首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
Specific stability of organic matter in a stormwater infiltration basin   总被引:1,自引:0,他引:1  

Purpose

In stormwater infiltration basins, sediments accumulate at the soil surface and cause a gradual filling up of soil pores. These sediments are composed of a mixture of natural and anthropogenic (as oil products) organic matters (OMs). The degradation kinetics of these sediment OMs and their biological stability has been neglected. This study aimed to characterize sediments OMs to assess their evolution and their capacity to degrade.

Materials and methods

To characterize OMs from the sediment layer, we measured at several places in the infiltration basin, total OM and carbon (C) contents, C distribution and biochemical fractions of the OM in the different size fractions, the sediment’s C mineralization potential, soil microbial biomass, and organic pollutants (polycyclic aromatic hydrocarbons (PAHs)) in the sediment layer.

Results and discussion

OM contents were high and varied from 66 to 193 g?kg?1 from the inlet to the outlet of basin. Depending on rainfall intensity and volume, organic particles were deposited at varying distances in the basin by decantation; this was confirmed by analysis of sediment C distribution in the different size fractions. Despite high amounts of OM, organic C had a low biodegradability. Mineralization potentials were low compared to natural soil (i.e., from 0.3 to 1.1 g CO2–C kg?1 total organic carbon). Biochemical fractionation of the organic fractions indicated that they were mainly composed of a soluble fraction, which contributed to reducing OM biodegradability. The activity of the sediment microbial biomass was low. PAH contents seemed to be partly responsible for the high biostability of OMs.

Conclusions

There was limited capacity for biodegradation of sediment OMs probably due to inhibitory effects of soluble PAHs and consequently low microbial activity.  相似文献   

2.

Purpose

The Everglades Agricultural Area (EAA), USA, comprises nearly 280,000 ha of organic soil farmlands that are drained by a network of farm canals. During the wet summer season, the water-table in the farmlands is maintained by moving water from farm canals via low-fit, high-volume drainage pumps. The drainage pumping creates a hydraulic pressure gradient, which has the potential to deliver particulate and dissolved substrates from surrounding farmlands into farm canals. This study investigated the role that seasonal drainage plays on the fate and transport of farm canal water including nutrients and metals, plants, and sediments.

Materials and methods

Intact sediment cores were collected from eight farm canals during the months of November and June, sectioned into two depth intervals (0–2.5 and 2.5–5 cm), and tested for organic matter (OM), phosphorus (P), iron (Fe), and aluminum (Al). In addition, water from the canal (core-water) was also collected and tested for total P, total dissolved P, soluble reactive P, particulate P, dissolved organic carbon, and calcium (Ca). Oxalate extractable Fe, Al, and P were used to estimate sediment P storage capacity. In order to evaluate the seasonal variability in aquatic vegetation coverage in the farm canals, spatial assessment of coverage was conducted every 2 months over a 2-year period.

Results and discussion

Significant increases in Fe and Al concentrations were observed in the sediment in November compared with June, possibly derived from surrounding soils. The source of OM to the sediments was directly associated with aquatic plants, following a seasonal trend. Total P and Ca were significantly higher in the water during June compared with November. The seasonal trends in sediment and core-water concentrations can be explained by groundwater inputs, surface runoff, and plant coverage within farm canals. High concentrations of Fe and Al in the sediments did not reflect a high P storage capacity, due to the presence of high OM content and seasonal fluctuations in redox potential.

Conclusions

The discharge of groundwater from surrounding farmlands is seasonal and has the potential to deliver nutrients, OM, and metals into adjacent farm canals. During summer, primary productivity is at its peak, and this has a direct effect on the percent aquatic plant coverage, nutrient cycling, and P storage capacity within the farm canals. Within the EAA farm canals, the presence of Ca-carbonate may have a greater influence on P storage capacity of the sediments than Fe and Al.  相似文献   

3.

Purpose

Marine mangrove sediments in the Manche-à-Eau lagoon (Guadeloupe, Caribbean Sea) harbor locally extensive, white microbial mats. These mats cover the surface of reduced sediments near the roots of red mangrove trees, Rhizophora mangle, and are mainly composed of sulfur-oxidizing bacteria belonging to the Beggiatoaceae family, with some filamentous cyanobacteria. The goal of this study was to investigate the possible influence of sediment characteristics on the presence of these microbial mats.

Materials and methods

Four push cores were collected in April 2013, two from zones with microbial mats and two from zones without mats. Sediment characteristics (grain-size distribution, mineralogy, total organic carbon (TOC) and total nitrogen (TN) contents, atomic TOC/TN ratios, and organic matter (OM) δ13C values) were compared for all four cores.

