首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serum amyloid A (SAA) is a sensitive acute-phase response (APR) marker in equids. Prominent APRs with elevations of SAA concentrations ([SAA]) have been reported after vaccination. The authors hypothesized that vaccination with an inactivated EHV-1/-4 vaccine would cause increase in [SAA] and antibody responses and that higher [SAA] would be positively correlated with the antibody titer in both equids. Twelve Haflinger horses and 12 mules were included in this longitudinal prospective study. All horses and mules were vaccinated with a commercially available EHV-1/-4 vaccine. Blood was sampled before and after vaccination to measure [SAA] and virus-neutralizing response (VN-T). In horses and mules, significantly higher [SAA] were measured on days 1, 3, and 5 after EHV-1/-4 vaccination; [SAA] on day 1 after vaccination were only measured in animals that developed fever, where mean [SAA] were significantly higher in horses than in mules (horses: 1,365.75 ± 87.64 mg/L, mules: 615.5 ± 153.444 mg/L) (P > .05). Four horses and 2 mules developed fever after vaccination, lasting for ≤24 hours. Increased antibody responses (VN-T) on days 7 and 14 after vaccination were observed in all animals, whereas mules showed higher overall antibody responses. Nevertheless, [SAA] did not correlate with the intensity of the antibody responses (VN-T) stimulated by the vaccine (P < .05). EHV-1/-4 vaccination caused a prominent APR, higher in horses than in mules, but [SAA] did not correlate with antibody responses. Measuring [SAA] after vaccination could help identify severe APRs that may require longer resting intervals before training or competition.  相似文献   

2.
The response of horses exposed to three common respiratory viruses was studied by measuring tracheal mucociliary clearance rates in the trachea. Tracheal clearance rates (TCR) were determined before, during illness and following recovery in horses exposed to equine rhinovirus (ERhV-2), equine influenza virus (EIV) and equine herpesvirus (EHV-4) by means of lateral scintigraphs made following an injection of technetium-99m sulphide colloid into the tracheal lumen. In six horses exposed to ERhV-2, TCR remained within normal limits. Exposure to EIV resulted in reduced TCR in six of seven horses, with TCR remaining below the 95% confidence limits of normal values for each horse for up to 32 days despite the resolution of clinical signs. Moderate changes were observed in six horses exposed to EHV-4, but significant reductions in TCR were evident in three animals. Measurement of TCR was a useful, minimally-invasive technique which demonstrated that respiratory viruses may cause persistent changes in TCR, even though clinical signs are not evident.  相似文献   

3.
Equid herpesvirus 5 (EHV-5) infection was detected in a farm in Italy by the use of a semi-nested polymerase chain reaction (PCR) targeting glycoprotein B of EHV-5 on nasal swabs and blood samples of clinically healthy and randomly selected Lipizzaner horses (n = 55). Twenty-five horses at the age of 4–17 years and 30 at an age of 1–3 years were sampled once. The association of the infection with these age-groups and the gender of the horses was investigated. The apparent prevalence of EHV-5 infection was significantly different between age-cohorts: it was higher in the younger group of horses with 73,3% and 80% positives in nasal swabs and blood respectively, compared to 40% of nasal swabs and 20% of blood in the older horses. An age-dependence therefore was observed: the young age is more frequently associated with EHV-5 infection.  相似文献   

4.
Equine respiratory viral infections cause significant worldwide disease and economic loss. Common causes include equine influenza virus (EIV) and equine herpesviruses-1 and -4 (EHV-1 and -4), and risk of exposure to these agents may be highest in young horses commingling at sales and competitive events. A surveillance study was conducted at two horse shows and two Thoroughbred sales to determine whether horses shed EHV-1, EHV-4, or EIV on arrival, or 2-4 days later, and whether shedding was associated with identifiable risk factors. Real-time polymerase chain reaction assays were used to detect EHV-1, EHV-4, and EIV nucleic acid in nasal swabs obtained from 369 horses at the four events. In response to evidence of clinical disease, 82 additional horses were sampled at two farms providing horses for one of the sales. On arrival at the events, shedding of EHV-1 was detected in 3.3%, EHV-4 in 1.1%, and EIV in 0.8% of horses. EHV-1 was detected at low levels, and EHV-1 and EHV-4 detection was not associated with clinical disease. EIV was detected only in horses at a Thoroughbred sale, in association with an outbreak of respiratory disease traced back to regional farms. On arrival at events, horses younger than 2 years had a significantly greater risk of shedding EHV-1 compared with older horses; no other significant risk factors associated with viral shedding were identified. Thus, there is a risk of exposure to EIV, EHV-1, and EHV-4 at equine events, and horses and events should be managed to mitigate this risk.  相似文献   

