首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The beneficial effect to the environment of nitrate (NO3 ?) removal by denitrification depends on the partitioning of its end products into nitrous oxide (N2O), nitric oxide (NO), and dinitrogen (N2). However, in subtropical China, acidic forest mineral soils are characterized by negligible denitrification capacity and thus reactive forms of N could not be effectively converted to inert N2, resulting in a negative environmental consequence. In this study, the influences of C input from litter decomposition on denitrification rate and its gaseous products under anoxic conditions in the acidic coniferous and broad-leaved forest soils in subtropical China were investigated using the acetylene (C2H2) blockage technique in the laboratory.

Materials and methods

The coniferous and broad-leaved forest soils with and without litter addition were incubated under anaerobic conditions for 244 h. There were three treatments for each forest soil including addition of 0.5 and 1% corresponding litter (gram of litter per gram of soil) and the control without addition of litter.

Results and discussion

The results showed that litter addition into the broad-leaved forest soil had no effect on average rates of denitrification (calculated as the sum of NO, N2O, and N2), whereas in the coniferous forest soil, the addition resulted in a significant increase in average denitrification rate. In the broad-leaved forest soil, both rates of litter addition decreased the production of NO but increased the production of N2, and high rates of litter addition into the coniferous forest soil promoted the reduction of N2O to N2.

Conclusions

Increased decomposition of litter in the forest soils could effectively reduce N2O and NO production through denitrification under anaerobic conditions.  相似文献   

2.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

3.

Purpose

Agricultural practises impact soil properties and N transformation rate, and have a greater effect on N2O production pathways in agricultural soils compared with natural woodland soils. However, whether agricultural land use affects N2O production pathways in acidic soils in subtropical regions remains unknown.

Materials and methods

In this study, we collected natural woodland soil (WD) and three types of agricultural soils, namely upland agricultural (UA), tea plantation (TP) and bamboo plantation (BP) soils. We performed paired 15N-tracing experiment to investigate the effects of land use types on N2O production pathways in acidic soils in subtropical regions in China.

Results and discussion

The results revealed that heterotrophic nitrification is the dominant pathway of N2O production in WD, accounting for 44.6 % of N2O emissions, whereas heterotrophic nitrification contributed less than 2.7 % in all three agricultural soils, due to a lower organic C content and soil C/N ratio. In contrast, denitrification dominated N2O production in agricultural soils, accounting for 54.5, 72.8 and 77.1 % in UA, TP and BP, respectively. Nitrate (NO3 ?) predominantly affected the contribution from denitrification in soils under different land use types. Autotrophic nitrification increased after the conversion of woodland to agricultural lands, peaking at 42.8 % in UA compared with only 21.5 % in WD, and was positively correlated with soil pH. Our data suggest that pH plays a great role in controlling N2O emissions through autotrophic nitrification following conversion of woodland to agricultural lands.

Conclusions

Our results demonstrate the variability in N2O production pathways in soils of different land use types. Soil pH, the quantity and quality of organic C and NO3 ? content primarily determined N2O emissions. These results will likely assist modelling and mitigation of N2O emissions from different land use types in subtropical acidic soils in China and elsewhere.
  相似文献   

4.
Land-use type and nitrogen (N) addition strongly affect nitrous oxide (N2O) and carbon dioxide (CO2) production, but the impacts of their interaction and the controlling factors remain unclear. The aim of this study was to evaluate the effect of both factors simultaneously on N2O and CO2 production and associated soil chemical and biological properties. Surface soils (0–10 cm) from three adjacent lands (apple orchard, grassland and deciduous forest) in central Japan were selected and incubated aerobically for 12 weeks with addition of 0, 30 or 150 kg N ha–1 yr–1. Land-use type had a significant (p < 0.001) impact on the cumulative N2O and CO2 production. Soils from the apple orchard had higher N2O and CO2 production potentials than those from the grassland and forest soils. Soil net N mineralization rate had a positive correlation with both soil N2O and CO2 production rates. Furthermore, the N2O production rate was positively correlated with the CO2 production rate. In the soils with no N addition, the dominant soil properties influencing N2O production were found to be the ammonium-N content and the ratio of soil microbial biomass carbon to nitrogen (MBC/MBN), while those for CO2 production were the content of nitrate-N and soluble organic carbon. N2O production increased with the increase in added N doses for the three land-use types and depended on the status of the initial soil available N. The effect of N addition on CO2 production varied with land use type; with the increase of N addition doses, it decreased for the apple orchard and forest soils but increased for the grassland soils. This difference might be due to the differences in microbial flora as indicated by the MBC/MBN ratio. Soil N mineralization was the major process controlling N2O and CO2 production in the examined soils under aerobic incubation conditions.  相似文献   

