首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Livestock grazing endophyte (Acremonium coenophialum Morgan-Jones and Gams)-infected tall fescue (Festuca arundinacea Schreb.) perform poorly due to tall fescue toxicosis, especially when animals are under heat stress. In order to determine whether thiamin promotes recovery from tall fescue toxicosis, 1 or 0 g of thiamin per day, as mononitrate, was fed orally to adult Angus (Bos taurus) cows (380 +/- 8 kg) grazing either tall fescue pasture with and without endophyte or alfalfa (Medicago sativa L.). A tethered grazing system employing a split-plot design was used to estimate intake and components of ingestive behavior. No significant differences attributable to thiamin supplements were seen in rates of intake and biting, grazing time and intake per bite when cows grazed endophyte-infected tall fescue during the first 4 d of exposure. When cows grazed endophyte-infected (greater than 95%) tall fescue with 2,091 micrograms/g loline alkaloids after 4 d of exposure, the untreated animals ingested herbage dry matter (DM) at 1.19 kg/h, whereas the cows receiving thiamin ate 1.57 kg/h (P less than .05). Cattle achieved these rates of DM intake by forming bites of 1.0 and 1.2 g DM at 24 and 26 bites/min when treated with 0 and 1 g of thiamin per day, respectively. Thiamin supplements had no effect on ingestive behavior of cows grazing endophyte-free tall fescue or alfalfa after exposure to these forages for 4 d. Responses to thiamin generally were greater when cattle grazing endophyte-infected tall fescue were exposed to heat stress. Oral thiamin supplementation may alleviate tall fescue toxicosis of beef cattle during warm weather.  相似文献   

2.
Nonergot alkaloid-producing endophytes from New Zealand were inserted into tall fescue (Festuca arundinacea) cultivars in an attempt to address the problem of fescue toxicosis in grazing sheep. A 3-yr grazing study was conducted to determine lamb performance and to evaluate toxicosis in lambs grazing nonergot alkaloid-producing endophyte-infected (AR542 or AR502), endophyte-free (E-), or wild-type toxic endophyte-infected (E+) Jesup tall fescue or nonergot alkaloid-producing endophyte-infected (AR542) Georgia-5 tall fescue. Replicated 0.11-ha tall fescue paddocks were established at the central Georgia Branch Station during September 1997 and stocked with lambs from spring 1998 through autumn 2000. Mean ergot alkaloid concentrations were higher (P < 0.01) in E+ forage than in AR542, AR502, and E- tall fescue, and ergot alkaloid concentrations in E- plants and plants infected with AR542 and AR502 were low. Forage availability did not differ (P = 0.92) across treatments during autumn and was higher (P < 0.05) in Georgia-5 AR542 than in Jesup AR502 and E+ pastures. Initial serum prolactin (PRL) concentrations did not differ (P = 0.58) across treatments during autumn, but were higher on Jesup AR542 than E+ during spring. Post-treatment serum PRL concentrations were depressed (P < 0.01) on E+ compared with AR542, AR502, and E- in both spring and autumn. Signs of heat stress were observed in E+ lambs during periods of high ambient temperatures. Mean post-treatment rectal temperature and mean stocking rate exhibited treatment x year interactions (P < 0.05). Lamb ADG was higher (P < 0.05) on AR542, AR502, and E- than on E+ tall fescue. Similarly, gain/hectare was higher (P < 0.015) on AR542, AR502, and E- than on E+. Tall fescue pastures containing AR542 and AR502 endophytes yielded lamb performance that did not differ from that on E- tall fescue and which was superior to performance on E+ tall fescue. Depressed PRL concentrations and elevated rectal temperatures as indicators of toxicosis were evident only in lambs grazing E+ tall fescue, suggesting that nonergot alkaloid-producing endophyte-infected tall fescue is a viable alternative for alleviating tall fescue toxicosis.  相似文献   