5.
An inactivated equine influenza virus (EIV) vaccine and a live equine herpesvirus type 1 (EHV-1) vaccine are usually administered concurrently to Thoroughbred racehorses in Japan. The objective of this study was to evaluate whether concurrent administration of an inactivated EIV vaccine and a live EHV-1 vaccine in Thoroughbred racehorses influences the antibody response against EIV. We compared the antibody response against EIV in horses administered both vaccines on the same day (Group A; n = 27) and the response in horses administered an inactivated EIV vaccine first and then a live EHV-1 vaccine 1–2 weeks later (Group B; n = 20). In both groups, geometric mean hemagglutination inhibition (HI) titers against A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010 increased significantly after EIV vaccination. However, the percentage of horses that showed a twofold increase or greater in HI titers against A/equine/Yokohama/aq13/2010 was significantly higher in Group B (75%) than in Group A (37%; P = .02). These results suggest that the concurrent use of an inactivated EIV vaccine and a live EHV-1 vaccine reduced the immune response against EIV to some extent, and it would be better to use these vaccines consecutively, especially for naïve horses or horses whose vaccination history is incomplete.  相似文献   

6.
The temperature sensitive and host range mutant clone 147 of equine herpesvirus 1 (EHV-1) was assessed for its ability to protect conventional, susceptible adult horses against respiratory infection by EHV-1 and equine herpesvirus 4 (EHV-4).Intranasal (IN) vaccination with 5.2 log(10) TCID(50) did not cause adverse clinical reactions although a limited virus shedding and viraemia (leukocytes) was observed in 11 of 15 and 10 of 15 vaccinated horses respectively. All 15 vaccinated horses showed a significant seroresponse to both EHV-1 and EHV-4 for virus neutralising (VN) antibody. None of 14 control horses shed virus or became viraemic or seroconverted prior to challenge. EHV-1 challenge (dose 6.0 log(10)) 6 weeks after vaccination resulted in pyrexia in all eight control horses while eight vaccinated horses remained unaffected. Six control horses developed nasal discharge, five of which were mucopurulent nasal discharge (mean duration 3.2 days) which also occurred in four vaccinated horses for 1 day. All eight control horses shed challenge EHV-1 at a significantly higher level (group mean titre 2.6+/-0.4 log(10) TCID(50) per sample) and for much longer (mean duration 4.8+/-1.5 days) than that (group mean titre 1.4+/-0.8 log(10) TCID(50) per sample and mean duration 1.5+/-0.5 days) in six vaccinated horses. Furthermore, all eight control horses became viraemic (mean duration 2.9 days) but viraemia did not occur in eight vaccinated horses. Following EHV-1 challenge, all eight control horses showed a significant VN antibody rise to both EHV-1 and EHV-4 but this occurred in only one vaccinated horse and to EHV-4 only. In EHV-4 challenge (dose of 4.2 log(10) TCID(50)) of a separate pair of seven vaccinated and six control horses, 6 weeks after EHV-1 vaccination resulted in pyrexia (mean duration 2.3 days) and nasal discharge (mean duration 1.8 days) in three and five control horses respectively but the only reaction observed in the vaccinated group was nasal discharge for 1 day in one animal. All six control animals shed virus (mean titre 2.5+/-0.6 log(10) TCID(50) per sample and mean duration 2+/-0.6 days) compared to one vaccinated animal. Although EHV-4 viraemia is rare, 3 of 6 control horses became viraemic after EHV-4 challenge but this was not observed in vaccinated horses. After EHV-4 challenge 3 and 5 of 6 control horses seroconverted for VN antibody to EHV-1 and EHV-4 respectively; a non-responsive control horse had high level of pre-existing VN antibody to EHV-4. However, only 1 of 7 vaccinated horses showed a significant antibody rise and only to EHV-4.  相似文献   