5.

Purpose

Nitrous oxide (N2O) is a potent greenhouse gas which is mainly produced from agricultural soils through the processes of nitrification and denitrification. Although denitrification is usually the major process responsible for N2O emissions, N2O production from nitrification can increase under some soil conditions. Soil pH can affect N2O emissions by altering N transformations and microbial communities. Bacterial (AOB) and archaeal (AOA) ammonia oxidisers are important for N2O production as they carry out the rate-limiting step of the nitrification process.

Material and methods

A field study was conducted to investigate the effect of soil pH changes on N2O emissions, AOB and AOA community abundance, and the efficacy of a nitrification inhibitor, dicyandiamide (DCD), at reducing N2O emissions from animal urine applied to soil. The effect of three pH treatments, namely alkaline treatment (CaO/NaOH), acid treatment (HCl) and native (water) and four urine and DCD treatments as control (no urine or DCD), urine-only, DCD-only and urine + DCD were assessed in terms of their effect on N2O emissions and ammonia oxidiser community growth.

Results and discussion

Results showed that total N2O emissions were increased when the soil was acidified by the acid treatment. This was probably due to incomplete denitrification caused by the inhibition of the assembly of the N2O reductase enzyme under acidic conditions. AOB population abundance increased when the pH was increased in the alkaline treatment, particularly when animal urine was applied. In contrast, AOA grew in the acid treatment, once the initial inhibitory effect of the urine had subsided. The addition of DCD decreased total N2O emissions significantly in the acid treatment and decreased peak N2O emissions in all pH treatments. DCD also inhibited AOB growth in both the alkaline and native pH treatments and inhibited AOA growth in the acid treatment.

Conclusions

These results show that N2O emissions increase when soil pH decreases. AOB and AOA prefer different soil pH environments to grow: AOB growth is favoured in an alkaline pH and AOA growth favoured in more acidic soils. DCD was effective in inhibiting AOB and AOA when they were actively growing under the different soil pH conditions.  相似文献   

6.

Purpose

Nitrous oxide (N2O) production and reduction rates are dependent on the interactions with each other and it is therefore important to evaluate them within the context of simultaneously operating N2O emission and reduction. The objective of this study was to quantify the simultaneously occurring N2O emission and reduction across a range of subtropical soils in China, to gain a mechanistic understanding of potential N2O dynamics under the denitrification condition and their important drivers, and to evaluate the potential role of the subtropical soils as either sources or sinks of N2O through denitrification.

Materials and methods

Soils (45, from a range of different land uses and soil parent materials) were collected from the subtropical region of Jiangxi Province, China, and tested for their potential capacity for N2O emission and N2O reduction to N2 during denitrification. N2O emission and reduction were determined in a closed system under N2 headspace after the soils were treated with 200?mg?kg?1 NO 3 ? -N and incubation at 30?°C for 28?days. The soil physical and chemical properties, the temporal variations in headspace N2O concentration, and NO 3 ? -N and NH 4 + -N concentrations in the soil slurry were measured.

