首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Brassicaceae plant family contains high concentrations of glucosinolates, which can be hydrolyzed by myrosinase yielding products having an anticarcinogenic activity. The pressure and temperature stabilities of endogenous broccoli myrosinase, as well as of the synthetic isothiocyanates sulforaphane and phenylethyl isothiocyanate, were studied in broccoli juice on a kinetic basis. At atmospheric pressure, kinetics of thermal (45-60 degrees C) myrosinase inactivation could be described by a consecutive step model. In contrast, only one phase of myrosinase inactivation was observed at elevated pressure (100-600 MPa) combined with temperatures from 10 up to 60 degrees C, indicating inactivation according to first-order kinetics. An antagonistic effect of pressure (up to 200 MPa) on thermal inactivation (50 degrees C and above) of myrosinase was observed indicating that pressure retarded the thermal inactivation. The kinetic parameters of myrosinase inactivation were described as inactivation rate constants (k values), activation energy (Ea values), and activation volume (Va values). On the basis of the kinetic data, a mathematical model describing the pressure and temperature dependence of myrosinase inactivation rate constants was constructed. The stability of isothiocyanates was studied at atmospheric pressure in the temperature range from 60 to 90 degrees C and at elevated pressures in the combined pressure-temperature range from 600 to 800 MPa and from 30 to 60 degrees C. It was found that isothiocyanates were relatively thermolabile and pressure stable. The kinetics of HP/T isothiocyanate degradation could be adequately described by a first-order kinetic model. The obtained kinetic information can be used for process evaluation and optimization to increase the health effect of Brassicaceae.  相似文献   

2.
Two root-colonizing Fusarium strains, Ls-F-in-4-1 and Rs-F-in-11, isolated from roots of Brassicaceae plants, induced the resistance in Lepidium sativum seedlings against Pythium ultimum. These strains caused an increase in the content of benzyl isothiocyanate, and of its precursor glucotropaeolin, in the roots of the host plants. The increased isothiocyanate content is one of the factors contributing to the resistance of L. sativum against P. ultimum. To be transformed into the fungitoxic compound benzyl isothiocyanate, glucotropaeolin has to be hydrolyzed by myrosinase, which can be produced either by plants or microorganisms. The Fusarium strain Ls-F-in-4-1 has a myrosinase activity but the strain Rs-F-in-11 has not. These results suggest that both strains are able to trigger the metabolic pathway leading to benzyl isothiocyanate production in the plant. In the case of the myrosinase-negative strain Rs-F-in-11, hydrolyzation into isothiocyanate is only due to the myrosinase activity of the plant, and in the other case, the myrosinase produced by the strain Ls-F-in-11 also would contribute to the production of isothiocyanate. This paper reports a new mode of action of non-pathogenic Fusarium strains in controlling P. ultimum.  相似文献   

3.
The antimutagenic activity of n-hexane extracts from eight strains of daikon (Raphanus sativus; Japanese white radish) have been examined using the UV-induced mutation assay of Escherichia coli B/r WP2. A correlation was found between the potency of antimutagenicity and the amount of 4-(methylthio)-3-butenyl isothiocyanate (MTBITC) in their n-hexane extracts. Because the pure MTBITC also showed antimutagenicity, MTBITC is presumably the active antimutagen principle in n-hexane extracts of daikon. Among the eight strains of daikon studied, Aokubi, the improved common strain in Japan, contained 71.0 micromol of MTBITC in 100 g of fresh daikon. In contrast, Karami and Momoyama, which are original wild strains, contained much more MTBITC (363.5 and 168.0 micromol/100 g, respectively). In addition, phenethyl isothiocyanate was found in a lesser amount (5-33 nmol/100 g) in eight strains of daikon, and allyl isothiocyanate and benzyl isothiocyanate were not detectable in any strains (<3 nmol/100 g). The amount of total isothiocyanate in grated daikon was 7.0 times higher than that in cut daikon measured after 30 min of cooking. Through eating habits, humans might be able to consume substantial amounts of the antimutagen MTBITC from dishes using the grated form of wild strains of daikon. Therefore, it is possible to substantially increase the intake of the antimutagenic ingredient of daikon (i.e., MTBITC) by changing food preferences and preparation procedures (i.e., using the grated form of the wild strains).  相似文献   

