首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Urban forests are recognized as a nature-based solution for stormwater management. This study assessed the underlying processes and extent of runoff reduction due to street trees with a paired-catchment experiment conducted in two sewersheds of Fond du Lac, Wisconsin. Computer models are flexible, fast, and low-cost options to generalize and assess the hydrologic processes determined in field studies. A state-of-the-art, public-domain model, which explicitly simulates urban tree hydrology, i-Tree Hydro, was used to simulate the paired-catchment experiment, and results from field observations and simulation predictions were compared to assess model validity and suitability as per conditions in the broader Great Lakes basin. Model parameters were aligned with observed conditions using automatic and manual calibration. Model performance metrics were used to quantify the weekly performance of calibration and to validate predictions. Those calibration metrics differed substantially between the two periods simulated, but most calibration metrics remained positive, indicating the model was not fitting only the period used for calibration. Predicted avoided runoff for a five-month leaf-on period was 64 L/m2 of canopy, 4 % lower than the field-estimated avoided runoff of 66 L/m2 of canopy. Interception was the most directly comparable process between the model and field observations. Based on 5 storms sampled, field estimation of precipitation intercepted and retained on trees averaged 63 % and ranged from 22 % to 81 %, while model estimation averaged 61 % and ranged from 36 % to 99 %. This model was able to fit predictions to observed catchment discharge but required extensive manual calibration to do so. The i-Tree Hydro model predicted avoided runoff comparable with the field study and earlier assessments. Additional field studies in similar settings are needed to confirm findings and improve transferability to other tree species and environmental settings.  相似文献   

2.
3.
Trees along footpath zones (or verges) grow on the “front-line” of urban forest ecosystems, increasingly recognised as essential to the quality of human life in cities. Growing so close to where residents live, work and travel, these street trees require careful planning and active management in order to balance their benefits against risks, liabilities, impacts and costs. Securing support and investment for urban trees is tough and robust business cases begin with accurate information about the resource. Few studies have accounted for spatial heterogeneity within a single land-use type in analyses of structure and composition of street tree populations. Remotely sensed footpath tree canopy cover data was used as a basis for stratification of random sampling across residential suburbs in the study area of Brisbane, Australia. Analysis of field survey data collected in 2010 from 80 representative sample sites in 52 suburbs revealed street tree population (432,445 ± 26,293) and stocking level (78%) estimates with low (6.08%) sampling error. Results also suggest that this population was transitioning to low risk, small-medium sized species with unproven longevity that could limit the capacity of the Brisbane’s Neighbourhood Shadeways planting program to expand from 35% footpath tree canopy cover in 2010, to a target of a 50% by 2031. This study advances the use of contemporary techniques for sampling extensive, unevenly distributed urban tree populations and the value of accurate resource knowledge to inform evidence-based planning and investment for urban forests.  相似文献   

4.
Urban forests have many positive effects on human health and recreation. However, urban areas can create stressful environments for native trees, leading to increased mortality and an altered ecosystem. Here, we compare growth variability and the climate response from old (>200 years) L. tulipifera growing in an urban forest in Bloomington, IN to surrounding non-urban sites in southern Indiana using dendrochronological techniques. We found that L. tulipifera growing in the urban forest responded similarly with small differences to climate compared to the non-urban sites. Radial growth from urban L. tulipifera had statistically similar correlation values with temperature, soil moisture, and precipitation compared to the trees in non-urban forests. Growth variability between the urban and non-urban L. tulipifera trees showed good agreement through time with the exception of the 20th century, where the urban forest experienced a stand-wide release from competition. Our results indicate that some urban forests may function similarly to non-urban forests from an ecological perspective. These findings suggest management practices from non-urban old-growth forest could be useful for management of rare urban old-growth forests.  相似文献   

5.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

6.
We assess how tree species richness and ecosystem services vary along a tropical urbanisation gradient in a rapidly expanding mega-city (Bangkok, Thailand). We conduct tree surveys in 150 1 km cells selected by random stratification across an impervious surface cover gradient. In each cell, surveys were conducted at the centre (representing typical conditions) and in the largest patch of trees (assessing woodland retention impacts). We estimated trees’ contributions to i) carbon storage, ii) food production for people, iii) biodiversity support (production of food for frugivorous birds), and iv) economic value (assessed using regulations for using trees as collateral for financial loans). Surveys detected 162 species (99 natives) indicating substantial species loss relative to nearby natural forests. Despite this, and contrasting with typical patterns in temperate cities, tree species richness (including of natives) and ecosystem service provision is relatively stable across the urbanisation gradient. This finding has two important consequences. First, growing cities through high intensity developments that require less space may benefit regional biodiversity without compromising ecosystem services. Second, even the typically very small woodlands present in highly urbanised locations contribute to supporting biodiversity and providing ecosystem services; thus such woodlands require protection. Species richness is not strongly positively associated with most of our focal ecosystem services. Urban planners must therefore pay attention to both biodiversity and ecosystem services as these do not automatically accrue from each other, partly because non-native species contributed substantially to most ecosystem services except biodiversity support. Finally, trees provide substantial value as collateral for financial loans (averages of £643 ha at random locations and £2282 ha in wooded locations). Policies promoting such valuations may reduce tree removal and encourage tree planting, but the list of eligible species warrants revision to include additional species that enhance biodiversity support, ecosystem services, and resilience against future environmental instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号