Results and discussion

Variations in N2O concentration (N) over incubation time (t) were consistent with an equation in which average R 2?=?0.84?±?0.11 (p?<?0.05): $ N = A \times \left( {1 - \exp \left( { - {k_1} \times t} \right)} \right) - B \times \exp \left( {{k_2} \times t} \right) $ , where A is the total N2O emission during the incubation, B is a constant, and k 1 and k 2 are the N2O emission constant and reduction constants, respectively. The results of the simulation showed that k 1 was greater than k 2. The reduced amount of NO 3 ? -N in the first 7?days of incubation and the N2O emission rate (the percentage of A value relative to the amount of NO 3 ? -N reduced during the 28-day incubation, R n) were able to explain 82.9?% (p?<?0.01) of the variation in total N2O emission (A) during the incubation for the soil samples studied, indicating that the total amount of N2O emitted was determined predominately by denitrification capacity. Soil organic carbon content and soil nitrogen mineralization are the key factors that determine differences in the amounts of reduced NO 3 ? -N among the soil samples. The R n value decreased with increasing k 2 (p?<?0.01), indicating that soils with higher N2O reduction capacity under these incubation conditions would emit less N2O per unit of denitrified NO 3 ? -N than the other soils. Results are valuable in the evaluation of net N2O emissions in the subtropical soils and the global N budget.

Conclusions

In a closed, anaerobic system, variations in N2O concentration in the headspace over the incubation time were found to be compatible with a nonlinear equation. Soil organic carbon and the amount of NH 4 + -N mineralized from the organic N during the first 7?days of incubation are the key factors that determine differences in the N2O emission constant (k 1), the N2O reduction constant (k 2), the total N2O emission during the incubation (A) and the N2O emission rate (R n).  相似文献   

7.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

8.

Purpose

Nitrification and denitrification processes dominate nitrous oxide (N2O) emission in grassland ecosystems, but their relative contribution as well as the abiotic factors are still not well understood.

Materials and methods

Two grassland soils from Duolun in Inner Mongolia, China, and Canterbury in New Zealand were used to quantitatively compare N2O production and the abundance of bacterial and archaeal amoA, denitrifying nirK and nirS genes in response to N additions (0 and 100 μg NH4 +–N g?1 dry soil) and two soil moisture levels (40 and 80 % water holding capacity) using microcosms.

Results and discussion

Soil moisture rather than N availability significantly increased the nitrification rate in the Duolun soil but not in the Canterbury soil. Moreover, N addition promoted denitrification enzyme activities in the Canterbury soil but not in the Duolun soil. The abundance of bacterial and archaeal amoA genes significantly increased as soil moisture increased in the Duolun soil, whereas in the Canterbury soil, only the abundance of bacterial amoA gene increased. The increase in N2O flux induced by N addition was significantly greater in the Duolun soil than in the Canterbury soil, suggesting that nitrification may have a dominant role in N2O emission for the Duolun soil, while denitrification for the Canterbury soil.

Conclusions

Microbial processes controlling N2O emission differed in grassland soils, thus providing important baseline data in terms of global change.
  相似文献   

9.

Purpose

Nitrous oxide (N2O) is produced naturally in soils through microbial processes of nitrification and denitrification. In recent years, the long-term application of nitrogen-heavy fertilizers has led to the acidification of tea orchard soils with high N2O emission. The present research aimed at finding out which process (nitrification or denitrification) dominates in N2O production, whether certain fertilizer managements could reduce N2O emission, and the effects of fertilizer management on the abundance of functional genes.

Materials and methods

Two nitrification inhibitors, 3, 4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD), combined with different N fertilizers (ammonium sulfate and potassium nitrate) were applied to highly acidic tea orchard soil in an aerobic incubation experiment. Both amoA and nosZ gene abundances from different treatments were determined by quantitative PCR. An anaerobic nitrate effect test was carried out using C2H2 inhibition method.

Results and discussion

The application of nitrate fertilizers significantly (P?<?0.05) enhanced total N2O emission. A linear regression analysis between total N2O emission and average nitrate contents indicated that denitrification is the dominant source of N2O in this tea orchard soil. In the anaerobic incubation, no significant difference of N2O emission was observed between KNO3 and no KNO3 treatments before 96 h. Quantitative PCR revealed lower copy numbers of nosZ in nitrate-associated fertilizer-treated soils than the soils from other treatments. Compared with the control, ammonium fertilizers with DCD or DMPP significantly (P?<?0.05) inhibited nitrate production as well as N2O.