4.
The effect of spraying exogenous plant hormone methyl jasmonate (MeJA) upon radish sprout (Raphanus sativus L.) was investigated in aspects of total phenolic content (TPC), isothiocyanate content, antioxidant activity of the radish extract, and enzymatic activities of phenylalanine ammonia lyase (PAL) and myrosinase. The MeJA treatment significantly increased the TPC that resulted in the increased DPPH* (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging capacity. In addition, the PAL activity also increased by 60% at 24 h after MeJA treatment. However, the same treatment decreased the amount of 4-methylthio-3-butenylisothiocyanate (MTBITC), a major isothiocyanate in radish sprout and the activity of myrosinase, an enzyme related to produce isothiocyanates.  相似文献   

5.
In some cruciferous plants, epithiospecifier protein (ESP) directs myrosinase (EC 3.2.3.1)-catalyzed hydrolysis of alkenyl glucosinolates toward epithionitrile formation. Here, for the first time, we show that ESP activity is negatively correlated with the extent of formation of the health-promoting phytochemical sulforaphane in broccoli (Brassica oleracea L. ssp. italica). A 43 kDa protein with ESP activity and sequence homology to the ESP of Arabidopsis thaliana was cloned from the broccoli cv. Packman and expressed in Escherichia coli. In a model system, the recombinant protein not only directed myrosinase-dependent metabolism of the alkenyl glucosinolate epi-progoitrin [(2S)-2-hydroxy-3-butenyl glucosinolate] toward formation of an epithionitrile but also directed myrosinase-dependent hydrolysis of the glucosinolate glucoraphanin [4-(methylsulfinyl)butyl glucosinolate] to form sulforaphane nitrile, in place of the isothiocyanate sulforaphane. The importance of this finding is that, whereas sulforaphane has been shown to have anticarcinogenic properties, sulforaphane nitrile has not. Genetic manipulation designed to attenuate or eliminate expression of ESP in broccoli could increase the fractional conversion of glucoraphanin to sulforaphane, enhancing potential health benefits.  相似文献   

6.
Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.  相似文献   

7.
Sinigrin, the predominant glucosinolate in the oriental mustard Brassica juncea, is mainly degraded upon the enzymatic action of myrosinase under normal conditions to give allyl isothiocyanate (AITC) in an aqueous media. Because AITC is considered to be the principal nematicidal ingredient in B. juncea, its stability in aqueous media is an important issue in achieving efficient nematode control. Pure sinigrin and AITC were found to be relatively stable in buffered water in the pH range of 5.00-7.00 but less stable at pH 9.00. Both sinigrin and AITC were more stable in soil water (supernatant of a 1:1 water/air-dried soil mixture) than in buffered water at the same pH range of 5.00-9.00. Sinigrin dissolved from the mustard bran or ground seed into water very quickly and was degraded by codissolved myrosinase to AITC. The AITC that formed from the degradation of sinigrin was found to be more stable in the soil water than in the buffered water. Buffer capacity was considered to be one of the factors that contributed to the stabilization of AITC in the soil water, but other unknown factors from both bran or seed and soil may also have contributed to the stabilization.  相似文献   

8.
Two unidentified analytical responses in a papaya extract were structurally determined by mass spectrometry to be benzyl isothiocyanate and phenyl acetonitrile. Both these compounds have previously been shown to result from degradation of benzylglucosinolate that occurs naturally in the seeds of the fruit. Characterization by mass spectrometry has now provided a convenient mechanism to detect both these degradation compounds in extracts resulting from routine pesticide residue analysis.  相似文献   

