首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competition between neurons is necessary for refining neural circuits during development and may be important for selecting the neurons that participate in encoding memories in the adult brain. To examine neuronal competition during memory formation, we conducted experiments with mice in which we manipulated the function of CREB (adenosine 3',5'-monophosphate response element-binding protein) in subsets of neurons. Changes in CREB function influenced the probability that individual lateral amygdala neurons were recruited into a fear memory trace. Our results suggest a competitive model underlying memory formation, in which eligible neurons are selected to participate in amemorytrace as a function of their relative CREB activity at the time of learning.  相似文献   

2.
Do learning and retrieval of a memory activate the same neurons? Does the number of reactivated neurons correlate with memory strength? We developed a transgenic mouse that enables the long-lasting genetic tagging of c-fos-active neurons. We found neurons in the basolateral amygdala that are activated during Pavlovian fear conditioning and are reactivated during memory retrieval. The number of reactivated neurons correlated positively with the behavioral expression of the fear memory, indicating a stable neural correlate of associative memory. The ability to manipulate these neurons genetically should allow a more precise dissection of the molecular mechanisms of memory encoding within a distributed neuronal network.  相似文献   

3.
Traumatic fear memories can be inhibited by behavioral therapy for humans, or by extinction training in rodent models, but are prone to recur. Under some conditions, however, these treatments generate a permanent effect on behavior, which suggests that emotional memory erasure has occurred. The neural basis for such disparate outcomes is unknown. We found that a central component of extinction-induced erasure is the synaptic removal of calcium-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) in the lateral amygdala. A transient up-regulation of this form of plasticity, which involves phosphorylation of the glutamate receptor 1 subunit of the AMPA receptor, defines a temporal window in which fear memory can be degraded by behavioral experience. These results reveal a molecular mechanism for fear erasure and the relative instability of recent memory.  相似文献   

4.
The stabilization of long-term memories requires de novo protein synthesis. How can proteins, synthesized in the soma, act on specific synapses that participate in a given memory? We studied the dynamics of newly synthesized AMPA-type glutamate receptors (AMPARs) induced with learning using transgenic mice expressing the GluR1 subunit fused to green fluorescent protein (GFP-GluR1) under control of the c-fos promoter. We found learning-associated recruitment of newly synthesized GFP-GluR1 selectively to mushroom-type spines in adult hippocampal CA1 neurons 24 hours after fear conditioning. Our results are consistent with a "synaptic tagging" model to allow activated synapses to subsequently capture newly synthesized receptor and also demonstrate a critical functional distinction in the mushroom spines with learning.  相似文献   

5.
We investigated the effect of activating a competing, artificially generated, neural representation on encoding of contextual fear memory in mice. We used a c-fos-based transgenic approach to introduce the hM(3)D(q) DREADD receptor (designer receptor exclusively activated by designer drug) into neurons naturally activated by sensory experience. Neural activity could then be specifically and inducibly increased in the hM(3)D(q)-expressing neurons by an exogenous ligand. When an ensemble of neurons for one context (ctxA) was artificially activated during conditioning in a distinct second context (ctxB), mice formed a hybrid memory representation. Reactivation of the artificially stimulated network within the conditioning context was required for retrieval of the memory, and the memory was specific for the spatial pattern of neurons artificially activated during learning. Similar stimulation impaired recall when not part of the initial conditioning.  相似文献   

6.
The role of electrical synapses in synchronizing neuronal assemblies in the adult mammalian brain is well documented. However, their role in learning and memory processes remains unclear. By combining Pavlovian fear conditioning, activity-dependent immediate early gene expression, and in vivo electrophysiology, we discovered that blocking neuronal gap junctions within the dorsal hippocampus impaired context-dependent fear learning, memory, and extinction. Theta rhythms in freely moving rats were also disrupted. Our results show that gap junction-mediated neuronal transmission is a prominent feature underlying emotional memories.  相似文献   

7.
The amygdalohippocampal circuit plays a pivotal role in Pavlovian fear memory. We simultaneously recorded electrical activity in the lateral amygdala (LA) and the CA1 area of the hippocampus in freely behaving fear-conditioned mice. Patterns of activity were related to fear behavior evoked by conditioned and indifferent sensory stimuli and contexts. Rhythmically synchronized activity at theta frequencies increased between the LA and the CA1 after fear conditioning and became significant during confrontation with conditioned fear stimuli and expression of freezing behavior. Synchronization of theta activities in the amygdalohippocampal network represents a neuronal correlate of conditioned fear, apt to improve neuronal communication during memory retrieval.  相似文献   