Conclusions

These results showed that denitrification is the dominant source of N2O in this highly acidic soil. Nitrate addition could significantly inhibit the abundance of nitrous oxide reductase, therefore causing high N2O emission. The application of ammonium fertilizers with DCD or DMPP could significantly reduce N2O emission, possibly due to the effective inhibition of nitrate production.  相似文献   

10.
Biogas production generates digested slurry as a by-product. It can be used as fertilizer especially after its conversion into digested liquid. A microcosm-based study was conducted in order to compare the effects of single application of digested liquid or chemical fertilizer on N2O flux and crop yield of komatsuna vegetable. Analysis revealed that digested liquid-treated soils released almost equal cumulative N2O (0.43 g?N m?2) compared to chemical fertilizer (0.39 g?N m?2). The uncropped soils treated with the digested liquid and chemical fertilizer released more N2O compared to corresponding cropped soils. The N2O emission factor and soil mineral N contents were similar for the digested liquid and chemical fertilizer-treated soils. Plant biomass in the first crop after digested liquid application was significantly higher (5.59 g plant?1) than that after applied chemical fertilizer (4.78 g plant?1); but there was no significant difference for the second crop. Nitrogen agronomic efficiency was improved by the digested liquid compared to chemical fertilizer. This study indicates that cumulative N2O flux was similar after application of the digested liquid and chemical fertilizer, while the overall yield from both croppings was increased in the digested liquid-treated soil compared to chemical fertilizer-treated soil.  相似文献   

11.
Impact of organic matter addition on pH change of paddy soils   总被引:1,自引:1,他引:0  

Purpose

The objective of the present study was to explore the effect of initial pH on the decomposition rate of plant residues and the effect of residue type on soil pH change in three different paddy soils.

Materials and methods

Two variable charge paddy soils (Psammaquent soil and Plinthudult soil) and one constant charge paddy soil (Paleudalfs soil) were used to be incubated at 45 % of field capacity for 105 days at 25 °C in the dark after three plant residues (Chinese milk vetch, wheat straw, and rice straw) were separately added at a level of 12 g?kg?1 soil. Soil pH, CO2 escaped, DOC, DON, MBC, MBN, NH 4 + , and NO 3 ? during the incubation period were dynamically determined.

Results and discussion

Addition of the residues increased soil pH by 0.1–0.8 U, and pH reached a maximum in the Psammaquent and Plinthudult soils with low initial pH at day 105 but at day 3 in the Paleudalfs soil with high initial pH. Incorporation of Chinese milk vetch which had higher concentration of alkalinity (excess cations) and nitrogen increased soil pH more as compared with incorporation of rice and wheat straws. Microbial activity was the highest in Chinese milk vetch treatment, which resulted in the highest increase of soil pH as compared with addition of rice and wheat straws. However, nitrification seemed to be inhibited in the variable charge soils of Psammaquent and Plinthudult but not in the constant charge soil of Paleudalfs.

Conclusions

The effectiveness of increasing soil pH after incorporation of the plant materials would be longer in low initial pH soils of Psammaquent and Plinthudult than in high initial pH soil of Paleudalfs. In order to achieve the same degree of pH improvement, higher amounts of plant residues should be applied in constant charge soils than in variable charge soils.  相似文献   