7.
8.
The horse population in Iceland is a special breed, isolated from other horses for at least 1000 years. This provides an exceptional opportunity to investigate old and new pathogens in an inbred herd with few infectious diseases. We have developed a high sensitivity semi-nested PCR to study equid gammaherpesviruses 2 and 5 (EHV-2 and 5) in Iceland. The first PCR is group specific, the second type-specific, targeting a 113 bp sequence in the glyB gene. DNA isolated from white blood cells and 18 different organs was tested for the presence of EHV-2 and 5. This was done in adult horses and foals, healthy and with various enteric infections. Both virus types were easily detected in all types of organs tested or EHV-2 in 79% cases and EHV-5 in 63%. In DNA from PBMC or buffy-coat EHV-2 was found in 20% cases and EHV-5 in 10%, all except one positive were foals. Co-culture of PBMC on fetal horse kidney cells was efficient for detecting EHV-2 but not for EHV-5. We verify here for the first time infections with EHV-2 and 5 in horses in Iceland and show that both viruses are common.  相似文献   

9.
Background: Early identification of inhalation-transmitted equine herpesvirus type 1 (EHV-1) infections has been facilitated by the availability of a number of real-time quantitative PCR (qPCR) tests. A direct comparison between nasal swab qPCR and traditional virus isolation (VI) requires a method for normalizing the qPCR samples and controlling for PCR inhibitors present in some clinical samples.
Objectives: To quantify EHV-1 shedding in viral swabs using an internal control and to compare fast qPCR to VI for the detection of EHV-1 in nasal swabs from horses.
Animals: Fifteen horses experimentally infected with EHV-1.
Methods: Experimental study : Nasal swab samples were collected daily after experimental infection for up to 21 days. VI was performed by conventional methods. The DNA was prepared for qPCR with the addition of a known quantity DNA of Marek's disease virus as an internal control. qPCR was performed.
Results: The qPCR method detected virus up to day 21 after challenge, whereas VI detected virus only to day 5. The median Kaplan-Meier estimates for EHV-1 detection were 12 days for qPCR and 2 days for VI ( P < .0001). When compared with VI, the sensitivity and specificity of qPCR were 97 (95% CI: 86–100) and 27% (95% CI: 20–35).
Conclusions and Clinical Importance: We conclude that fast qPCR of nasal swab samples should be chosen for diagnosis and monitoring of herpesvirus-induced disease in horses. Recommended reference ranges of C T values are provided as well as justification of a minimum 10-day quarantine period.  相似文献   

10.
试验旨在建立马疱疹病毒1型(Equine herpesvirus type1,EHV-1)人工发病模型,确定EHV-1感染马的半数感染量(ID50)及感染发病的判定标准,为该病的预防与治疗药物的研发奠定基础。以新疆伊犁地区某发病马场流产胎儿中分离的EHV-1 XJ2015株为研究对象,设立4组不同病毒剂量感染组及对照组,经鼻内喷雾感染马,5 mL/匹,每天观察试验马的临床症状和发病情况,14 d后进行剖检,观察各组织脏器病理变化并应用实时荧光定量PCR方法检测鼻腔排毒及病毒分布情况。结果显示,EHV-1 XJ2015株感染马的ID50为10-6.67/5 mL,其病毒含量为104.33 TCID50/mL。与对照组相比,1×106和1×105 TCID50/mL感染组马临床评分显著升高,主要表现为体温升高(高达39.5 ℃,一般持续2~6 d)、食欲不振、流浆液性鼻液和下颌淋巴结肿大;且1×106和1×105 TCID50/mL感染组试验马均表现出不同程度的排毒,肺脏及脑组织中可检测出大量病毒,与对照组相比极显著或显著升高(P<0.01;P<0.05);病理学检查发现,患马脑组织出现非化脓性脑炎及神经元水肿,肺脏组织出现间质性肺炎、嗜中性粒细胞、炎性细胞浸润、出血和肺泡间隔增厚。以上结果表明,EHV-1 XJ2015株对马具有较强的致病性,患病马临床症状典型,病毒主要随鼻液排出,并富集在肺脏及脑组织,通过上述指标确定EHV-1感染马发病的判定标准,本试验成功建立EHV-1感染本体动物疾病模型。  相似文献   