3.
Tall fescue (Festuca arundinacea Schreb.) infected with the endophyte Neotyphodium coenophialum ([Morgan-Jones and Gams] Glenn, Bacon, and Hanlin) causes fescue toxicosis in cattle grazing the forage, but effects of the endophyte were considered to be abated soon after removal of the animals from pastures. Tasco-Forage, a proprietary extract from the brown seaweed Ascophyllum nodosum, is a known source of cytokinins and has increased antioxidant activity in both plants and the animals that graze the forage. Tasco was applied at 0 and 3.4 kg/ha to infected and uninfected tall fescue pastures in Virginia and Mississippi. Forty-eight steers grazed the pastures at each location during each of 2 yr (n = 192) before being transported to Texas for feedlot finishing. On arrival at the feedlot, steers from Tasco-treated pastures had higher (P < 0.01) monocyte phagocytic activity and tended (P < 0.07) to have higher major histocompatibility complex class II expression than steers that grazed the untreated pastures. A depression (P < 0.05) in monocyte immune cell function due to grazing infected fescue was detected throughout the feedlot finishing period but was reversed by Tasco. Rectal temperatures were elevated (P < 0.07) in steers that had grazed the infected tall fescue when they arrived in Texas, but by d 14 no difference was detected. However, by d 28 the temperature effects of infected tall fescue were reversed. Steers that had grazed infected fescue had lower (P < 0.01) rectal temperatures on d 112 of the feedlot period, demonstrating a much longer-lasting effect of the endophyte on thermoregulatory mechanisms than previously thought. Steers that had grazed Tasco-treated pastures had higher (P < 0.01) rectal temperatures on d 56 than steers that had grazed untreated fescue. Steers that had grazed the Tasco-treated pastures had higher marbling scores (P < 0.05) regardless of the endophyte, but no effect of Tasco or endophyte on gain was measured. Our data suggest that Tasco application to tall fescue pastures alleviated some of the negative effects of tall fescue toxicity.  相似文献   

4.
Tall fescue (Lolium arundinaceum) toxicosis research is often complicated by a reduction in intake of infected forage or seed, making treatment comparisons difficult. This study was conducted to develop a fescue toxicosis model that would allow for variations in DMI without altering the quantity of alkaloids consumed over the course of the experiment. Ground tall fescue seed and a tall fescue seed extract were used in two 2-period crossover experiments to determine the effectiveness of ruminal dosing of a tall fescue seed extract to induce fescue toxicosis. This experiment used 4 growing Holstein steers (BW = 337 ± 24 kg) surgically fitted with ruminal cannulas. Steers were maintained on a diet of endophyte-free fescue hay fed ad libitum throughout the experiment. Endophyte-infected (E+; 4.1 mg/kg of ergovaline) and uninfected (E-; 0.0 mg/kg of ergovaline) KY-31 tall fescue seed was ground and dosed or extracted with ethanol, concentrated, and lyophilized before ruminal dosing. Ergovaline concentration of the final extract was 102 mg/kg. Animals were given a minimum of a 3-wk washout period between treatments. Physiological indicators were measured over 7 d at 22°C (d 1 to 3) and 32°C (d 4 to 7) during both seed and extract dosing. Seed and extract E+ dosing reduced serum prolactin concentrations such that they were not different from zero (P < 0.10). Treatment with E+ reduced feed intake (P < 0.05) and heart rate (P < 0.001), and increased respiration rate (P < 0.01) and core temperature (P < 0.05) during both seed and extract dosing. Increasing environmental temperature from 22 to 32°C reduced total intake (P < 0.05) and increased core temperature (P < 0.001) and respiration rate (P < 0.001) during both seed and extract dosing. Diastolic blood pressure tended (P < 0.09) to be increased during E+ extract dosing and reduced during heat stress. These physiological alterations are consistent with those reported for cattle grazing or consuming seed from endophyte-infected tall fescue. These data indicate that a ruminally dosed ethanol extract of tall fescue seed is efficacious in inducing fescue toxicosis in cattle.  相似文献   

