首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
为研究日光温室装配式土质夹心墙体的热湿迁移及蓄放热性能,通过可控式墙体热湿耦合试验台控制墙体两侧温度、相对湿度的不同,实测墙内温度、相对湿度的稳态分布及瞬态变化,并对墙体的蓄放热性能进行定量计算与分析。结果表明:该层状异质结构复合墙体,热湿迁移存在耦合但并不明显;墙内填土始终保持高湿状态,有利于墙体蓄放热,是该墙体的主要蓄放热体;外侧墙板保温隔热效能明显,室外环境变化对墙体保温蓄热性能影响较小,且能使墙内热量主要向室内单向释放;墙内热量释放存在滞后效应,最长可持续6 d+6.5 h,但以快速放热期(4 d+8 h内)所释放热量为主,约占总放热量的85.64%~91.21%;所建立的数值分析方法可为不同厚度的同类墙体设计与建造提供参考,具有指导生产意义。该新型墙体设计理念先进,蓄放热性能优越,且能够快速装配、重复利用、就地还田,适于在中国大面积推广应用。  相似文献   

2.
日光温室墙体蓄放热层温度变化规律研究   总被引:3,自引:3,他引:0  
墙体的蓄热保温性能决定了日光温室在室外环境作用下的温度变化。该文建立了单一材料墙体的温度变化估算模型,对黏土砖墙、砾石墙、加草黏土墙及夯土墙的温度变化进行了预测;采用CFD方法分析了墙体总厚度相同(0.60 m)和总厚度不同(0.60和0.72m)情况下,复合墙体各方案中蓄热材料层的温度变化特点。单一材料墙体温度变化预测结果显示,导温系数较大的砾石墙内部温度变化较其他墙体传播快;温度波动厚度还与墙内表面温度振幅有关,黏土砖墙内表面振幅从5℃增加到15℃,墙体内部振幅达到0.1℃时的波动厚度从0.42 m增加到0.54 m。此外,由预测的墙体温度变化可以确定单一材料墙体蓄放热层厚度。模型估算的夯土墙温度变化及蓄放热层厚度与已有文献测试值比较,吻合较好。复合墙体温度CFD模拟分析表明,墙总厚度0.60 m不变,蓄热材料层越厚内部温度衰减越快;蓄热材料层厚保持0.36 m,墙总厚度从0.60 m增加到0.72 m时,蓄热材料层温度均值最大升高1.7℃。研究还发现,复合墙体较厚的蓄热材料层比同材料单一材料墙体同厚度处温度衰减快,复合墙体蓄放热层厚度的确定取决于隔热层的位置。单一材料墙体及复合墙体蓄热材料层温度模拟模型可以为日光温室墙体的厚度及组成设计提供理论参考。  相似文献   

3.
日光温室水幕帘蓄放热系统增温效应试验研究   总被引:26,自引:16,他引:10  
针对日光温室夜间温度过低,难以满足作物生长需求这一问题。设计了一种水幕帘蓄放热系统,该系统以日光温室墙体结构为依托,以水为介质进行热量的蓄积与释放,白天利用水循环通过水幕帘吸收太阳能,同时将能量储存在水池中,夜晚利用水循环通过水幕帘释放热量,以提高日光温室内温度。试验测试结果表明,应用该水幕帘蓄放热系统可将温室内夜间温度提高5.4℃以上,可将作物根际温度提高1.6℃以上;该系统夜间通过水幕帘的放热量达到4.9~5.6MJ/m2;日光温室蓄放热量的增加,实现了西红柿的安全过冬生产,同时将西红柿的上市时间至少提前20d。该研究成果对日光温室结构的改进、温度调控有较大的科学意义。  相似文献   

4.
日光温室土墙体温度变化及蓄热放热特点   总被引:6,自引:5,他引:1  
为研究日光温室土墙体温度变化规律及蓄放热特性,以泰安市下挖式土墙日光温室为研究对象,在温室北墙布置5个测试层,通过各测试层最冷季节(30 d)温室内气温、墙体温度、室外气温及室外太阳辐照度测试数据,分析了土墙日光温室内部温度及墙体内温度的分布规律。结果表明:各测试层墙体表面及0.1~0.6 m处测点的温度均呈现出随温室气温周期性变化的规律,且随着墙体厚度的增加温度的波动幅值逐渐减小,相位明显后移;0.7 m以后测点的温度幅值趋于稳定,处于稳态向室外的导热过程。基于墙体温度分布规律,对墙体白天的蓄热量、夜间的放热量及墙体夜间放热效率进行了计算,得出墙体夜间放热效率为43%,表明土墙白天蓄积热量的43%用于改善夜间温室内热环境。对墙体蓄热和放热量计算,综合评价墙体的平均放热效率,可以为土墙日光温室结构优化及热负荷计算提供指导,为各地土墙温室轻简化技术研究提供理论基础。  相似文献   