11.
The objective of this study was to investigate the nasal bacterial microbiota of healthy horses and horses infected with equine herpesvirus 1 (EHV-1). The nasal bacterial microbiota of 10 horses infected with EHV-1 and 11 control horses from a farm experiencing an outbreak was characterized using the Illumina MiSeq platform targeting the V4 region of the 16S ribosomal RNA gene. The nasal bacterial microbiota of healthy horses and EHV-1 horses was significantly different in community membership and structure. Horses shedding EHV-1 had lower bacterial richness (P = 0.002), evenness (P = 0.008), and diversity (P = 0.026) than healthy horses. Healthy horses had a higher relative abundance of Firmicutes and Bacteroidetes, but lower Proteobacteria than horses with EHV-1 (P < 0.05). This study provides the basis for generating hypotheses and investigations on the role of bacterial-viral interactions in the health and diseases of adult horses.  相似文献   

12.
OBJECTIVE: To investigate relationships between cough frequency and mucus accumulation, airway obstruction, and airway inflammation and to determine effects of dexamethasone on coughing and mucus score. ANIMALS: 13 horses with recurrent airway obstruction (RAO) and 6 control horses. PROCEDURE: 6 RAO-affected and 6 control horses were stabled for 3 days. Coughing was counted for 4 hours before and on each day horses were stabled. Before and on day 3 of stabling, tracheal mucus accumulation was scored, airway obstruction was assessed via maximal change in pleural pressure (deltaPpl(max)), and airway inflammation was evaluated by use of cytologic examination of bronchoalveolar lavage fluid (BALF). Effects of dexamethasone (0.1 mg/kg, IV, q 24 h for 7 days) were determined in 12 RAO-affected horses. RESULTS: To assess frequency, coughing had to be counted for 1 hour. In RAO-affected horses, stabling was associated with increases in cough frequency, mucus score, and deltaPpl(max). Control horses coughed transiently when first stabled. In RAO-affected horses, coughing was correlated with deltaPpl(max), mucus score, and airway inflammation and was a sensitive and specific indicator of deltaPpl(max) > 6 cm H2O, mucus score > 1.0, and > 100 neutrophils/microL and > 20% neutrophils in BALF Dexamethasone reduced cough frequency, mucus score, and deltaPpl(max), but BALF neutrophil count remained increased. CONCLUSIONS AND CLINICAL RELEVANCE: Because of its sporadic nature, coughing cannot be assessed accurately by counting during brief periods. In RAO-affected horses, coughing is an indicator of airway inflammation and obstruction. Corticosteroid treatment reduces cough frequency concurrently with reductions in deltaPpl(max) and mucus accumulation in RAO-affected horses.  相似文献   

13.
The acute phase protein serum amyloid A (SAA) has been shown to be a useful inflammatory parameter in the horse, but studies showing SAA responses to specific respiratory disease etiologies are limited. The goal of this study was to evaluate SAA responses in horses with infectious and noninfectious respiratory diseases as well as healthy, control horses. Two hundred seven horses were grouped into the following categories: equine influenza virus (EIV), equine herpesvirus-4 (EHV-4), Streptococcus equi subspecies equi (S. equi ss equi), inflammatory airway disease (IAD), and healthy controls. Serum amyloid A concentrations were determined for all horses on serum using a stall-side lateral flow immunoassay test. Serum amyloid A levels were found to be significantly greater for infectious respiratory diseases (EIV, EHV-4, S. equi ss equi) and horses with IAD when compared to control horses. There was a significant difference between viral and bacterial infections and IAD. Although SAA values from horses with S. equi ss equi were significantly greater when compared to horses with viral infections (EIV/EHV-4), the wide range of SAA values precluded accurate classification of the infectious cases. In conclusion, SAA is more reliably elevated with infections of the respiratory tract rather than noninfectious airway conditions. This can facilitate early detection of respiratory infections, help track disease progression, and aid practitioners in making recommendations about proper biosecurity and isolation of potentially contagious horses.  相似文献   