5.
Heat stress is a major problem in transporting stocker calves with symptoms of fescue toxicosis. Removing calves from tall fescue pastures and offering diets devoid of endophyte-infected tall fescue could reduce the severity of toxicosis and precondition calves for transport to the feedlot. In the present experiment, a pasture phase was used to condition yearling steers to grazing tall fescue and induce symptoms of fescue toxicosis, and a pen phase followed to determine effects of implanting at the start of grazing and protein supplementation (hay only vs hay plus supplement) on short-term changes in rectal temperature and serum prolactin concentration. Neither implant status nor protein supplementation affected (P > 0.10) white blood cell count or rectal temperature. White blood cell counts at the conclusion of the pasture phase averaged 8,778 cells/microL and were within a range indicating no immunological response. Changes in rectal temperature and serum prolactin concentration during the pen phase were not influenced (P > 0.10) by implanting or supplementation. Initial rectal temperatures for the pen phase were high (39.9 degrees C) but declined linearly (P < 0.001) over the first 106 h and were below a normal temperature (39.2 degrees C) by 82 h following removal from tall fescue pastures. Serum prolactin gradually increased (P < 0.001) to a peak by 82 h and stabilized thereafter. Results indicate that neither supplemental protein nor an estrogenic implant influenced recovery indices of fescue toxicosis, whereas removing calves from tall fescue pastures and excluding dietary tall fescue for 3 to 4 d may alleviate symptoms of fescue toxicosis.  相似文献   

6.
Livestock grazing endophyte (Acremonium coenophialum)-infected tall fescue (Festuca arundinacea Schreb. cv. Kentucky 31) at high ambient temperatures may suffer from fescue toxicosis. Adult Angus cows (Bos taurus) were fed 0 to 1 kg/d of 70% infected tall fescue seed containing about 4.4 g of loline alkaloids in factorial combination with thiamin at 0 or 1 g/d. Cows assigned to the zero level of tall fescue seed received a supplement of equivalent energy and protein. Ingestive behavior was measured at 1330 to 1430 EDT during two 4-d periods in two consecutive weeks in August on alfalfa (Medicago sativa L.) pastures using a tethered grazing system. Alfalfa intake per measured grazing session of cows given tall fescue seed declined linearly (P less than .01) as air temperatures during grazing increased above 25 degrees C, largely because of shorter grazing meals. Thiamin increased alfalfa intake per measured grazing session by extending grazing time. Alkaloids in ingested endophyte-infected tall fescue induce thiamin deficiencies in cattle that result in symptoms of tall fescue toxicosis.  相似文献   

7.
Grazing studies were conducted to determine cattle growth performance, evaluate toxicosis, and compare grazing behavior in stocker cattle grazing nonergot alkaloid-producing endophyte-infected (AR542 or AR502), endophyte-free (E-), or wild-type toxic endophyte-infected (E+) Jesup, Georgia-5, and Kentucky-31 tall fescue. Replicated 0.81-ha tall fescue paddocks were established at the Central Georgia Branch Station at Eatonton and the Northwest Georgia Branch Station at Calhoun during October 1998 and were stocked with beef cattle for autumn and spring periods from fall 1999 through spring 2002. Mean ergot alkaloid concentrations were higher (P < 0.01) on E+ pastures than the other treatments at both locations. At Calhoun and Eatonton, post-treatment serum prolactin concentrations were decreased (P < 0.01) on E+ compared with AR542, AR502, and E- tall fescue. Cattle on AR542, AR502, and E- pastures had lower (P < 0.05) post-treatment rectal temperatures than cattle grazing E+ tall fescue during spring at Eatonton and Calhoun. Calf ADG was higher (P < 0.05) on AR542, AR502, and E- as compared with E+ tall fescue during autumn and spring grazing at Eatonton, and at Calhoun, cattle on E+ pastures had lower (P < 0.05) ADG in both autumn and spring. Gain/hectare was higher (P < 0.05) on AR542, AR502, and E- than on E+ during autumn at Eatonton and during spring at both locations. In autumn at Calhoun, gain/hectare was greater (P < 0.05) on AR502 and E- compared with E+ tall fescue. During April, May, and June, cattle grazing E+ pastures at Eatonton spent more (P < 0.01) time idling, more (P < 0.01) time standing, and used more (P < 0.01) water than cattle on AR542 and E- tall fescue. Daily prehensions and biting rate were each higher (P < 0.01) on AR542 and E- tall fescue than E+ tall fescue in both grazing seasons. There were no differences among pasture treatments for bite size in either spring (P = 0.50) or autumn (P = 0.34). Steers grazing E+ pastures had lower DMI than steers grazing AR542 and E- pastures during spring (P < 0.10) and lower DMI than steers grazing E- pastures during autumn (P < 0.05). Daily steer water usage was decreased (P < 0.10) in E+ pastures compared with AR542 and E- pastures during late fall. These results indicate that nonergot alkaloid-producing endophyte technology is a promising option for alleviating tall fescue toxicosis in stocker cattle.  相似文献   