Results and discussion

Significant differences were observed between sediments below microbial mats and those without mats. Sediments with microbial mats contained greater amounts of clay, and higher TOC, TN, and TOC/TN ratios, with lower total carbonate content and δ13C values. The higher clay content most likely results from lower fluid flow velocity near to mangrove roots, while higher TOC/TN ratios and lower δ13C values indicate higher inputs of OM from mangrove trees. These results are consistent with the fact that microbial mats were observed near the roots of mangrove trees, which trap OM from terrestrial vegetation and fine sediments.

Conclusions

The grain-size distribution of sediment particles, the total carbonate content, and the δ13C values are the main parameters discriminating between zones with microbial mats and those without mats. Variations in total carbonate content, which is mainly of biogenic origin, result from conditions that are more favorable for benthic organisms in zones without microbial mats. Variations of the TOC/TN ratios are controlled by the presence of a non-negligible amount of inorganic nitrogen bound to surface clay mineral particles and/or by microbial processes.
  相似文献   

4.

Purpose

The aim of this study was to quantify the release of the hydrophobic contaminant emamectin (EMA) from marine sediments in response to inputs of organic material (OM) and/or oil, in the presence or absence of two different bioturbating species. Specifically, it was designed to test whether oil would decrease the release of EMA and whether OM and/or the presence of bioturbating macrofauna would increase the release of EMA from sediment.

Materials and methods

Experimental sediments were spiked with EMA (5 μg kg?1 wet sediment). The different treatments were prepared by the addition of OM (310 g algae m?2) and/or an aliphatic oil (29.6 g oil m?2). In addition, two bioturbating species, Brissopsis lyrifera or Ennucula tenuis, were added in some aquaria, resulting in a total of 12 treatments with four replicates each. Water samples for analyses of silicate and EMA and sediment samples for analyses of total organic carbon (TOC) were taken at the start and end of the experimental exposure. In addition, oxygen was measured during the experimental period of 8 days. Fluxes were calculated and compared between treatments using generalised linear models (GLMs).

Results and discussion

The EMA release flux was significantly increased in treatments with added OM, possibly reflecting the presence of soluble complexes formed between EMA and dissolved OM. The presence of B. lyrifera caused a small, but statistically significant, increase in EMA release from sediment. This species would be expected to have a stronger effect on bioirrigation and particle mixing than E. tenuis, particularly when the population density of the latter species is low (as in the present experiment). There were no consistent effects of oil in this experiment, but the presence of oil decreased the EMA release flux when co-occurring with added OM and/or B. lyrifera. Increased retention of hydrophobic contaminants in the presence of oil is consistent with the existing literature on contaminant fate.

Conclusions

The results from this study highlight the need to consider both the infauna present in polluted areas and the level of organic enrichment of the sediment when modelling the environmental fate of hydrophobic contaminants. It also highlights that labile OM and refractory oil appear to differ in their effects on the remobilisation of hydrophobic organic contaminants, by reducing and increasing release, respectively.  相似文献   

5.

Purpose

Approximately 74 % of agricultural soils in Tunisia are affected by water erosion, leading to the siltation of numerous human-made reservoirs and therefore a loss of water storage capacity. The objective of this study was to propose a methodology for estimating the relative contributions of gully/channel bank erosion and surface topsoil erosion to the sediment accumulated in small reservoirs.

Materials and methods

We tested an approach based on the sediment fingerprinting technique for sediments collected from a reservoir (which has been in operation since 1994) at the outlet of a catchment (Kamech, 2.63 km2). Sampling concentrated on the soil surface (in both cropland and grassland), gullies and channel banks. A total of 17 sediment cores were collected along a longitudinal transect of the Kamech reservoir to investigate the origin of the sediment throughout the reservoir. Radionuclides (particularly caesium-137, 137Cs) and nutrients (total phosphorus, total nitrogen and total organic carbon (TOC)) were analysed as potential tracers.

Results and discussion

The applications of a mixing model with 137Cs alone or 137Cs and TOC provided very similar results: The dominant source of sediment was surface erosion, which was responsible for 80 % of the total erosion within the Kamech catchment. Additionally, we showed that the analysis of a single composite core provided information on the sediment origin that was consistent with the analysis of all sediment layers in the core. We demonstrated the importance of the core sampling location within the reservoir for obtaining reliable information regarding sediment sources and the dominant erosion processes.

Conclusions

The dominance of surface erosion processes indicates that conservation farming practices are required to mitigate erosion in the agricultural Kamech catchment. Based on the results from 17 sediment cores, guidelines regarding the number and location of sampling cores to be collected for sediment fingerprinting are proposed. We showed that the collection of two cores limited the sediment source apportionment uncertainty due to the core sampling scheme to <10 %.  相似文献   

6.