14.
The objective of this study was to investigate whether intramuscular vaccination of healthy adult horses with a killed or a modified live equine herpesvirus type 1 (EHV-1) vaccine could induce transient positive PCR results in either blood or secretions collected on a nasopharyngeal swab. Four horses in each group received either a single killed or a modified-live vaccine intramuscularly. Two local commingled and 2 distant nonvaccinated controls were included for each group. All horses were observed daily for evidence of clinical abnormalities throughout the study periods. Blood and nasopharyngeal swabs were collected twice before vaccination and once weekly for 4 weeks after vaccination and submitted for PCR testing for EHV-1 by 2 independent laboratories using different real-time PCR methodologies. Serum samples collected from all horses on the vaccination day and 21 days later were tested for antibodies against EHV-1 using a serum neutralization test. Whereas the 2 vaccine strains tested positive in both EHV-1 PCR assays, nasopharyngeal swabs and whole blood collected from vaccinated and control horses had negative PCR test results for EHV-1 during the entire study period. Serum neutralization testing revealed a 2- to 4-fold increase in titers for all vaccinated horses, whereas titers in control horses were largely unchanged. The use of seropositive horses before immunization and the sampling frequency of 7 days may have prevented the occasional molecular detection of the vaccine virus in whole blood and nasopharyngeal secretions. However, the study results demonstrate that detection of EHV-1 DNA by PCR in vaccinated and unvaccinated healthy horses is not a common event.  相似文献   

15.
Detection times and screening limits (SL) are methods used to ensure that the performance of horses in equestrian sports is not altered by drugs. Drug concentration–response relationship and knowledge of concentration–time profiles in both plasma and urine are required. In this study, dexamethasone plasma and urine concentration–time profiles were investigated. Endogenous hydrocortisone plasma concentrations and their relationship to dexamethasone plasma concentrations were also explored. A single dose of dexamethasone‐21‐isonicotinate suspension (0.03 mg/kg) was administered intramuscularly to six horses. Plasma was analysed for dexamethasone and hydrocortisone and urine for dexamethasone, using UPLC‐MS/MS. Dexamethasone was quantifiable in plasma for 8.3 ± 2.9 days (LLOQ: 0.025 μg/L) and in urine for 9.8 ± 3.1 days (LLOQ: 0.15 μg/L). Maximum observed dexamethasone concentration in plasma was 0.61 ± 0.12 μg/L and in urine 4.2 ± 0.9 μg/L. Terminal plasma half‐life was 38.7 ± 19 h. Hydrocortisone was significantly suppressed for 140 h. The plasma half‐life of hydrocortisone was 2.7 ± 1.3 h. Dexamethasone potency, efficacy and sigmoidicity factor for hydrocortisone suppression were 0.06 ± 0.04 μg/L, 0.95 ± 0.04 and 6.2 ± 4.6, respectively. Hydrocortisone suppression relates to the plasma concentration of dexamethasone. Thus, determination of irrelevant plasma concentrations and SL is possible. Future research will determine whether hydrocortisone suppression can be used as a biomarker of the clinical effect of dexamethasone.  相似文献   

16.
Equineherpesvirustypes 2 and 5 (EHV-2andEHV-5)have a rather unclearpathogenicity and distribution within the equid population. In order to gain more information on the prevalence of these two viruses, type-specific PCR assays were developed to detect viral DNA in nasal specimens and in peripheral blood leukocytes (PBLs) of adult horses and foals from various regions of Europe, i.e. Sweden, Hungary and the United Kingdom. In adult horses, the prevalence of EHV-2 in PBLs was up to 68% in Sweden and 71% in the United Kingdom. EHV-2 DNA was detected in the PBLs from all the foals tested in all countries and most (93%) of the nasal specimens also yielded positive results. The prevalence of EHV-5 DNA in the PBLs of foals in Hungary was 15 and 24% in adult horses in the United Kingdom. This observation was among the very few reports of the presence of EHV-5 in horses. In summary, the specific PCR assays revealed important data on the occurrence and distribution of EHV-2 and EHV-5 in large horse populations. The findings indicated that infection with EHV-5 occurred later than EHV-2 in foals. This study may contribute to a better understanding of the etiological role of these gammaherpesviruses in equine diseases.  相似文献   

17.
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand.

METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3).

RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017].

CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.  相似文献   

18.
The experiment was performed to evaluate the ameliorative effect of ascorbic acid (AA) on some hematological parameters and erythrocyte osmotic fragility (EOF) in horses transported by road. A total of 14 horses, consisting of seven experimental and seven control horses, were used for the experiment. Before the transportation, blood samples were obtained by jugular venipuncture from all the horses. Experimental horses were administered with AA (200 mg/kg dissolved in 20 mL of distilled water per os), whereas the control horses were given 20 mL of distilled water per os. Thereafter, the animals were transported for 6 hours and blood samples collected after transportation. Packed cell volume and hemoglobin concentration were higher (P < .05) in experimental than the control group, whereas total leukocytes reduced significantly (P < .05) in experimental in comparison with the control horses. Lymphocyte, neutrophil counts, neutrophil/lymphocyte ratio, and total protein decreased in experimental horses in comparison with control, but they were not significant (P > .05). Erythrocyte osmotic fragility was lower in experimental than the control at 0.3% NaCl concentration (P < .05). The result of the present study revealed that AA ameliorated changes in hematological parameters and EOF induced by road transport stress, partly because of its antioxidant properties.  相似文献   

19.
An outbreak of neurological disease caused by EHV-1 infection is described with emphasis on diagnosis and prognosis for recumbent horses. In April 1995, an outbreak of the neurological form of Equine herpesvirus type 1 (EHV-1) occurred in a well-managed riding school with 41 horses: 34 horses showed a temperature spike and 20 some degree of neurological signs, of which 10 were nursed intensively in the indoor arena of the riding school for 3 to 20 days, 8 having to be maintained in slings for 2-18 days, while 9 needed bladder catheterisation b.i.d. for 2-16 days. Within the first 3 days, one horse was subjected to euthanasia and another horse died. Postmortem examination revealed a mild vasculitis with perivascular mononuclear cuffing and axonal degeneration in the central nervous system. Clinical diagnosis was confirmed by serology and virology: 28 horses seroconverted in one or more tests during the outbreak, whereas 12 had already high CF and SN titres in the first sample, suggestive of recent infection. Virus was isolated from nasal swabs of 4 horses, and identified as EHV-1 with type-specific monoclonal antibodies. Restriction enzyme analysis revealed that the EHV-1 strains from this outbreak belonged to genome type EHV-1.IP. The electropherotypes were identical to those from another, epidemiologically unrelated, outbreak of neurological disease 2 months earlier. The timing of the temperature spikes and seroconversions indicated that the infection was probably introduced by a horse purchased 3 weeks before neurological signs occurred. At follow-up one year later, the 10 horses that showed mild neurological signs had recovered completely. Of the 8 horses that survived intensive care, 3 had returned to around their former performance level (2 of which had been in slings), while the other 5 had become pasture-sound. At follow-up 4 years later, all pasture-sound horses had been subjected to euthanasia because of persistent mild ataxia and incontinence. In conclusion, the prognosis for recumbent horses due to EHV-1 infection is grave. For virological diagnosis, extensive and strategic sampling of febrile in-contact horses is required, and the EHV-1-specific glycoprotein G (gG) ELISA is a valuable tool for specific serological diagnosis of EHV-1 infection causing neurological disease.  相似文献   

20.
The immunotherapeutic effect of low-dose human alpha interferon on viral shedding and clinical disease was evaluated in horses inoculated with equine herpesvirus-1 (EHV-1). Eighteen clinically healthy weanling horses, 5 to 7 months old, were allotted to 3 equal groups. Two groups were treated orally with human alpha-2a interferon (0.22 or 2.2 U/kg of body weight), on days 2 and 1 before inoculation with EHV-1, the day of inoculation, and again on postinoculation day 1. The horses of the remaining group were given a placebo orally on the same days. The horses were monitored daily for changes in body temperature and for clinical signs of respiratory tract disease. Blood and nasal swab specimens were collected daily for virus isolation. Blood was also collected at intervals throughout the monitoring period for evaluation of CBC, serum IgG and IgM concentrations, and antibody titers to EHV-1. Febrile responses, nasal discharge, viral shedding, changes in CBC, and an increase in antibody titers to EHV-1 were noticed in all horses after inoculation. There was no significant difference (P greater than 0.05) in mean values of the factors measured between treatment and control groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号