8.
Generally, grazing endophyte-infested tall fescue (Festuca arundinace Schreb.) in the late spring and summer is not recommended because of the effects of fescue toxicosis on cattle weight gains, which can be extreme. For steers conditioned to graze tall fescue in the early spring, stocking rate (3, 4, 5, and 6 steers/ha) effects were evaluated for two methods designed to avoid poor cattle performance during the late spring and summer (compensation period). The evaluation was conducted in 1997 and 1998. During the compensation phase, one replicate of each stocking rate was randomly assigned to 1-ha pastures of eastern gamagrass (Tripsacum dactyloides L.), and the other replicate of each stocking rate remained on tall fescue; the steers were fed a 1:1 mixture of broiler litter and corn at 2.27 kg as fed/steer per d. Average daily gain for steers fed eastern gamagrass during the compensation phase declined linearly (P<0.05) as stocking rate increased, but ADG for steers fed tall fescue plus the broiler litter-corn mixture tended to increase (P<0.10) as stocking rate increased. As a result, ADG and live weight gain (kilograms per hectare) with heavier stocking rates were higher for steers fed tall fescue plus the broiler litter-corn mixture, whereas the responses at a lighter stocking rate were higher for steers fed eastern gamagrass. At the conclusion of the compensation phase in 1998, steers fed tall fescue plus the broiler litter-corn mixture had lower (P<0.05) serum prolactin levels, and a higher (P<0.05) proportion of steers fed tall fescue had rough hair coats compared with those fed eastern gamagrass. Results of this study show that, for steers grazing tall fescue pastures, either eastern gamagrass or supplementation with a broiler litter-corn mixture can provide acceptable performance, but responses are affected by grazing pressure. Symptoms of fescue toxicosis can still occur, however.  相似文献   

9.
Effects of fescue toxicosis on reproduction in livestock.   总被引:3,自引:0,他引:3  
Fescue toxicosis in livestock is due to ingestion of endophyte (Acremonium coenophialum) -infected tall fescue. Understanding mechanisms responsible for decreased calving and growth rates, delayed onset of puberty, and impaired function of corpora lutea in heifers at puberty consuming endophyte-infected fescue is an emerging field in reproductive toxicology. The condition decreases overall productivity through a reduction in reproductive efficiency, reduced weight gains, and lowered milk production. Reproduction in cattle may be further compromised by winter coat retention, increased susceptibility to high environmental temperatures, and light intolerance. Endocrine effects in steers associated with infected tall fescue include reduced prolactin and melatonin secretions and altered neurotransmitter metabolism in the hypothalamus, the pituitary, and pineal glands. Ewes have decreased prolactin and lengthened intervals from introduction of the ram until conception. The endophyte induces prolonged gestation, thickened placentas, large, weak foals, dystocia, and agalactia in pregnant mares. Ergot peptide alkaloids, produced by the endophyte, are suggested as the primary cause of fescue toxicosis. These compounds reduce prolactin, increase body temperatures, and have powerful vasoconstrictive effects. Neurohormonal imbalances of prolactin and melatonin, with restricted blood flow to internal organs, may be the principal causes of aberrant reproduction, growth, and maturation in livestock consuming endophyte-infected tall fescue.  相似文献   