9.
Soluble and total myrosinase activity in defatted Crambe abyssinica meal   总被引:2,自引:0,他引:2  
Crambe defatted meal contains 4-6% w/w of glucosinolates, with epiprogoitrin accounting for >90% of the total. This feature limits the use of the meal as feed due to the antinutritional properties of myrosinase-glucosinolate breakdown products. In this context, myrosinase activity assumes particular importance. In this study the total and soluble myrosinase activities have been evaluated directly on defatted meals of eight Crambe abyssinica varieties. The pH-stat method, which is the most suitable for assays in heterogeneous solid-water systems, was used. The total myrosinase activity in C. abyssinica varieties, determined using epiprogoitrin as substrate, ranged from 288 to 653 units g(-1). These activity values were up to 26 times higher than those obtained using other substrates, namely, sinigrin, glucosinalbin, glucotropaeolin, progoitrin, and glucoraphenin. Crambe myrosinase is unusual in that, unlike other Brassicaceae containing a typical main glucosinolate, it does not show the same specificity toward its natural substrates.  相似文献   

10.
The antioxidative activity of the dried pericarp and seed of Japanese pepper was studied. The ethyl acetate extract from the pericarp and the methanol extract from the seed showed strong antioxidative activity against linoleic acid by the ferric thiocyanate and thiobarbituric acid (TBA) methods. Japanese pepper contained 3.9 and 2.9 mg/100 g of dry weight (dw) of tocopherols in the pericarp and seed, respectively, alpha-Toc in the former constituting 82% of total tocopherol and gamma-Toc in the latter constituting 96%. Arbutin and magnoflorine were isolated as antioxidants and their chemical structures determined by instrumental analyses. The contents of arbutin evaluated as the trifluoroacetate derivative by GC-MS were 35 and 3.0 mg/100 g of dw in the pericarp and seed, respectively. Magnoflorine was present only in the seed, and not in the pericarp. Both arbutin and magnoflorine exhibited antioxidative activity against linoleic acid and radical-scavenging activity against the DPPH radical.  相似文献   

11.
Myrosinase is a cytosolic plant enzyme present in daikon ( Raphanus sativus, Japanese white radish) roots that hydrolyzes 4-methylthio-3-butenyl glucosinolate (MTBGLS) into the natural pungent agent 4-methylthio-3-butenyl isothiocyanate (MTBITC), which possesses antimicrobial, antimutagenic, and anticarcinogenic properties. The concentration of MTBGLS, myrosinase activity, and production of MTBITC in seven daikon varieties (one conventional and six heirlooms) were determined to rank the activity of the glucosinolate-myrosinase system and identify critical factors influencing the production of MTBITC. The six heirloom varieties produced 2.0-11.5 times higher levels of MTBITC as compared to the conventional variety, Aokubi, which is consumed by the present Japanese population. The myrosinase was located exclusively in the outer epidermal layer in Aokubi, and MTBGLS was widely distributed throughout the root tissue. Although the skin is a potentially rich source of myrosinase in Aokubi, the skin is usually peeled off in the current practice of preparing daikon for cooking. New practices are therefore proposed for the preparation of daikon tubers that eliminate the peeling of the skin to avoid removing the enzyme needed to convert MTBGLS to the health-beneficial MTBITC. It is also concluded that the consumption of heirloom daikon varieties in addition to changes in food preparation will optimize the health benefits of daikon.  相似文献   