Purpose

Remobilization of polychlorobiphenyl (PCB)-contaminated sediments by anthropogenic activities (e.g. dredging) or natural flow conditions could lead to the release of PCBs into the water column and consequently increase the availability of PCBs to benthic organisms. The fate of the released PCBs following such events is not well understood and such knowledge is necessary for the management of contaminated sediments. The objective of this study was to understand the processes that control the fate of PCBs following remobilization of field-aged contaminated sediments.

Materials and methods

Sediments contaminated with PCBs collected from Lake Bourget (Savoie, France) were resuspended in a column experiment. The relationships between physical–chemical parameters—i.e. suspended particulate matter, pH, inorganic and organic carbon content, redox-sensitive species and the concentrations of dissolved PCBs both in the water column and in the interstitial water of the sediment—were investigated so as to determine the key processes controlling PCB fate.

Results and discussion

Following the simulated resuspension event (SRE), dissolved PCBs were found in much higher concentrations in the water column than under stationary conditions. Desorption of PCBs from the sediment depended on the degree of the hydrophobicity of the PCBs and the initial PCB content in the sediment. Principal component analysis showed that the variations in the concentrations of released PCBs over time and space closely followed those of suspended particulate matter (SPM) and not those of redox conditions. The partitioning behaviour of PCBs on SPM showed that equilibrium state was not attained within 40 days following the SRE. A particle size fractionation study, before and after remobilization of the sediment, showed the presence of PCBs in every fraction of the sediment, but with higher amounts in large particles with high organic matter content and in the finest fractions. Remobilization of contaminated sediment did not affect this distribution profoundly but a significant enrichment in PCBs of the clay-sized fraction was observed in the re-settled sediment.

Conclusions

Sediment resuspension induced non-equilibrium conditions in the water column for more than 5 weeks and led to the enrichment with PCBs of the newly formed surface bed sediment. This enrichment was due to the preferential re-sorption of PCBs on clay-sized particles during the SRE and to the physical segregation and accumulation of the less dense particles at the surface of the sediment column; such particles thought to be the principal carriers of contaminants. These changes concerned <0.05 % of the total PCB content.  相似文献   

7.

Purpose

Sediment cores provide a reliable record of mercury (Hg) contamination and can be used to study long-term Hg pollution and relevant environmental change. In the last hundred years, there were several events which may have contributed to the accumulation of Hg in Jade Bay and its catchment. This work was undertaken to assess the record in total Hg (THg) content in sediments of cores from Jade Bay and its catchment.

Materials and methods

A 5-m sediment core from Jade Bay, Lower Saxonian Wadden Sea, southern North Sea and a 12-m core from its catchment area (Wangerland, coastal zone of the Jade Bay) were used to study Hg contents in sediments. Total Hg, grain size distribution, aluminium (Al) and total organic carbon (TOC) were analysed on subsamples of both sediment cores. Total Hg was determined by oxygen combustion-gold amalgamation using DMA-80.

Results and discussion

As THg contents of the Jade Bay core were positively correlated to the sum of TOC and Al contents (r 2?=?0.86, p?<?0.001), the Hg data were interpreted using a regional normalisation function with the sum of Al and TOC as the normalisation parameters. Total Hg contents of the Wangerland core were correlated better to Al contents (r 2?=?0.70, p?<?0.001) than to the sum of TOC and Al contents (r 2?=?0.63, p?<?0.05). Therefore, Hg contents in sediments of the Wangerland core were normalised to Al contents. Comparison between enrichment factors and the background range of the sediment cores suggested that Jade Bay was contaminated about 50 years ago, and that Wangerland, or the catchment area of Jade Bay, was contaminated about 300 years ago, if no diagenetic remobilization occurred.

Conclusions

Total Hg contents of both cores were low and of no concern to the aquatic environment of Jade Bay. The Hg record was in good agreement with the history of industrial development in the region; thus, Hg deposition could have occurred through atmospheric input, ammunition residues of the Second World War and volcanic emanations, as well as through diagenetic remobilization.  相似文献   

8.

Purpose

The content and composition of dissolved organic matter (DOM) in sediment directly affect nutrient cycling and material exchange in lake ecosystems. This study investigated the content and composition of DOM and its fractions in sediments, as well as the relationship between the different parameters and nitrogen (N) forms in DOM. The main aim of this study was to evaluate the compositional characteristics of DOM, hydrophobic bases (HOB), hydrophobic acids (HOA), hydrophobic neutral fractions (HON), and hydrophilic matter (HIM) in sediments from Erhai Lake, China.