10.
Fescue toxicosis research studies have often included serum prolactin as a physiologic index of the disorder. Serum prolactin has not been used as a clinical measure of fescue toxicosis because of variation associated with sex and physiologic condition of the animal and climatic and seasonal factors. The primary excretory route of the alkaloids responsible for this toxicosis is the urine. Three pasture experiments were conducted to examine serum prolactin and urinary ergot alkaloid variability among steers continuously grazing endophyte-infected (E+) or endophyte-free (E-) tall fescue and among steers that were switched from one pasture form to the other. A fourth grazing experiment was used to examine how to best to manage the steers prior to sampling for urinary ergot alkaloid excretion. Coefficients of variability for urinary alkaloid excretion were consistently lower (46-65%) than serum prolactin (64-142%). Urinary alkaloid excretion patterns changed within 12 hours following switching steers from E+ to E- pasture or vice versa, but serum prolactin was recalcitrant to change. Because it is less variable and more dynamic than serum prolactin, urinary alkaloid excretion can be used for health assessment of steers grazing E+ and E- pastures. Regression analysis established a quadratic relationship between alkaloid excretion and average daily weight gain, with a regression coefficient of 0.86. Urinary alkaloid analysis was useful in determining whether cattle were consuming toxic tall fescue.  相似文献   

11.
The nonergot alkaloid-producing endo-phyte, AR542, has been shown to improve the persistence and yield of tall fescue pastures without causing the animal disorders commonly associated with tall fescue toxicosis. A 3-yr grazing study was conducted to compare effects of AR542-infected tall fescue pastures with wild type endophyte-infected (E+) tall fescue pastures on cow-calf performance. Replicated 7.3-ha pastures of each treatment were grazed by cow-calf pairs (16 pairs per pasture replication) each year from March to weaning in September. The cows were exposed to breeding on their respective pasture treatments from April 1 through June 15. The treatment groups were compared for reproductive performance, ADG, BCS, calf growth rate, and weaning weight. Blood samples were also collected for serum prolactin (PRL) analysis. There were no significant differences in calving rate (P = 0.98) or calving interval (P = 0.62) between pasture treatments. Cows that grazed the AR542 pastures subsequently gave birth to calves that were heavier (P < 0.05) than calves from cows that had grazed the E+ pastures. Cows grazing the AR542 pastures had higher (P < 0.05) BCS at the end of the grazing period, and had higher ADG during the grazing period. Calves raised on the AR542 pasture had higher (P < 0.05) ADG and weaning weights than calves of the same sex raised on the E+ pastures. Serum PRL concentrations were decreased (P < 0.05) in both cows and calves on the E+ pastures compared with serum PRL concentrations in cows and calves grazing the AR542 pastures. The results indicate that grazing tall fescue pastures infected with the AR542 endophyte may give significant advantages in cow-calf growth rates and BCS over grazing E+ pastures. However, there did not seem to be any benefit in reproductive performance in this trial. There was a small, but significant increase in birth weight in cows grazing AR542 pasture.  相似文献   

12.
Production of 18, 12-yr-old Angus cows was summarized as the averaged weaning weight deviations of each cow's calves from their like-aged, like-sexed and similarly managed contemporaries. These cows had spent a large part of their productive lives on pastures dominated by endophyte-infected tall fescue, so differences among them in calf production might have been induced partly by differences in susceptibility to fescue toxicosis. Cows were divided randomly into two groups for a 31-d summer feeding trial. In a crossover design, cows were fed 0 or .9 kg per cow per day of endophyte-infected fescue seed. Various traits were monitored to quantify differences among cows in response to the endophyte-infected fescue seed. Baseline serum prolactin concentration was depressed by fescue seed feeding, but differences among cows in the amount of depression were not related to past calf production. Prolactin release in response to thyrotropin-releasing hormone tended to be depressed by fescue, but the response also was sensitive to factors such as ambient temperature. Serum cholesterol and body weight change did not respond significantly to the fescue challenge. The experiment was not successful in unambiguously differentiating among cows in susceptibility to fescue toxicosis or in relating differential susceptibility to past calf production.  相似文献   