12.
Denitrification represents one of the main microbial processes producing the primary and secondary greenhouse gases nitrous oxide (N2O) and nitric oxide (NO) in soils. It is well established that abiotic factors like the soil water content and the availability of nitrogen (N) are key parameters determining the activity of denitrifiers in soils. However, soils differing regarding their characteristics such as the content of Corg, the soil texture or the pH value may respond in specific manners to equivalent changes in soil moisture and N input. Thus, short-term incubation experiments were performed to test and compare the capacity of two contrasting Austrian forest soils to respond to mineral N application at increased soil water contents. Soils from the pristine Rothwald forest (rich in Corg) and the more acidic Schottenwald forest (poor in Corg) were amended with either NH 4 + -N or NO 3 ? -N and were incubated at 40% and 70% water-filled pore space for 4 days. Changes in mineral N pools, nitrite reductase activity and NO and N2O emission rates were measured, and the abundance and structural community composition of the functional group involved in nitrite reduction were analysed via quantitative real-time polymerase chain reaction and terminal restriction fragment length polymorphism analysis of the nirK gene. Rapid and distinct activity responses to increased soil moisture and altered mineral nitrogen availability were observed in two contrasting forest soils. In both soils, nitrogen oxide emission rates were stimulated by N inputs and, depending on the soil moisture status, either NO or N2O emission was prevailing. However, different N cycling processes appeared to predominate in either soil under equivalent treatment. Nitrogen oxide emissions peaked following NO 3 ? application in Schottenwald soils but were the highest after NH 4 + application in Rothwald soils. Denitrifying (nirK) communities differed significantly in Rothwald and Schottenwald soils; however, changes in the community structure were marginal during the short-term incubation. Abundances of nirK genes remained unaffected by N application in either soil. The soil water content affected nirK gene abundances only in Rothwald soil, indicating a distinct reaction of nitrite reducing communities in the two soils.  相似文献   

13.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

14.
为揭示亚热带森林土壤N2O排放对林分类型和氮添加的响应特征,选取位于福建省三明市的中亚热带米槠次生林、杉木人工林和马尾松人工林土壤为研究对象,分别设置无氮添加(N0 mg/kg)、低氮添加(N10 mg/kg)、中氮添加(N25 mg/kg)和高氮添加(N50 mg/kg)4个氮添加水平,进行微宇宙培养试验,测定土壤N2O排放。结果表明:与无氮添加处理相比,氮添加整体上降低3种林分土壤pH,增加土壤NH4+-N和NO3--N含量。无氮添加处理中杉木人工林和马尾松人工林土壤N2O累积排放量分别为9.67和9.62 mg/kg,显著高于米槠次生林土壤N2O累积排放量6.81 mg/kg。低氮添加处理中杉木人工林和马尾松人工林土壤N2O累积排放量显著高于米槠次生林。但在中氮和高氮添加处理中,3种林分土壤N2O累积排放量均无显著性差异。不同氮添加处理均促进3种林分土壤N  相似文献   

15.

Purpose

Nitrogen (N) is one of the most important elements that can limit plant growth in forest ecosystems. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are considered as the key drivers of global N biogeochemical cycling. Soil ammonia-oxidizing microbial communities associated with subtropical vegetation remain poorly characterized. The aim of this study was to determine how AOA and AOB abundance and community structure shift in response to four typical forest vegetations in subtropical region.

Materials and methods

Broad-leaved forest (BF), Chinese fir forest (CF), Pinus massoniana forest (PF), and moso bamboo forest (MB) were widely distributed in the subtropical area of southern China and represented typical vegetation types. Four types of forest stands of more than 30 years grew adjacent to each other on the same soil type, slope, and elevation, were chosen for this experiment. The abundance and community structure of AOA and AOB were characterized by using real-time PCR and denaturing gradient gel electrophoresis (DGGE). The impact of soil properties on communities of AOA and AOB was tested by canonical correspondence analysis (CCA).

Results and discussion

The results indicated that AOB dominated in numbers over AOA in both BF and MB soils, while the AOA/AOB ratio shifted with different forest stands. The highest archaeal and bacterial amoA gene copy numbers were detected in CF and BF soils, respectively. The AOA abundance showed a negative correlation with soil pH and organic C but a positive correlation with NO3 ??N concentration. The structures of AOA communities changed with vegetation types, but vegetation types alone would not suffice for shaping AOB community structure among four forest soils. CCA results revealed that NO3 ??N concentration and soil pH were the most important environmental gradients on the distribution of AOA community except vegetation type, while NO3 ??N concentration, soil pH, and organic C significantly affected the distribution of the AOB communities.