8.
Epinephrine enables Pavlovian fear conditioning under anesthesia   总被引:6,自引:0,他引:6  
Rats under Pavlovian defensive conditioning (noise paired with shock) while under general anesthesia. Peripheral administration of epinephrine (0.01 to 1.0 milligram per kilogram of body weight) during training resulted in the acquisition of conditioned fear, as shown 10 days later by conditioned suppression of water drinking. Analysis of heart rate and measurement of reflexes during training indicated that epinephrine did not lighten the state of anesthesia. These results indicate that epinephrine enables the learning of conditioned fear in the anesthetized brain.  相似文献   

9.
Spatially resolved measurements of intracellular free calcium and of the changes produced by excitatory amino acids were made in neurons isolated from adult mammalian brain. Extremely long-lasting (minutes) Ca2+ gradients were induced in the apical dendrites of hippocampal CA1 neurons after brief (1 to 3 seconds), local application of either glutamate or N-methyl-D-aspartate (NMDA). These gradients reflect the continuous flux of Ca2+ into the dendrite. The sustained gradients, but not the immediate transient response to the agonists, were prevented by prior treatment with the protein kinase C inhibitor sphingosine. Expression of the long-lasting Ca2+ gradients generally required a priming or conditioning stimulus with the excitatory agonist. The findings demonstrate a coupling between NMDA receptor activation and long-lasting intracellular Ca2+ elevation that could contribute to certain use-dependent modifications of synaptic responses in hippocampal CA1 neurons.  相似文献   

10.
Classical fear conditioning investigates how animals learn to associate environmental stimuli with an aversive event. We examined how the mechanisms of fear conditioning apply when humans learn to associate social ingroup and outgroup members with a fearful event, with the goal of advancing our understanding of basic learning theory and social group interaction. Primates more readily associate stimuli from certain fear-relevant natural categories, such as snakes, with a negative outcome relative to stimuli from fear-irrelevant categories, such as birds. We assessed whether this bias in fear conditioning extends to social groups defined by race. Our results indicate that individuals from a racial group other than one's own are more readily associated with an aversive stimulus than individuals of one's own race, among both white and black Americans. This prepared fear response might be reduced by close, positive interracial contact.  相似文献   

11.
We report the development of a pseudorabies virus that can be used for retrograde tracing from selected neurons. This virus encodes a green fluorescent protein marker and replicates only in neurons that express the Cre recombinase and in neurons in synaptic contact with the originally infected cells. The virus was injected into the arcuate nucleus of mice that express Cre only in those neurons that express neuropeptide Y or the leptin receptor. Sectioning of the brains revealed that these neurons receive inputs from neurons in other regions of the hypothalamus, as well as the amygdala, cortex, and other brain regions. These data suggest that higher cortical centers modulate leptin signaling in the hypothalamus. This method of neural tracing may prove useful in studies of other complex neural circuits.  相似文献   

12.
A functional polymorphism in the promoter region of the human serotonin transporter gene (SLC6A4) has been associated with several dimensions of neuroticism and psychopathology, especially anxiety traits, but the predictive value of this genotype against these complex behaviors has been inconsistent. Serotonin [5- hydroxytryptamine, (5-HT)] function influences normal fear as well as pathological anxiety, behaviors critically dependent on the amygdala in animal models and in clinical studies. We now report that individuals with one or two copies of the short allele of the serotonin transporter (5-HTT) promoter polymorphism, which has been associated with reduced 5-HTT expression and function and increased fear and anxiety-related behaviors, exhibit greater amygdala neuronal activity, as assessed by BOLD functional magnetic resonance imaging, in response to fearful stimuli compared with individuals homozygous for the long allele. These results demonstrate genetically driven variation in the response of brain regions underlying human emotional behavior and suggest that differential excitability of the amygdala to emotional stimuli may contribute to the increased fear and anxiety typically associated with the short SLC6A4 allele.  相似文献   

13.
Brain lesions in an infant rhesus monkey treated with monsodium glutamate   总被引:5,自引:0,他引:5  
In an infant rhesus monkey brain damage resulted from subcutaneously administered monosodium glutamate. Although a relatively high dose of monosodium glutamate was used, the infant was asymptomatic for a 3-hour observation period during which time hypothalamic neurons were undergoing a process of acute cell death. With the electron microscope it was observed that dendrites and cell bodies of neurons are the tissue components primarily affected in brain damage induced by monosodium glutamate.  相似文献   