Materials and methods

Seven surface sediment samples with different environmental characteristics were collected. The DOM in the sediment was fractionated into HOB, HOA, HON, and HIM using XAD-8 resin based on compound hydrophobicity. The contents of DOM and its fractions were measured using a TOC analyzer. The structural characteristics of DOM and its fractions were investigated using fluorescence spectroscopy and UV–Vis absorbance. Correlation analyses were carried out to better understand the relationships between the parameters of the spectral characteristics and the contents of the different N forms in DOM and its fractions.

Results and discussion

The content, spatial distribution and structure of DOM and its fractions in Erhai Lake sediment were affected by water depth and aquatic plants. The DOM content in sediment ranged from 0.2 to 0.5 g kg?1. HON accounted for 41.3 to 85.7 % of DOM, whereas HIM constituted 15.0 to 58.7 % and was significantly negatively correlated with HON (R 2 ?=?0.856, P?Conclusions (1) Hydrophobic fractions are the major components of DOM in the sediments from the seven sites in Erhai Lake. (2) DOM and its fractions mainly originated from microbial sources. (3) The A 253/A 203 ratio is useful for evaluating the contents of N forms. The structure of DOM and its fractions are important in affecting the contents of DON. Nitrate (NO3-N) contributes to eutrophication, and thus cannot be ignored from studies of Erhai Lake sediment.  相似文献   

9.

Purpose

The application of bio-fertilizers is one of the management practices that can help to maintain or increase the content of organic matter (OM) and improve soil fertility in arable soils. While some results have been obtained in relation to the influence of bio-fertilizers on organic matter content, less in known about the fractional composition of humus.

Materials and methods

The aim of this study was to determine the effects of the bio-fertilizer UGmax on soil total organic carbon (TOC), dissolved organic carbon (DOC), and the fractional composition of organic matter (C of humic acids (CHAs), C of fulvic acids (CFAs), and C in humins) in the humus horizon of an arable field. Measurements were taken in 2005 before the application of UGmax and in 2008, 3 years after its application, which was done in 2005, 2006, and 2007. Forty soil samples were taken in 2005 (the control year without UGmax), while 20 samples were taken after UGmax treatment and 20 from the control in 2008. Samples were always collected after the plants were harvested.

Results and discussion

After the 3-year period of the experiment, the TOC content was 6.3 % higher in plots on which UGmax was applied in comparison to the control, while the DOC content was 0.19 percentage points lower after 3 years of bio-fertilizer use as compared to the initial year of the experiment. The contribution of DOC to TOC decreased significantly after the application of UGmax in comparison with the control. The content of CFAs and its contribution in the TOC pools in soil without UGmax was higher at the end of the experiment compared to the beginning, while there was an inverse relationship in the soil with the bio-fertilizer. In comparison with the control, organic matter in the soil treated with UGmax had a higher content of C of humic acids, C in humins, and higher CHAs/CFAs ratio.

Conclusions

We conclude that the use of a bio-fertilizer that increases the stable fractions of organic matter provides evidence of an increase in the soil OM stability. In turn, the contribution of the organic matter fractions that are more resistant to decomposition is crucial for increasing soil carbon sequestration.
  相似文献   

10.

Purpose

The transport behavior of human pharmaceuticals in groundwater depends on a multitude of factors such as the physico-chemical conditions in the aquifer and the organic carbon content of the sediment, and, in particular, on the redox conditions in the groundwater. This is of special interest at managed aquifer recharge sites where the occurrence of trace organics is important for drinking water production. The aim of this study was to evaluate the possibility of influencing the redox system of the aquifer in a way that optimizes the potential of managed aquifer recharge systems to reduce the amount of trace organics.

Materials and methods

Column studies were performed using natural and thermally treated sediments from an infiltration basin of the Berlin area, Germany. Special emphasis was placed on thermal treatment of the sediments to influence the total organic carbon (TOC) content in the sediment. In one experiment, the sediment was thermally pretreated at 550 °C, in two experiments the sediment was pretreated at 200 °C, and in one the sediment was untreated. Furthermore, the influence of ozonation, a very common disinfectant used in drinking water production, was studied in the experiments. The retardation and degradation parameters for primidone (PMD), carbamazepine (CBZ), and sulfamethoxazole (SMX) under different redox conditions were evaluated.

Results and discussion

Oxic conditions were obtained in the experiment with low TOC (0.06 wt%) in the sediment pre-treated at 550 °C. Anoxic conditions were predominant in two column experiments with a TOC content of 0.17 wt% in the sediment, irrespective of the mode of treatment (natural or 200 °C). All three pharmaceutical compounds show almost conservative transport behavior with retardation factors between 1.02 and 1.25 for PMD, between 1.06 and 1.37 for CBZ, and between 1.00 and 1.08 for SMX. Differences in the transport behavior were observed depending on the TOC content of the sediment. For CBZ, and to a minor extent for PMD, the higher retardation factors were observed in the sediment with a TOC content of 0.17 wt% under anoxic conditions. The ozonation of the influent water affects the influent concentrations of PMD, CBZ and SMX. However, it has no influence on the oxygen concentration of the column outflow.