12.
Spanish black radish (Raphanus sativus L. var. niger) is a member of the Cruciferae family that also contains broccoli and Brussels sprouts, well-known to contain health-promoting constituents. Spanish black radishes (SBR) contain high concentrations of a glucosinolate unique to the radish family, glucoraphasatin, which represents >65% of the total glucosinolates present in SBR. The metabolites of glucosinolates, such as isothiocyanates, are implicated in health promotion, although it is unclear whether glucosinolates themselves elicit a similar response. The crude aqueous extract from 0.3 to 3 mg of dry SBR material increased the activity of the phase II detoxification enzyme quinone reductase in the human hepatoma HepG2 cell line with a maximal effect at a concentration of 1 mg/mL. Treatment of HepG2 cells with the crude aqueous extract of 1 mg of SBR per mL also significantly induced the expression of mRNA corresponding to the phase I detoxification enzymes: cytochrome P450 (CYP) 1A1, CYP1A2, and CYP1B1 as well as the phase II detoxification enzymes: quinone reductase, heme oxygenase 1, and thioredoxin reductase 1. Previous studies have shown that the myrosinase metabolites of different glucosinolates vary in their ability to induce detoxification enzymes. Here, we show that while glucoraphasatin addition was ineffective, the isothiocyanate metabolite of glucoraphasatin, 4-methylthio-3-butenyl isothiocyanate (MIBITC), significantly induced phase II detoxification enzymes at a concentration of 10 microM. These data demonstrate that the crude aqueous extract of SBR and the isothiocyanate metabolite of glucoraphasatin, MIBITC, are potent inducers of detoxification enzymes in the HepG2 cell line.  相似文献   

13.
Rates of degradation of 2-propenyl isothiocyanate (PrITC), benzyl isothiocyanate (BeITC) and 2-phenylethyl isothiocyanate (2-PeITC) in a soil known to biodegrade methyl isothiocyanate (MITC) at an accelerated rate, but never previously exposed to the other ITCs, were higher (persistence in soil increased by 1150, 80 and 100%, respectively,) than in a similar non-degrading soil. The rate of degradation of the same three ITCs was significantly lower in sterilised (autoclaved) soils than in the degrading soil. These results indicate that the three ITCs are susceptible to enhanced cross-biodegradation in soils where enhanced biodegradation of MITC has been induced by use of metham sodium soil fumigant. When Brassica plant tissue containing sinigrin (2-propenyl glucosinolate) as the predominant glucosinolate (GSL) was added to the degrading soil, the amount of PrITC present after 24 h was significantly lower than in the non-degrading soil at the same amendment rates. The toxicity to an insect test organism of the PrITC produced from the biofumigant plant tissue was correlated with the concentration of PrITC measured in the two soils, with 67% more plant tissue required in the degrading soil to cause 100% mortality as in the non-degrading soil (3.0 vs 5.0 mg g−1). The effectiveness of biofumigation using ITC-producing Brassica plants may be diminished in soil suffering from enhanced biodegradation of MITC.  相似文献   

14.
The root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. is responsible for large yield losses in several horticultural crops. Fumigation with chemicals has been efficient in fighting this soil pest, but it clearly shows a negative environmental impact. Thus, it is necessary to find an environmentally friendly alternative to control this nematode and meet the requirements imposed by world regulation to ban some chemical fumigants in the world after 2005. The glucosinolate-myrosinase system, typical of the Brassicaceae family, appears to be an important natural alternative for the control of several soilborne pests and pathogens. The aim of this study was to evaluate, in vitro, the biocidal activity of 11 glucosinolates and their degradation products on second-stage juveniles of the root-knot nematode M. incognita expressed by the nematicidal (LD(50)) and immobilization effects, after 24 and 48 h. None of the intact glucosinolates had any biological effect. After myrosinase addition, their hydrolysis products (essentially isothiocyanates) resulted in highly different biocidal activities. Among the hydrolysis products of the tested glucosinolates, 2-phenylethyl, benzyl, 4-methylthiobutyl, and prop-2-enyl isothiocyanate showed the stronger activity, with an LD(50) at concentrations of 11, 15, 21, and 34 microM, respectively. On the basis of the in vitro test results, new genotypes of Brassicaceae had been selected for high content in the roots of the glucosinolates generating the more active isothiocyanates and their agronomic performances verified in view of a full-field application as catch crop plants. With this aim, the qualitative and quantitative glucosinolate contents in the roots of these potentially nematicidal plants are also reported and discussed.  相似文献   