5.
日光温室空气对流蓄热中空墙体热性能试验   总被引:6,自引:5,他引:1  
空气对流循环蓄热墙体是一种通体中空型日光温室墙体,其内部中空层与温室空间连通而具有空气对流换热效果。为详细了解该墙体构造的蓄放热特性及其对日光温室热环境的影响,通过与同样构造但中空层封闭的无对流墙体的对比,在北京市通州区试验温室中测试了墙体内部温度分布及变化规律、墙体蓄放热量及其对温室内气温的影响。其结果,与对照墙体相比,对流方式下墙体内部温度分布规律不同,墙体内部整体温度水平较高、且昼夜波动幅度较大,墙体白天蓄热量提高15.1%,夜晚放热量提高14.7%,这一效果使得温室夜间最低温度提高2.2℃,有效提高了墙体的蓄放热能力,改善了温室夜间温度水平。  相似文献   

6.
日光温室平板微热管阵列蓄热墙体热性能试验   总被引:1,自引:1,他引:0  
为提高日光温室复合结构墙体热稳定层的温度并提升温室墙体材料的蓄热性能,该研究提出一种新型日光温室平板微热管阵列蓄热墙体(Micro Heat Pipe Array,MHPA),搭建了小型MHPA墙体温室试验台,采用对比试验的方法,结合温室墙体温度、墙体蓄放热量以及温室环境温度等评价参数,对比分析了典型日MHPA墙体的蓄放热特性及其改善温室热环境效果。结果表明,与普通温室相比,冬季典型晴天,放热时段(17:00至次日9:00)MHPA墙体内表面平均温度提高1.6~2.3℃,由室内向室外沿墙体厚度方向0~370 mm区域内MHPA墙体内部的平均温度提高2.7~4.0℃;MHPA温室的平均温室环境温度提升1.2~1.5℃,地表面平均温度提升0.6~1.0℃;MHPA墙体的日总蓄热量提高了8.93%~14.35%,日总放热量提高了2.24%~8.07%,且在夜间23:00至次日7:00 MHPA墙体的放热速率高于普通墙体的,平均提升11.53%。因此,MHPA墙体引入于日光温室墙体中可提升温室墙体材料的蓄放热性能,改善温室热环境。该结果可为日光温室平板微热管阵列蓄热墙体的应用提供参考。  相似文献   

7.
主动蓄放热-热泵联合加温系统在日光温室的应用   总被引:19,自引:15,他引:4  
为提高主动蓄放热系统集热效率,增强日光温室抵御低温能力,设计了一套主动蓄放热-热泵联合加温系统。白天运行主动蓄放热系统,将北墙获得的太阳辐射能储存到蓄水池中;根据天气情况及蓄水池水温变化适时开启热泵机组,降低主动蓄放热系统循环水温,进而提升其集热效率;夜间室内气温较低时,通过主动蓄放热系统放热。试验结果表明:与对照温室相比,试验温室夜间气温高出5.26~6.64℃;热泵机组制热性能系数COPHp为4.38~5.17,主动蓄放热系统可为热泵机组热源提供充足的热量,保证理想的热源温度;在日光温室特定的光热环境下,主动蓄放热-热泵联合加温系统的集热效率达到了72.32%~83.62%,总体COPSys值达5.59,节能效果显著。该研究为提高日光温室夜间温度提供了新思路。  相似文献   