13.
Effects of the endophyte Acremonium coenophialum in tall fescue on pregnant mares and foal viability were evaluated. Twenty-two mature pregnant mares were randomly chosen to graze either Kentucky-31 tall fescue that was free from A coenophialum (endophyte-free, EF) or tall fescue infected with A coenophialum (endophyte-present, EP) after the first 90 days of pregnancy through parturition. Concentrations of pyrrolizidine and ergopeptine alkaloids were significantly greater in EP grass, compared with EF pasture. Ten of 11 mares grazing EP pasture had obvious dystocia. Mean duration of gestation was significantly greater for the EP group, compared with the EF group. Foal survivability was severely reduced among mares grazing EP fescue with only 1 foal surviving the natal period. Udder development and lactation were low in mares grazing EP grass. The absence of clinical problems in mares grazing EF grass implicated the endophyte as the causative agent of reproductive problems and perinatal foal mortality in pregnant mares grazing endophyte-infected fescue grass. Caution should be exercised in allowing pregnant mares to graze pastures infected with the endophyte A coenophialum.  相似文献   

14.
Cattle grazing tall fescue (Festuca arundinacea Schreb.) often develop fescue toxicosis. This condition is thought to be caused by ergot alkaloids produced by the endophyte Neotyphodium coenophialum. Endophytes from wild tall fescue plants, which do not produce ergot alkaloids, were transferred into the endophyte-free tall fescue germplasm, HiMag. The novel associations also lacked the ability to produce ergot alkaloids. Our objective was to determine whether cattle grazing these novel endophyte associations showed signs of fescue toxicosis. At the Fayetteville, Arkansas location, tester steers (n = 72) were assigned to one of four pasture treatments: endophyte-free HiMag tall fescue (HiMag-); 'Kentucky-31' tall fescue infected with its native, toxic endophyte (KY+); and two novel endophyte-infected tall fescue associations, HiMag4 and HiMag9. At the Mount Vernon, Missouri location, steers (n = 54) were used to test three of the four cultivars (HiMag9 was not tested). Ergot alkaloid concentrations in the forage of HiMag4 and HiMag9 were low or undetectable. Respiration rate, rectal temperature, ADG, and hair scores were measured during the grazing period. Blood was collected via jugular venipuncture and used for prolactin, aspartate aminotransferase, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), cholesterol, triglyceride, and creatinine analysis. Weight gains by steers grazing HiMag4 and HiMag9 did not differ from those of steers grazing HiMag-, but were greater than gains (P < 0.05) by steers on the KY+ treatment. Steers grazing KY+ had higher (P < 0.05) respiration rates, rectal temperatures, and hair scores than did steers grazing novel endophyte and HiMag- pastures. Prolactin, ALP, cholesterol, LDH, and triglycerides all were suppressed (P < 0.05) in steers grazing KY+ compared with steers grazing novel endophyte and HiMag- pastures. Steers grazing the novel endophyte tall fescues did not suffer from the decreased weight gains and toxicities associated with fescue toxicosis, resulting in enhanced animal production.  相似文献   