Conclusions

CBZ and PMD are retarded in the presence of organic matter in the aquifer. Variations of the TOC content of the sediment have a direct influence on the retardation of CBZ and PMD. The three human pharmaceuticals may be ranked in order of decreasing retardation: CBZ?>?PMD?>?SMX. The microbial activity in the experiments was not studied, although it can be assumed that the thermal pretreatment influences the microbial activity in the sediments. In particular, the microbial activity was severely inhibited at 550 °C, resulting in a shift of the redox conditions.  相似文献   

11.

Purpose

Few studies have described the bacterial community structures of turbid rivers. In this paper, the characteristics of the bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world, were studied.

Materials and methods

Water and sediment samples were collected from six sites along the river. Bacterial community composition was determined using the 16S ribosomal RNA (rRNA) gene clone library technique. The relationship between environmental parameters and bacterial diversity was analyzed.

Results and discussion

A total of 1,131 gene sequences were obtained and clustered into 639 operational taxonomic units (at the 97 % identity level), with Proteobacteria as the predominant phylum. The Shannon index for water samples ranged from 3.39 to 4.40 and was generally higher than that in other rivers; this was probably due to the high suspended particulate sediment (SPS) concentration in the Yellow River, which can provide more habitats for both aerobic and anaerobic bacteria. Also, the bacterial diversity of the water samples was slightly higher than that of the surface sediment samples. The bacterial diversity of water increased along the river in the downstream direction, while there was no trend for the sediment. Redundancy analysis indicated that pH, dissolved organic carbon (DOC), and SPS were the main factors controlling the water bacterial community in the Yellow River, and pH, nitrate–nitrogen, and water content were the main factors for the surface sediment bacterial community.

Conclusions

This study indicated that the bacterial diversity of the Yellow River is generally higher than that in other rivers, suggesting that SPS plays an important role in regulating bacterial diversity and community structure in aquatic environments.  相似文献   

12.

Purpose

Soil aggregates play an important role in promoting soil fertility, as well as increasing the sink capacity and stability of soil carbon. In this study, we consider the following research questions:1. Under field conditions, do different dosages of biochar increase the soil aggregation after 3 years of application?2. How does the application of biochar affect the concentration and distribution of soil total organic carbon (TOC) and total nitrogen (TN) in different sizes of aggregates?3. Can the application of biochar alter the composition of organic carbon in soil aggregates?

Materials and methods

Different amounts of biochar (up to 90 t ha?1) were applied to a calcareous soil in a field experiment in 2009 along with the application of chemical fertilizer annually and the returning of winter wheat and summer maize straws. After 3 years, 0–20-cm soil samples were taken to measure the size distribution of soil water-stable aggregates by wet sieving, the concentrations of TOC and TN in whole aggregates and light or heavy fractions by elemental analysis equipment, and composition of TOC by Fourier transform infrared (FTIR) and pyrolysis-gas chromatography/mass spectrometer (Py–GC/MS).

Results and discussion

(1) The 3 years of biochar application had no significant effects on degree of soil aggregation but reduced the breakage of large soil aggregates (>1000 μm); (2) biochar significantly increased the contents of TOC and TN in soil macro-aggregates (>250 μm), as well as their ratios to total soil amount. Biochar also significantly increased the contents of TOC and TN in light fractions as well as the C/N ratio, which made the soil organic matter more active. The biochar dosage showed a significant positive correlation with organic carbon, total nitrogen, and C/N ratio in light fraction components of aggregates (>250 μm). Biochar mainly affected the organic matter in the heavy fraction components of macro-aggregates; (3) from the Py–GC/MS results, biochar increased the CO2 content originated from active organic carbon.

Conclusions

Long-term application of biochar improved the stability of soil aggregates, increased the contents of TOC and TN as well as organic carbon and total nitrogen in macro-aggregates, and usually increased the contents of CO2 originated from active organic carbon in light fractions. The findings were helpful in evaluating the effects of biochar on soil aggregation and organic matter stability.
  相似文献   

13.

Purpose

We analysed the status of current water and sediment management practices in six deltas and estuaries, which were part of the European DELTANET, INTERREG-funded network.

Materials and methods

These systems—the Danube, Ebro and Vistula deltas and the Elbe, Minho and Severn estuaries—represent different geographic regions of Europe. This enables comparison between the sites’ approaches to common coastal issues, notably those associated with sediment budgets, contamination and flood risk. Based on documentary analysis, workshop events and expert discussion, we employ a simple classification scheme to distinguish between levels of risk from these aspects.