8.
日光温室土质墙体内热流测试与分析   总被引:7,自引:0,他引:7  
对山东省寿光市下沉式日光温室的土质墙体内不同厚度处的温度、室内外气温及墙体表面太阳辐射进行连续观测,以分析土墙内温度和热流的变化,探明日光温室后墙热传导规律。结果表明:日光温室土质后墙内热量传递呈现一定的日变化规律,墙体热流传导主要沿厚度方向,表层蓄、放热过程明显。在试验条件下,晴天时,白天通过墙体累计吸热量为2657kJ·m-2,夜间向温室内累计放热量为1865kJ·m-2;雪天时,通过墙体累计吸热量为18kJ·m-2,累计放热量为859kJ·m-2。在下沉式日光温室土质墙体内存在有效蓄热层和保温层,墙体各层功能不同,因此建议在墙体建造时选用不同功能材料分层处理,以发挥日光温室墙体的最大蓄热保温能力。  相似文献   

9.
冬季日光温室北墙内表面热流分析   总被引:6,自引:0,他引:6  
为了摸清日光温室墙体内表面上辐射、对流传热分量和向墙体内部的传导热分量的日变化情况,以及墙体内部传导传热热流状况,以指导温室生产有针对性的采取保温措施,采用墙体内及表面空气多点多日连续温度监测,用传热学中平板表面对流换热和物体内部热传导传热计算方法进行分析,研究日光温室北墙表面热量收支和墙体热量流动状况。结果表明,墙体内40-50cm深度存在日温不变层;40cm热流仅4W.m-2左右。传热学计算表明北墙内表面自然对流为湍流状态,对流传热系数在1.69~4.43W.m-2.K-1。墙体内表面晴天白天最大对流换热量为26.5W.m-2,而墙面接受最大辐射热交换69.8W.m-2;墙内表面向墙内传导传热量最高达83.6W.m-2;随深度增加,热流降低,位相滞后。阴天时热流量迅速减小。结论:在郑州冬季天气条件下,60cm厚墙体已接近合理水平,再增加厚度增强保温效果的潜力不大;北墙表面空气与墙体间传热为湍流状态,而非平流状态;白天北墙表面以辐射换热量为主,是对流换热量的2.6倍。  相似文献   

10.
日光温室后墙蓄放热帘增温效果的性能测试   总被引:15,自引:12,他引:3  
为了增加日光温室有效蓄热量,改善日光温室夜间温度环境,保障作物安全越冬,该文设计了一种以日光温室后墙为结构支撑的温室蓄放热帘增温系统,白天利用该系统的集放热板吸收太阳辐射热,并通过水介质将热量储存于蓄热水池中;夜晚通过水介质的循环将蓄积的热量释放到温室中,以提高夜晚温室内空气温度。试验结果表明:晴天时应用温室蓄放热帘增温系统能将温室夜间平均气温提高4.6℃,阴天时能提高温室夜间平均气温4.5℃;试验期间当室外最低气温为-12.5℃时,对照温室最低气温仅为5.4℃,而试验温室最低气温为10.1℃;该系统在阴天平均集热效率为42.3%,在晴天时平均集热效率为57.7%;与电加热方式相比该系统的节能率达到51.1%以上。  相似文献   

11.
制作方式对日光温室相变蓄热材料热性能的影响   总被引:4,自引:3,他引:1  
日光温室墙体能否在有限的日照时间内高效蓄集太阳能,与日光温室墙体层的构筑方式以及所采用的建筑材料的热工性能(热阻、比热容、体积质量)直接关联。该研究将所研制的相变材料与普通建筑基材分别以直接混合方式和插层方式制成复合相变蓄热墙体材料板,通过比较试验的方法,从蓄热温度、时间、以及蓄热量等方面,比较了2种不同构筑方式对复合相变蓄热墙体材料蓄/放热特性和传热性能的影响规律。结果表明:同样蓄(放)热温度条件下,直混试件比插层试件提前70?min结束蓄(放)热;直混试件的蓄热量比插层试件大10%,放热量大15%,直接混合方式制成的复合相变蓄热墙体材料板的传热性能和蓄放热效率更好。该研究结果可为相变蓄热技术在日光温室建筑墙体的科学应用提供方法与建筑热工理论参考。  相似文献   

12.
日光温室墙体与地面吸放热量测定分析   总被引:23,自引:14,他引:9  
为研究日光温室土质后墙与地面对室内的放热情况,测定了晴、阴天气条件下土质后墙和地面的表面温度及热通量。结果表明,单位面积墙体与地面各自的放热量与室内太阳辐射密切相关,晴天夜间单位面积墙体放热量为 1.90 MJ/m2,地面放热量为1.36 MJ/m2,而阴天夜间单位面积墙体放热量为0.76 MJ/m2,地面放热量为1.34 MJ/m2。对于单位面积墙体和地面而言晴天墙体放热量大于地面,阴天地面放热量大于墙体,无论晴天与阴天地面全天放热总量总是大于墙体释放总量,且地面对周期热量变化的缓冲大于墙体。  相似文献   