15.
Three grazing experiments were conducted to determine the effect of level of endophyte infection, rate of N fertilization of tall fescue grass, grazing period, and paddock exchange on selected chemical properties of four bovine carcass tissues. Samples of semitendinosus and longissimus muscle and of subcutaneous and perinephric adipose tissue were excised from the left side of each carcass. In Exp. 1, percentage of stearic acid was higher (P less than .05) and percentages of palmitoleic and oleic acid were lower (P less than .05) in all tissues from steers grazed on LELN Au-Triumph fescue than in tissues from steers grazed on LELN KY-31 fescue. Grazing periods of 175 or 245 d or paddock exchange (Exp. 2) had no significant effect on proximate composition of semitendinosus and longissimus muscles; however, moisture content was higher (P less than .05) in the semitendinosus muscle from steers grazed on 100% (100E) endophyte-infected KY-31 fescue. Forage treatment, grazing period, and paddock exchange (Exp. 2 and 3) had no significant effect on percentage of saturated fatty acids in the subcutaneous, semitendinosus, and longissimus tissue samples. In Exp. 2 and 3, percentages of saturated fatty acids were higher (P less than .05) in subcutaneous and perinephric adipose tissue samples from steers grazed on 100E than in samples from steers grazed on zero endophyte (OE) fescue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The daily BW gain of stocker steers grazing tall fescue [Lolium arundinaceum (Schreb.) S.J. Darbysh. = Schedonorus arundinaceus (Schreb.) Dumort.]-based pastures typically declines during summer. To avoid these declines, in part to mitigate the effects of tall fescue toxicosis, it is commonly advised to move cattle to warm-season forage during this period. A 3-yr (2006, 2007, and 2008) grazing study was conducted to evaluate the effect of replacing 25% of the area of a tall fescue/clover (81% endophyte-infected) pasture system with "Ozark" bermudagrass [Cynodon dactylon (L.) Pers.] overseeded with clover (Trifolium spp.) to provide summer grazing for stocker steers (TF+BERM). The TF+BERM treatment was compared with a grazing system in which tall fescue/clover (TF) pastures were the only type of forage available for grazing. Our objective was to determine if replacement of 25% of the land area in a fescue system with bermudagrass would increase annual beef production compared with a system based solely on tall fescue. The study was conducted at the Southwest Research and Education Center of the University of Missouri near Mt. Vernon. Each treatment was rotationally stocked with 5 steers (248 ± 19.3 kg) on 1.7 ha. Fertilizer applications were applied at rates recommended for each respective forage species. Total forage production, BW gain per hectare, and season-long ADG of steers was greater (P < 0.06) for TF+BERM than for TF in 2006, but none of these measures differed (P > 0.19) in 2007 or 2008. In vitro true digestibility of pastures was greater (P = 0.01) for TF (84.4%, SEM = 0.64%) compared with TF+BERM (80.6%, SEM = 0.79%), even in summer. The decreased in vitro true digestibility of the bermudagrass pastures likely negated any benefit that animals in TF+BERM had in avoiding the ergot-like alkaloids associated with endophyte-infected tall fescue. Renovating 25% of the pasture system to bermudagrass provided some benefit to the system in years when summertime precipitation was limited (2006) but provided no value in wetter years (2007 and 2008). Although renovating endophyte-infected tall fescue pastures to a warm-season forage is a widely used practice to mitigate tall fescue toxicosis, the benefits of this practice are limited if forage quality of the warm season component is poor.  相似文献   

17.
Restoration of grasslands dominated by tall fescue (Schedonorus phoenix [Scop.] Holub) to native tallgrass prairie usually requires burning, herbicides, or reseeding. We tested seasonal grazing by livestock in winter, combined with cessation of fertilization, as a restoration tool for modifying the competitive dynamics among herbaceous plants to restore tallgrass prairie communities in southeastern Kansas. In 2004–2005, we compared responses of grassland plants and birds across a chronosequence of pastures that were winter-grazed from 1 yr to 5 yr. We compared winter-grazed pastures to pastures grazed year-round and to local native prairie remnants as starting and endpoints for restoration, respectively. Abundance of native warm-season grasses increased from 2% to 3% mean relative frequency in pastures grazed year-round to 18% to 30% in winter-grazed pastures, and increased with duration of winter-grazing. Native warm-season grasses accounted for 1–6% of total live aboveground biomass in pastures grazed year-round, 1–34% in winter-grazed pastures, and 31–34% in native prairie remnants. Tall fescue abundance and biomass were similar among grazing treatments, with a trend for tall fescue to be less dominant in winter-grazed pastures. Tall fescue made up 9–40% of total aboveground biomass in year-round grazed pastures and 10–25% in winter-grazed pastures. Grassland birds showed variable responses to winter-grazing. Dickcissels (Spiza americana) and Henslow’s sparrows (Ammodramus henslowii) were more abundant in winter-grazed pastures, whereas eastern meadowlarks (Sturnella magna) and grasshopper sparrows (A. savannarum) had similar abundance in pastures grazed year-round and during winter. Winter-grazing of pastures dominated by tall fescue combined with suspension of nitrogen fertilization could be an effective restoration technique that allows use of prairie rangeland while improving habitat for sensitive grassland birds.  相似文献   