Results

We suggest that flood risk is the most significant risk, followed by upstream sediment retention and sediment aggradation. Chemical contamination, though less severe, is not unimportant. Key management issues include a lack of environmental quality standards for sediment and suspended particulate matter, as well as the limited deployment of monitoring programmes, regular sediment sampling and associated chemical analyses.

Conclusions

These include both general and specific recommendations. Within these, the limited scope of integrated plans that aim for sustainability of the respective systems is highlighted. It is suggested that these do not challenge traditional, classical engineering approaches sufficiently. Nor do they address the origin of many environmental problems, especially those which are closely linked to short-term political and economic priorities.  相似文献   

14.

Purpose

The low conductivity of sediments for mass and electron transport is the most severe limiting factor in sediment microbial fuel cells (SMFCs), so that sediment ameliorations yielded more remarkable effects than electrode improvements. The objective of this research was to enhance the electricity generation of SMFCs with amendments of biochar to freshwater sediments for conductivity enhancement.

Materials and methods

Laboratory-scale SMFCs were constructed and biochars were produced from coconut shells at different temperatures. Variations in the power output, electrode potential, internal resistance, total organic carbon (TOC) content, and microbial communities were measured.

Results and discussion

Amending with biochar reduced the charge transfer resistances of SMFCs and enriched the Firmicutes (mainly Fusibacter sp.) in the sediment, which improved the SMFC power generation by two- to tenfold and enhanced the TOC removal rate by 1.7- to fourfold relative to those without the amendment.

Conclusions

The results suggested that biochar amendment is a promising strategy to enhance SMFC power production, and the electrical conductivity of biochar should be considered important when interpreting the impact biochar has on the electrical performance of soil or freshwater sediment MFCs.
  相似文献   

15.

Background, aim, and scope

The Mecklenburg Bight (Western Baltic Sea) near Luebeck, Germany was historically used to dump industrial waste at sea and, thus, sediments in some regions are highly polluted at present. While earlier studies identified hot spots of chemical pollution, little is known about biological activities and impacts on exposed marine organisms. This study aimed to assess the pollution in the Mecklenburg Bight to determine the degree of contamination with sediment-bound polycyclic aromatic hydrocarbons (PAHs) as well as biological activities.

Materials and methods

Sediment cores with a depth of 30 cm were sampled at a dumping site and at a reference site, sliced in distinct layers, freeze-dried, and processed using the accelerated solvent extraction method. Sediment was characterized measuring total organic carbon (TOC) and soot contents. Concentrations of the 16 EPA-PAHs were determined with chemical analysis (gas chromatography–mass spectroscopy) in each sediment slice and referred to the determined TOC content. Further on, in vitro biotests were applied to determine toxic effects of contaminants in the sediment. The acute neutral red retention assay indicated no specific cytotoxic effects. Arylhydrocarbon receptor (AhR)-mediated activities were measured using the mechanism-specific 7-ethoxyresorufin-O-deethylase induction assay. Both biotests were performed with rainbow trout (Oncorhynchus mykiss) liver cells (RTL-W1). Analyzed compound concentrations and biological activities were given in toxicological equivalent concentrations (chem- and bio-TEQs) to determine shares of analyzed EPA-PAHs to the overall activity.

Results

TOC and soot contents indicated a significant alteration through the sediment core at the dumping site. EPA-PAH concentrations were referred to TOC and indicated elevated concentrations at the dumping site. Maximum PAH concentrations (14 to 16 cm depth; 5.44 µg/g TOC) were 300-fold increased at the dumping site, compared to the reference site (4 to 6 cm depth; 0.017 µg/g TOC). Cytotoxicity as determined in the neutral red retention assay was elevated in some layers at the dumping site (maximum in 4 to 6 cm depth; NR50?=?14 mg/ml), but not correlated with TOC or soot contents. Ah receptor agonist activities were clearly elevated in highly PAH-loaded layers at both sites. At the dumping site, maximum activities were determined reflected by a bio-TEQ of 223,000 pg/g (19 to 22 cm), in contrast to a bio-TEQ of 41,000 pg/g (6 to 8 cm) at the reference site. Further on, shares of EPA-PAHs to the overall activity were determined and contributed >40% at the dumping site and between 4% and 17% at the reference site. Chem-TEQs were found to exceed bio-TEQs in a depth of 11 to 22 cm, indicating the presence of Ah receptor antagonistic or inhibitive compounds.