15.
(5R)-5-Vinyl-1,3-oxazolidine-2-thione, (2S)-1-cyano-2-hydroxy-3-butene, and two diastereoisomeric erythro-(2S)- and threo-(2S)-1-cyano-2-hydroxy-3,4-epithiobutanes were prepared in pure form starting from (2S)-2-hydroxybut-3-enyl glucosinolate (epiprogoitrin). This glucosinolate was isolated in almost pure form using ripe seeds of Crambe abyssinica and then hydrolyzed under different conditions. The hydrolysis was carried out using either myrosinase immobilized on nylon, to produce (5R)-5-vinyl-1,3-oxazolidine-2-thione, or the endogenous myrosinase contained in defatted crambe meals, to produce the other epiprogoitrin-derived products. After purification and physicochemical characterization, all four myrosinase degradation products were tested for their biological activity. A bioassay on Lactuca sativa was chosen as a simple test to determine their apparent action on living tissues. (5R)-5-Vinyl-1,3-oxazolidine-2-thione negatively affected mainly root growth, whereas (2S)-1-cyano-2-hydroxy-3-butene affected the early phase of germination, and both (2S)-1-cyano-2-hydroxy-3,4-epithiobutane diastereoisomers appeared to negatively affect both germination and root growth at doses 5-10 times lower than those of (2S)-1-cyano-2-hydroxy-3-butene or (5R)-5-vinyl-1,3-oxazolidine-2-thione.  相似文献   

16.
Meal produced from Sinapis alba seed by crushing to remove oil contains a glucosinolate that when hydrolyzed produces phytotoxic allelochemicals; however, the responsible compounds and pathways for their production have not been elucidated. S. alba seed meal and partially purified extracts containing 4-hydroxybenzyl glucosinolate were included in experiments to identify and monitor enzymatically released products using GC-MS and HPLC-MS. The initial product, 4-hydroxybenzyl isothiocyanate, was unstable in aqueous media, showing a half-life of 321 min at pH 3.0, decreasing to 6 min at pH 6.5. More alkaline pH values decrease the stability of 4-hydroxybenzyl isothiocyanate by promoting the formation of a proposed quinone that hydrolyzes to SCN-. Measurement of SCN- showed stoichiometric release from S. alba meal at 48 h when buffered at pH values as low as 4.0, demonstrating that SCN- production in soil is not only probable but likely responsible for observed phytoxicity of the meal.  相似文献   

17.
Fully developed horseradish (Armoracia rusticana Gaertn., Mey., & Scherb.) roots from 27 accessions and leaves from a subset of 9 accessions were evaluated for glucosinolates and myrosinase enzyme activity. Eight different glucosinolates were detected (based on HPLC retention times as desulfoglucosinolates) in both root and leaf tissues. The sum of these glucosinolates, referred to as total, ranged from 2 to 296 micromol g(-1) of dry weight (DW) in both tissues. Four glucosinolates (sinigrin, glucobrassicin, neoglucobrassicin, and gluconasturtiin) were detected in major quantities. In fully developed roots, sinigrin concentration represented approximately 83%, gluconasturtiin approximately 11%, and glucobrassicin approximately 1% of the total glucosinolates. Approximately the same proportions of individual glucosinolates appeared in fully developed leaves, except that glucobrassicin was substituted by neoglucobrassicin and gluconasturtiin concentration was significantly lower (<1%). At least four other glucosinolates were detected in very small quantities (<1%) in both roots and leaves. Myrosinase (beta-thioglucoside glucohydrolase, EC 3.2.3.1) is the enzyme responsible for the hydrolysis of the parent glucosinolates into biologically active products. Very little is known about myrosinase activity and the correlation of its activity to total and individual glucosinolates in plant tissues. Significant differences in myrosinase activity were detected between the roots and leaves, ranging from 1.2 to 57.1 units g(-1) of DW. Data showed no correlation between myrosinase activity and total and/or individual glucosinolates in the roots. However, in the leaves, significant correlations were found between myrosinase activity and total glucosinolates (0.78 at P = 0.01) and between myrosinase activity and sinigrin (0.80 at P = 0.01). Glucosinolates content and myrosinase activity were also correlated in young and fully developed roots and leaves and during tissue crushing. Glucobrassicin concentration in the roots and neoglucobrassicin concentration in the leaves were significantly higher in young than in fully developed tissue. Crushing of the tissue resulted in rapid hydrolysis of sinigrin and glucobrassicin, as expected, from the presence of myrosinase. Likewise, myrosinase activity declined rapidly after crushing, perhaps due to inactivation by the reaction products and/or the depletion of its substrates.  相似文献   