Conclusions

These results revealed the differences in the abundance and structure of AOA and AOB community associated with different tree species, and AOA was more sensitive to vegetation and soil chemical properties than AOB. N bioavailability could be directly linked to AOA and AOB community, and these results are useful for management activities, including forest tree species selection in areas managed to minimize N export to aquatic systems.  相似文献   

16.
Abstract

Both nitrogen (N) deposition and biochar can affect the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and ammonia (NH3) from different soils. Here, we have established a simulated wet N deposition experiment to investigate the effects of N deposition and biochar addition on N2O and CO2 emissions and NH3 volatilization from agricultural and forest soils. Repacked soil columns were subjected to six N deposition events over a 1-year period. N was applied at rates of 0 (N0), 60 (N60), and 120 (N120) kg Nh a?1 yr?1 without or with biochar (0 and 30 t ha?1 yr?1). For agricultural soil, adding N increased cumulative N2O emissions by 29.8% and 99.1% (< 0.05) from the N60 and N120 treatments, respectively as compared to without N treatments, and N120 emitted 53.4% more (< 0.05) N2O than the N60 treatment; NH3 volatilization increased by 33.6% and 91.9% (< 0.05) from the N60 and N120 treatments, respectively, as compared to without N treatments, and N120 emitted 43.6% more (< 0.05) NH3 than N60; cumulative CO2 emissions were not influenced by N addition. For forest soil, adding N significantly increased cumulative N2O emissions by 141.2% (< 0.05) and 323.0% (< 0.05) from N60 and N120 treatments, respectively, as compared to without N treatments, and N120 emitted 75.4% more (< 0.05) N2O than N60; NH3 volatilization increased by 39.0% (< 0.05) and 56.1% (< 0.05) from the N60 and N120 treatments, respectively, as compared to without N treatments, and there was no obvious difference between N120 and N60 treatments; cumulative CO2 emissions were not influenced by N addition. Biochar amendment significantly (< 0.05) decreased cumulative N2O emissions by 20.2% and 25.5% from agricultural and forest soils, respectively, and increased CO2 emissions slightly by 7.2% and NH3 volatilization obviously by 21.0% in the agricultural soil, while significantly decreasing CO2 emissions by 31.5% and NH3 volatilization by 22.5% in the forest soil. These results suggest that N deposition would strengthen N2O and NH3 emissions and have no effect on CO2 emissions in both soils, and treatments receiving the higher N rate at N120 emitted obviously more N2O and NH3 than the lower rate at N60. Under the simulated N deposition circumstances, biochar incorporation suppressed N2O emissions in both soils, and produced contrasting effects on CO2 and NH3 emissions, being enhanced in the agricultural soil while suppressed in the forest soil.  相似文献   

17.
Despite the fact that microbial nitrification and denitrification are considered the major soil N2O emission sources, especially from agricultural soils, several abiotic reactions involving the nitrification intermediate hydroxylamine (NH2OH) have been identified leading to N2O emissions, but are being neglected in most current studies. Here, we studied N2O formation from NH2OH in cropland, grassland, and forest soils in laboratory incubation experiments. Incubations were conducted with and without the addition of NH2OH to non-sterile and sterile soil samples. N2O evolution was quantified with gas chromatography and further analyzed with online laser absorption spectroscopy. Additionally, the isotopic signature of the produced N2O (δ15N, δ18O, and 15N site preference) was analyzed with isotope ratio mass spectrometry. While the forest soil samples showed hardly any N2O evolution upon the addition of NH2OH, immediate and very large formation of N2O was observed in the cropland soil, also in sterilized samples. Correlation analysis revealed soil parameters that might explain the variability of NH2OH-induced N2O production to be: soil pH, C/N ratio, and Mn content. Our results suggest a coupled biotic–abiotic production of N2O during nitrification, e.g. due to leakage of the nitrification intermediate NH2OH with subsequent reaction with the soil matrix.  相似文献   

18.

Purpose

Field survey and sampling of vegetable greenhouse soils were conducted in Shouguang, Shandong Province, and Ningbo, Zhejiang Province to study the acidification and salinization characteristics of soils with different initial soil pH values and greenhouse cultivation time.