18.
A study was conducted to develop a model for fescue toxicosis using rats fed a diet containing endophyte-infected tall fescue seed (E+). Rats implanted with telemetric transmitters to continuously monitor core body temperature (Tc) and activity were housed at thermoneutrality (21 degrees C) and were fed a diet containing endophyte-free fescue seed (E-). After 2 wk, they were assigned to either E+ or E- diets and initially maintained at thermoneutrality (preheat) for 8 d. They were then exposed to heat stress (31 degrees C) for 22 d, followed by 1 wk of recovery at thermoneutrality (post-heat). Body weight and feed intake were measured daily. Rats receiving the E+ diet showed decreased feed intake (P = 0.001) and weight gains (P = 0.003) during the preheat period. The decrease in Tc from the pre-treatment level was greater in E+ than in E- rats during the preheat (P = 0.001) and postheat (P = 0.001) periods. With heat stress, both groups showed parallel decreases in feed intake. The increase in Tc from pre-heat to heat conditions was greater in E+ vs. E- rats (P = 0.001). Activity level was lower in E+ than in E-rats during heat stress (P = 0.009) and postheat (P = 0.037) periods. These results show that the rat model for fescue toxicosis is extremely useful because many of the observed responses to E+ diet are similar to those noted for cattle, and additional variables that are difficult to measure in cattle, such as activity, can be easily evaluated.  相似文献   

19.
Poor growth often occurs in cattle consuming ergot alkaloids associated with endophyte-infected (EI) tall fescue. Hyperthermia may contribute significantly to poor growth resulting from fescue toxicosis. This study examined indicators of thermal status and growth in Hereford (n = 30; heat-sensitive Bos taurus; H) and Senepol (n = 28; heat-tolerant Bos taurus; S) steers fed EI tall fescue (TF) or orchardgrass (OG) in 2 x 2 factorial experiments. Respiration rates, daytime shade use, tail skin temperatures, and body weights were measured during the summer and fall of 2000 (Exp. 1) and 2001 (Exp. 2). Experimental diets consisted of hay and seed for 12 wk in 2000, hay for 6 wk during the summer of 2001, and hay plus seed for 6 wk during the fall of 2001. In Exp. 1, EI tall fescue increased (P < 0.01) respiration rates, shade use, and skin temperatures in both breeds. Breed x diet affected (P < 0.01) 12-wk ADG in Exp. 1. Growth rate was lower for H-TF (262 g/d) than for S-TF, S-OG, and H-OG (475, 497, and 524 g/d, respectively). In Exp. 2, Senepol had lower (P < 0.01) respiration rates, shade use, and skin temperatures compared with Hereford, but diet did not alter (P > 0.14) these indicator traits in either breed. Breed x diet affected (P < 0.01) summer growth rates. Growth rate was lower for H-TF (88 g/d) than for H-OG, S-TF, and S-OG (508, 555, and 566 g/d, respectively). Adding seed to the diets in Exp. 2 decreased (P < 0.01) ADG for both breeds on TF during the fall. Thermal status indicator traits in Senepol and Hereford steers were similarly altered by TF; however, only Hereford showed consistently poor growth. Senepol showed resilience in their capacity for growth under conditions of fescue toxicosis. Senepol influence may enhance cattle performance in production systems that use EI tall fescue as the base forage.  相似文献   

20.
The perloline content of fodder grasses is genetically determined and strongly influenced by environmental factors. Tall fescue and meadow fescue show high, perennial and Italian ryegrass low concentrations of perloline. The perloline content of tall fescue can be diminished by bastardization to a level harmless in cattle feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号