14.
Gong R  Ding C  Hu J  Lu Y  Liu F  Mann E  Xu F  Cohen MB  Luo M 《Science (New York, N.Y.)》2011,333(6049):1642-1646
Midbrain dopamine neurons regulate many important behavioral processes, and their dysfunctions are associated with several human neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD) and schizophrenia. Here, we report that these neurons in mice selectively express guanylyl cyclase-C (GC-C), a membrane receptor previously thought to be expressed mainly in the intestine. GC-C activation potentiates the excitatory responses mediated by glutamate and acetylcholine receptors via the activity of guanosine 3',5'-monophosphate-dependent protein kinase (PKG). Mice in which GC-C has been knocked out exhibit hyperactivity and attention deficits. Moreover, their behavioral phenotypes are reversed by ADHD therapeutics and a PKG activator. These results indicate important behavioral and physiological functions for the GC-C/PKG signaling pathway within the brain and suggest new therapeutic targets for neuropsychiatric disorders related to the malfunctions of midbrain dopamine neurons.  相似文献   

15.
Activation of protein kinase C (PKC) can mimic the biophysical effects of associative learning on neurons. Furthermore, classical conditioning of the rabbit nictitating membrane (a form of associative learning) produces translocation of PKC activity from the cytosolic to the membrane compartments of the CA1 region of the hippocampus. Evidence is provided here for a significant change in the amount and distribution of PKC within the CA1 cell field of the rabbit hippocampus that is specific to learning. This change is seen at 1 day after learning as focal increments of [3H]phorbol-12,13-dibutyrate binding to PKC in computer-generated images produced from coronal autoradiographs of rabbit brain. In addition, 3 days after learning, the autoradiographs suggest a redistribution of PKC within CA1 from the cell soma to the dendrites.  相似文献   

16.
Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.  相似文献   

17.
The mechanism by which sex steroids rapidly modulate the excitability of neurons was investigated by intracellular recording of neurons in rat medial amygdala brain slices. Brief hyperpolarization and increased potassium conductance were produced by 17 beta-estradiol. This effect persisted after elimination of synaptic input and after suppression of protein synthesis. Thus, 17 beta-estradiol directly changes the ionic conductance of the postsynaptic membrane of medial amygdala neurons. In addition, a greater proportion of the neurons from females than from males responded to 17 beta-estradiol.  相似文献   

18.
At synapses between cortical pyramidal neurons and principal striatal medium spiny neurons (MSNs), postsynaptic D1 and D2 dopamine (DA) receptors are postulated to be necessary for the induction of long-term potentiation and depression, respectively-forms of plasticity thought to underlie associative learning. Because these receptors are restricted to two distinct MSN populations, this postulate demands that synaptic plasticity be unidirectional in each cell type. Using brain slices from DA receptor transgenic mice, we show that this is not the case. Rather, DA plays complementary roles in these two types of MSN to ensure that synaptic plasticity is bidirectional and Hebbian. In models of Parkinson's disease, this system is thrown out of balance, leading to unidirectional changes in plasticity that could underlie network pathology and symptoms.  相似文献   

19.
The corticotropin-releasing hormone receptor 1 (CRHR1) critically controls behavioral adaptation to stress and is causally linked to emotional disorders. Using neurochemical and genetic tools, we determined that CRHR1 is expressed in forebrain glutamatergic and γ-aminobutyric acid-containing (GABAergic) neurons as well as in midbrain dopaminergic neurons. Via specific CRHR1 deletions in glutamatergic, GABAergic, dopaminergic, and serotonergic cells, we found that the lack of CRHR1 in forebrain glutamatergic circuits reduces anxiety and impairs neurotransmission in the amygdala and hippocampus. Selective deletion of CRHR1 in midbrain dopaminergic neurons increases anxiety-like behavior and reduces dopamine release in the prefrontal cortex. These results define a bidirectional model for the role of CRHR1 in anxiety and suggest that an imbalance between CRHR1-controlled anxiogenic glutamatergic and anxiolytic dopaminergic systems might lead to emotional disorders.  相似文献   

20.
Once initiated near the soma, an action potential (AP) is thought to propagate autoregeneratively and distribute uniformly over axonal arbors. We challenge this classic view by showing that APs are subject to waveform modulation while they travel down axons. Using fluorescent patch-clamp pipettes, we recorded APs from axon branches of hippocampal CA3 pyramidal neurons ex vivo. The waveforms of axonal APs increased in width in response to the local application of glutamate and an adenosine A(1) receptor antagonist to the axon shafts, but not to other unrelated axon branches. Uncaging of calcium in periaxonal astrocytes caused AP broadening through ionotropic glutamate receptor activation. The broadened APs triggered larger calcium elevations in presynaptic boutons and facilitated synaptic transmission to postsynaptic neurons. This local AP modification may enable axonal computation through the geometry of axon wiring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号