Materials and methods

The pH, electrical conductivity (EC), and ion composition of 74 composite soil samples were analyzed to evaluate their relation to soil acidification and salinization.

Results and discussion

Compared with their corresponding open-field soils, acidification and salinization of the greenhouse soils occurred in both 0-20 cm and 20-40 cm soil layers for the Shouguang and Ningbo soils. The soil pH decreased gradually at different rates as greenhouse cultivation time increased in the two surveyed regions, but the opposite trend was observed for soil EC. For the Shouguang soils, while the percentages of K+ and NO3 ? increased dramatically and Ca2+ and HCO3 - decreased significantly after the soils were converted to greenhouse use, the correlation between soil pH and EC was significant, and the stepwise multiple regression analysis further showed that there was a significant correlation between pH and the percent of Ca2+ and HCO3 ?.

Conclusions

Soil acidification and salinization are common in greenhouse soils with different initial soil pH. Soil acidification in the Shouguang soils is a result of decrease in the percent of Ca2+, HCO3 ? due to over application of N and K fertilizers. Future research should be devoted to understanding the relevant mechanisms in greenhouse soils with lower initial soil pH values to assess if there are correlations between soil acidification and salinization under greenhouse cultivation.  相似文献   

19.
Nitrous oxide (N2O) emissions from the soil surface of five different forest types in Thailand were measured using the closed chamber method. Soil samples were also taken to study the N2O production pathways. The monthly average emissions (±SD, n?=?12) of N2O from dry evergreen forest (DEF), hill evergreen forest (HEF), moist evergreen forest (MEF), mixed deciduous forest (MDF) and acacia reforestation (ARF) were 13.0?±?8.2, 5.7?±?7.1, 1.2?±?12.1, 7.3?±?8.5 and 16.7?±?9.2?µg N m?2 h?1, respectively. Large seasonal variations in fluxes were observed. Emission was relatively higher during the wet season than during the dry season, indicating that soil moisture and denitrification were probably the main controlling factors. Net N2O uptake was also observed occasionally. Laboratory studies were conducted to further investigate the influence of moisture and the N2O production pathways. Production rates at 30% water holding capacity (WHC) were 3.9?±?0.2, 0.5?±?0.06 and 0.87?±?0.01?ng N2O-nitrogen (N) g-dw?1day?1 in DEF, HEF and MEF respectively. At 60% WHC, N2O production rates in DEF, HEF and MEF soils increased by factors of 68, 9 and 502, respectively. Denitrification was found to be the main N2O production pathway in these soils except in MEF.  相似文献   

20.

Purpose

Initial soil pH determines the direction and magnitude of pH change after residue addition. This study aimed to evaluate the relative importance of initial soil pH and rate of residue application in determining subsequent pH change, nitrogen (N) mineralization, and soil-exchangeable aluminum (Al).

Materials and methods

An incubation experiment was conducted for 102 days on a Plinthudult soil and a Paleudalf soil, where pH gradients were produced after application of direct current (DC). Rates of vetch applications were 0, 5, 15, 30, and 50 g kg?1 soil.

Results and discussion

Increasing rates of vetch application caused greater increases in soil pH, but no consistent increase in soil pH at higher initial pH range (4.40~6.74), because of nitrification. There was a positive correlation between alkalinity production and the initial soil pH at day 14, while correlations became negative at days 56 and 102. Mineral N accumulated as NH4 +–N in low pH soils, due to limited nitrification, while NO3 ?–N dominated in higher pH soils. Application of vetch decreased KCl-extractable Al, probably because of complexation of Al by organic matter and precipitation of Al as a result of increased pH, reductions in Al concentration increased with increasing rates of vetch application. However, this amelioration effect on Al concentration weakened with time in higher pH soils.

Conclusions

Application of vetch residue can significantly increase soil pH and concentrations of mineral N and reduce exchangeable Al. These amelioration effects are enhanced with increased rate of vetch addition and vary with time depending on the initial pH of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号