13.
日光温室现行的温度调控方法对太阳能无法进行有效利用,造成大量浪费,在极端天气条件下不能取得良好效果,无法持续为植物提供适宜的生长环境。为解决上述问题,更好地改善温室墙体性能,该研究以复合无机相变材料为主体,再配以水泥、锯末等原料,制备成相变材料模块,并进行相关试验,测试相变材料水泥模块的蓄放热性能。而后将其固定于日光温室后墙骨架上,采集温室内温度数据,来研究其在实际生产环境中的蓄放热效果。结果表明一块F1、F2、F3相变材料水泥模块温度由8.3升到32℃分别吸收2 575.2、3 041.5、3 286.8 kJ热量,单位体积蓄热量分别为74.5、88.0、95.1 MJ/m~3;一块F1、F2、F3相变材料水泥模块温度由32降到7.8℃分别放出热量2 067.0、2 344.6、2 910.2 kJ,单位体积放热量分别为59.8、67.8、84.2 MJ/m~3。在夏季不同天气条件下,三种相变材料都可吸收大量热量,降低温室温度峰值;在冬天夜间又可释放大量热量,提高温室最低温度,使植物始终处于环境相对适宜、温度变化较为平缓的生长环境中。  相似文献   

14.
基于日光温室相变材料的梯形墙体热特性分析   总被引:4,自引:0,他引:4  
将以石蜡为主的固-液复合相变材料喷涂到日光温室梯形北墙体内表面,对相变涂层温室梯形墙体和普通温室梯形墙体的热流量、北墙内的温度,以及室内外气温进行典型天气和月度变化的测试分析,以探究相变材料应用于日光温室梯形墙体后对室内热环境的影响。结果表明:晴天和阴天,相变涂层温室墙体的日间蓄热量和夜间放热量均显著高于普通温室墙体(P<0.05)。相变涂层温室墙体与普通温室墙体在同一典型时刻相同部位温度存在一定差异,这种差异随着墙体深度的增加而逐渐减弱,0-300mm墙体内差异最显著(P<0.05)。相变涂层温室墙体的累积蓄热量日平均值比普通温室墙体高8.1%,累积放热量日平均值比普通温室墙体高14.8%,相变涂层墙体表面和墙体内各层的月平均温度与普通温室墙体温度差异显著(P<0.05),相变涂层温室、普通温室和室外的月平均气温分别为9.93、8.63和-8.91℃。说明相变涂层墙体可有效增加墙体蓄放热量,提升温室气温尤其是夜间气温。  相似文献   

15.
装配加温除湿系统的轻简装配式日光温室设计及性能试验   总被引:3,自引:2,他引:1  
针对中国传统日光温室土地利用率低、建设成本高、墙体构造各异及温度和湿度环境难以调控等突出问题,该研究设计出一种轻简装配式日光温室,并配套了基于温室主动蓄放热原理的冬季夜晚加温和除湿系统,其温室骨架可与主动蓄放热系统结合为一体。研究结果表明:相比于传统砖墙日光温室,轻简装配式温室冬季夜晚温度提高4.5℃以上;采用基于主动蓄放热系统热能的除湿系统,可将温室夜间相对湿度降低14%,相对湿度控制在80%以下;该温室可实现整体式装配安装,大大减少了施工时间和安装成本,温室后墙厚度为166 mm,与后墙为600 mm厚的砖墙温室相比,墙体占地面积减少72%,显著提高了土地利用率。  相似文献   

16.
墙体材料对日光温室温度环境影响的CFD模拟   总被引:35,自引:21,他引:14  
日光温室墙体材料影响温室的蓄热保温性能。该研究以室外气象因子为模拟输入条件,分别对复合墙、全砖墙及全苯板墙的12 m跨度日光温室的温度环境进行了模拟,复合墙、全砖墙内的温度分布变化与以往的测试结果一致。以2004年2月18日实测的气候条件为输入条件,模拟得到复合墙温室温度超过全砖墙温室温度最大值为0.8℃,复合墙温室夜间室温超过全苯板墙温室温度最大值为1℃。早晨揭帘前,复合墙中隔热层以内的砖墙及部分隔热层成为放热体,砖墙中靠近室内近1/3的墙体温度高于室内空气温度,而全苯板墙只有内表面附近略高于室内空气温度。白天复合墙、全砖墙及全苯板墙温度均低于室内空气温度,均为吸热体。采用日光温室温度环境动态模拟模型,可以预测不同温室墙体可能形成的室内温度状况,并且根据不同墙体内温度分布,可优选温室墙体结构。  相似文献   