Discussion

Sediments from the dumping site were determined to be highly contaminated and caused toxic effects in depths that are known to be influenced by dumping activities. In contrast, the reference sediment indicated only near to surface layers to be minor contaminated. In comparison with highly polluted sediments from other marine sites, the contamination of the dumping site could be ranked as elevated. Chem-TEQs exceeding bio-TEQs in a depth of 11 to 22 cm seem to be caused by AhR antagonistic compounds in the dumped material. Furthermore, particle-bound PAH concentrations assessed in this study were discussed against freely dissolved concentrations in interstitial water, as determined in a different study with the same sediment core.

Conclusions

Sediments in the inner Mecklenburg Bight could be shown to be highly contaminated, at least with PAHs, causing articulate increased Ah receptor-mediated activities. Marine organisms may be exposed to these contaminants, in particular when inhabiting the sediment.

Recommendations and perspectives

Further research activities should extend the range of chemically analyzed pollutants and applied biotests and endpoints. Monitoring should close the gap between analytical methods in the laboratory and the field to determine possible impacts on organisms at site.  相似文献   

16.

Purpose

River sediments play a crucial role in the storage and transformation of organic matter (OM). Nutrient dynamics are controlled by the interaction of several key parameters, i.e. river discharge, channel geometry and vertical exchanges of water (upwelling vs. downwelling zones). The main aim of this study was to evaluate the effect of channel forms and discharge variation on nutrient spiralling in the hyporheic zone (HZ) of streams.

Materials and methods

Four experimental flow manipulations (EFM) were carried out at two reaches with different channel forms (straight vs. sinuous) in an oligotrophic subtropical river in Australia. Flow manipulation consisted of reducing the river width with a temporary dam, diverting and concentrating the main water flux on two different geomorphological units (riffle vs. gravel bar), in order to simulate flooding conditions. Hyporheic waters were analysed for their physicochemical characteristics and nutrient (nitrates?+?nitrites?=?NO x and soluble reactive phosphorus [SRP]) and OM contents at two depths (10 and 50 cm) within the bed sediments, both upstream and downstream of the geomorphological units.

Results and discussion

The physicochemical parameters clearly demonstrated the existence of hyporheic flow paths, characterized by the alternation of downwelling and upwelling areas, with more consistent gradients in gravel bars than in riffles. The HZ acted as source for NO x and SRP, but this role varied between geomorphological units and reaches. The effect of EFM differed between sampling points, irrespective of the type of geomorphological unit. In gravel bars, a flush out during high discharge was observed for NO x , SRP and particulate organic matter (POM) at the sinuous channel, whereas storage and removal were recorded at the straight channel for SRP and NO x , respectively. At the riffle of the sinuous channel, very fine POM accumulated, while removal was noticed for POM. In contrast, at the riffle of the straight channel, SRP accumulated in the HZ and NO x was removed out of the HZ.

Conclusions

Nutrient dynamics in the HZ and the response to flow increases were not governed by the geomorphological unit type. Other parameters that determine water residence time in the sediments, such as local heterogeneity in sediment characteristics (grain size, porosity and hydraulic conductivity), channel sinuosity, reach slope and the size and form of the gravel bar, may be more significant explanatory variables for understanding OM and nutrient dynamics in the HZ. This study emphasizes the need for caution in making generalisations about the role of river sediment in nutrient storage and the impact of floods on nutrient dynamics.  相似文献   

17.

Purpose

Suspended particulate sediment (SPS) concentration has a great impact on the sediment to water partitioning coefficients (K p) of hydrophobic organic compounds (HOCs), which is called the particle concentration effect (PCE). However, the mechanisms regarding the PCE are not yet well understood, and there is little direct experimental evidence for these mechanisms. The aim of this study was to investigate the PCE of polycyclic aromatic hydrocarbon (PAH) sorption on sediment by analyzing the freely dissolved concentrations of PAHs.

Materials and methods

Sediments were collected from the Yellow River and the Haihe River in China. Pyrene was selected as a model PAH to investigate the sorption of PAH on sediments. In addition to the total dissolved concentration (C TW) of pyrene, the freely dissolved concentration (C FW) measured by polyethylene devices was used to investigate the PCE of pyrene in the presence and absence of phenanthrene and chrysene.

Results and discussion

For both the Haihe River and Yellow River sediments, in the presence and absence of other PAHs, the K p value of pyrene with C FW as the equilibrium concentration in the water phase was approximately two times higher than that with C TW as the equilibrium concentration. With either C TW or C FW as the equilibrium concentration in the water phase, the K p value of pyrene decreased with increasing SPS concentration as a power function. In addition, the K p value with C TW as the equilibrium concentration decreased faster than that with C FW. This inferred that, apart from a third phase including dissolved organic carbon (DOC) and colloids, particle–particle, or particle–DOC interactions were important for the PCE. The contribution of the third phase to the PCE for the Haihe River sediment (72.5?±?26.4 %) was greater than the contribution for the Yellow River sediment (48.4?±?16.2 %), which had a larger particle size and lower total organic carbon and black carbon contents.

