketamine combinations when this drug is used to induce sedation in cats.  相似文献   

19.
A study was designed to investigate the effect of medetomidine sedation on quantitative electroencephalography (q-EEG) in healthy young and adult cats to determine objective guidelines for diagnostic EEG recordings and interpretation. Preliminary visual examination of EEG recordings revealed high-voltage low-frequency background activity. Spindles, k-complexes and vertex sharp transients characteristic of sleep or sedation were superimposed on a low background activity. Neither paroxysmal activity nor EEG burst-suppression were observed. The spectral analysis of q-EEG included four parameters, namely, relative power (%), and mean, median and peak frequency (Hz) of all four frequency bands (delta, theta, alpha and beta). The findings showed a prevalence of slow delta and theta rhythms as opposed to fast alpha and beta rhythms in both young (group A) and adult (group B) cats. A posterior gradient was reported for the theta band and an anterior gradient for the alpha and beta bands in both groups, respectively. The relative power value in group B compared to group A was significantly higher for theta, alpha and beta bands, and lower for the delta band. The mean and median frequency values in group B was significantly higher for delta, theta and beta bands and lower for the alpha band. The study has shown that a medetomidine sedation protocol for feline EEG may offer a method for investigating bio-electrical cortical activity. The use of q-EEG analysis showed a decrease in high frequency bands and increased activity of the low frequency band in healthy cats under medetomidine sedation.  相似文献   

20.
ObjectiveTo describe the use of intramuscular (IM) premedication with alfaxalone alone or in combination with diazepam in pigs.Study designRandomised‐controlled trial.AnimalsTwelve healthy 2 month‐old Landrace x Large White pigs weighing 21.3 ± 2.4 kg.MethodsAnimals were distributed randomly into two groups: group A (n = 6) 5 mg kg?1 of IM alfaxalone; and group AD (n = 6) 5 mg kg?1 of IM alfaxalone + 0.5 mg kg?1 of IM diazepam mixed in the same syringe. The total volume of injectate was standardized at 14 mL by dilution in 0.9% sodium chloride. Pain on injection, the degree of sedation and the quality of and time to induction of recumbency were evaluated. Once pigs were recumbent, reflexes were evaluated. Pulse and respiratory rates and arterial oxygen saturation were recorded at 5 and 10 minutes after drug administration. Pigs were then moved to another room for subsequent anaesthesia.ResultsTwo animals of group A and one of group AD showed slight pain on drug injection. Time to lateral recumbency (in seconds) was shorter in group AD (mean 203 ± SD 45 range 140–260) than group A (302 ± 75, range 220–420; p < 0.05). In group AD sedation was deeper, and on recumbency there was better muscle relaxation. When moved for anaesthesia, two pigs in Group A showed slight resistance but did not vocalize. There were no differences in physiologic measurements between groups, although in both groups, respiratory rate was significantly lower at ten compared with five minutes post drug injection. There was no apneoa.Conclusions and clinical relevanceIM administration of alfaxalone combined with diazepam resulted in a rapid onset of recumbency and deep sedation, with minimal side effects. The combination might be useful for premedication, but volume of injectate will limit its use to small pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号