18.
Increased consumption of cruciferous vegetables such as broccoli may reduce the risk of various cancers. Myrosinase is required to convert dietary glucosinolates from broccoli into bioactive isothiocyanates. We evaluated isothiocyanate excretion profiles in healthy subjects who consumed broccoli sprouts or broccoli supplement (no myrosinase) with equivalent glucosinolate content. Urinary metabolites of two major isothiocyanates, sulforaphane and erucin, were measured by liquid chromatography coupled with tandem mass spectrometry. Peak excretion of sulforaphane and erucin was higher and occurred sooner in subjects who consumed broccoli sprouts as compared to subjects who consumed the supplement. A subject-dependent shift in the ratio of urinary sulforaphane to erucin metabolites was observed in both groups, indicating conversion of sulforaphane to erucin. Lower histone deacetylase activity was observed in the peripheral blood mononuclear cells only in subjects consuming sprouts. Fresh broccoli sprouts differ from broccoli supplements in regards to excretion of isothiocyanates and bioactivity in human subjects.  相似文献   

19.
To study the antioxidant activity of quince fruit (pulp, peel, and seed) and jam, methanolic extracts were prepared. Each extract was fractionated into a phenolic fraction and an organic acid fraction and was analyzed by high-performance liquid chromatography (HPLC)/diode array detection and HPLC/UV, respectively. Antiradical activities of the extracts and fractions were evaluated by a microassay using 1,1'-diphenyl-2-picrylhydrazyl. The phenolic fraction always exhibited a stronger antioxidant activity than the whole methanolic extract. Organic acid extracts were always the weakest in terms of antiradical activity, which seems to indicate that the phenolic fraction gives a higher contribution for the antioxidant potential of quince fruit and jam. The evaluation of the antioxidant activity of methanolic extracts showed that peel extract was the one presenting the highest antioxidant capacity. The IC50 values of quince pulp, peel, and jam extracts were correlated with the caffeoylquinic acids total content. Among the phenolic fractions, the seed extract was the one that exhibited the strongest antioxidant activity. The IC50 values of quince pulp, peel, and jam phenolic extracts were strongly correlated with caffeoylquinic acids and phenolics total contents. For organic acid fractions, the peel extract was the one that had the strongest antiradical activity. The IC50 values of quince pulp, peel, and jam organic acid fractions were correlated with the ascorbic acid and citric acid contents.  相似文献   

20.
Biofumigation is a biocontrol method that uses volatile compounds to combat soil pathogens. We investigated a biofumigation process based on the green manure of Brassicaceae. These plants contain the glucosinolate-myrosinase system which releases inhibitory compounds such as isothiocyanate into the soil. However, the biocontrol effectiveness is often lower than expected, possibly due to microbial transformation of the isothiocyanates. In order to identify the possible function of microorganisms, their interaction with glucosinolates and glucosinolate-derived products was investigated. We report the ability of a soil isolate of Aspergillus flavus to grow in liquid culture and convert 2-propenyl and 2-phenylethyl glucosinolate and their desulfo-derivatives, to nitriles. This finding would suggest the existence of an arylsulfatase and a β-thio-glucosidase, different from myrosinase, which could direct glucosinolate conversion in soil towards nitriles rather than isothiocyanates. If confirmed in soil, our observations could at least partially explain the low concentrations of isothiocyanates after biofumigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号