Conclusions

The PCE of PAH sorption onto sediments was attributed to both the third phase and to particle–particle or particle–DOC interactions. The contribution of the third phase to the PCE depended on both the TOC content and the particle size of sediment. As high SPS and DOC concentrations exist in many rivers, their effects on the sorption of HOCs should be considered when conducting bioavailability and ecological risk assessment.  相似文献   

18.

Purpose

The purpose of this study was to elucidate historical trends, spatial variations, and the sources of polycyclic aromatic hydrocarbons (PAHs) pollution in several Japanese lakes.

Materials and methods

The vertical distributions of PAHs in the core samples of sediments taken at several points in lakes Kasumigaura, Suwa, Kizaki, and Shinji were determined using a gas chromatograph equipped with a mass selective detector and combined with chronological information and the physical/elemental properties of the sediment.

Results and discussion

Seventeen related compounds (congeners) typically had concentration peaks at sediment depths corresponding to the 1960s to 1970s. In Lake Shinji and one bay of Lake Kasumigaura, there was a tendency for PAH concentrations to increase downstream; in contrast, another bay of Lake Kasumigaura showed the reverse trend. During big flood events, the fluxes of PAHs increased due to large inputs of particulate matter, although PAH concentrations were reduced. For the four study lakes and other similar lakes, PAH concentrations of surface sediments were approximately proportional to population densities in the respective watersheds, while the total input of PAHs to the lakes were correlated with their population and watershed area. The source apportionment analysis using isomer ratios for the congener profiles indicated that the principal sources of the PAHs in the lake sediments were gasoline and/or diesel engine exhausts and biomass burning.

Conclusions

The observed concentration peaks showed a deterioration of the chemical quality of atmospheric conditions around 1960?C1970 and a recent tendency for their amelioration. Between-lake differences suggest that the influence of human activity in the watersheds influences sediment PAH concentrations. The PAH sources were identified to be of pyrogenic origin.  相似文献   

19.

Purpose

Green areas in urban parks are special ecosystems because of social and ecological benefits.

Materials and methods

We investigated the ecological impacts of green spaces by comparing the properties of soils, with emphasis on metals, in green spaces and bare soil playgrounds in four urban parks in Murcia City (SE Spain).

Results and discussion

Organic matter (OM) contents in green areas are higher than playground soils due to litter decomposition from grass. Cation exchange capacity in green areas ranged from 10 to 14 compared to 2 cmol+kg?1 in playground soils, showing the effect of OM (and clay) contents in green areas due to the presence of vegetation. Soil total metal contents in urban parks are below the environmental threshold values for soils in Spain and other European countries, and come from atmospheric deposition and fertilizers application. Diethylenetriaminepentaacetic acid (DTPA)-extractable soil Cd in green areas (4% of total Cd) is lower than in playground soils (58% of total Cd). We attributed the reduced DTPA- and water-extractable Cd, Co, Cr, Mn, and Mo to the formation of stable complexes between metals and OM produced from the continued decomposition of roots of grasses in green spaces.

Conclusions

Grasses accumulate less metal than soils except in roots where Cr and Zn are higher than soils by as much as 31 and 17%, respectively. We conclude that grasses increased (up to 8×) soil OM content in green areas to significantly increase the ability of soils to accumulate nutrients for plants, and to retain and reduce the mobility and toxicity of metals in soils in urban parks.  相似文献   

20.

Purpose

Cohesive sediment is able to flocculate and create flocs, which are larger than individual particles and less dense. The phenomenon of flocculation has an important role in sediment transport processes such as settling, deposition and erosion. In this study, laboratory experiments were performed to investigate the effect of key hydrodynamic parameters such as suspended sediment concentration and salinity on floc size and settling velocity. Results were compared with previous laboratory and field studies at different estuaries.

Materials and methods

Experimental tests were conducted in a 1-L glass beaker of 11-cm diameter using suspended sediment samples from the Severn Estuary. A particle image velocimetry system and image processing routine were used to measure the floc size distribution and settling velocity.

Results and discussion

The settling velocity was found to range from 0.2 to 1.2 mm s?1. Settling velocity changed in the case of increasing suspended sediment concentration and was controlled by the salinity. The faster settling velocity occurred when sediment concentration is higher or the salinity is lower than 2.5. On the other hand, at salinities higher than 20, in addition to increasing SSC, it was found that the situation was reversed, i.e. the lower the sediment concentration, the faster the settling velocity.

Conclusions

Sediment flocculation is enhanced with increasing sediment concentration but not with increasing salinity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号