17.
下沉式日光温室土质墙体热特性的试验与分析   总被引:9,自引:5,他引:4  
为探明下沉式日光温室土质后墙温度分布及变化规律,进而正确评价其保温性能,2009年12月-2011年6月在河南省荥阳市对下沉式日光温室的土质墙体的热特性进行了2a的连续监测,并对结果进行系统分析。结果表明:墙面温度受室内、外气温和太阳辐射的共同影响,具有与气温相同的日变化和季节变化规律;墙面温度影响墙内各深度层次的温度分布,沿墙的厚度方向由室内表面向室外表面温度递减;墙内存在热稳定层,其位置及厚度随季节而变化,厚度与墙体厚度正相关;1~3月份,热稳定层位于墙体厚度的中心位置,2m厚的墙体处没有热稳定层,3m厚的墙体处热稳定层厚30cm,4m厚的墙体处热稳定层厚70cm;4、5月份,其位置外移至距外表面100cm处,厚度也比1~3月份增加10~20cm;综合温室造价、墙体保温性及土地利用率等各方面因素,建议在河南地区下沉式日光温室土质后墙建造参数为顶宽2.5m,底厚(后墙与室外地面连接处)4.0m,后墙高度(距室外地面)不宜大于2.5m。该研究为该型温室的建造和发展提供一定的参考。  相似文献   

18.
为了验证和评价外挂型相变储能装置在严寒地区日光温室中长周期的蓄放热性能。将传统日光温室分割成4个隔断温室,并以中间两个隔断温室(东侧:相变温室(加相变材料);西侧:对照温室(不加相变材料))为试验对象。以优化后配比为3%CMC+3%Sr Cl2·6H2O+35.96%CaCl2+58.04%H2O的复合相变材料为储能介质,采用PVC-U管进行封装并外挂布置于相变温室的北墙内表面,进行了为期51d的相变温室与对照温室的现场试验。基于试验数据,从温室内空气温度、过冷不适宜生长率及有效积温变化等方面讨论了相变温室的蓄放热性能。通过分析获得结果如下:1)所采用的相变材料,试验前后其相变温度较为稳定,没有发生明显的过冷和相分离问题,蓄热、放热过程的相变潜热分别减小了11.5%和13.2%;2)相变储能装置在典型晴天条件下的蓄放热性能最好,阴天次之,雪天最差,可以提高夜间相变温室平均温度分别为3.1、1.9、0.9℃;3)相变温室过冷不适宜生长降低率为40%,过冷不适宜生长降低率概念可用于相变温室蓄放热性能的定...  相似文献   

19.
日光温室三重结构相变蓄热墙体传热特性分析   总被引:6,自引:21,他引:6  
针对目前国内日光温室墙体在热工性能设计方法方面存在的不足,该文提出了日光温室三重结构相变蓄热墙体构筑方法;结合试验结果,提出了关于该结构墙体传热性能分析方法及其评价指标。分析结果表明:1)三重结构墙体有着较好的蓄放热性能,利用墙体内侧(温室侧)的相变蓄热材料,可以显著提高墙体太阳能利用率,在太阳日累计辐照量为9.32 MJ/m2下,比参照温室北墙体的有效蓄热量提高了26.6%;夜间,相变温室三重结构墙体的累积供热量比参照温室砌块砖墙体的提高了16.2%,并且该墙体相变材料层的单位体积有效蓄热量为80.0 MJ/m3,是三重结构墙体中砌块砖层有效蓄热量的10倍;2)透过前坡屋面照射在温室北墙内表面太阳能影响墙体温度变化的深度有限,约占0.90 m厚三重结构墙体的33.3%,并且在温室墙体内部存在着温度稳定区,其厚度占0.90 m厚三重结构墙体的61.1%。试验结果表明仅通过增加温室墙体厚度以提高墙体的太阳能显热蓄热效率是非常有限的。该研究结果可为日光温室墙体的合理构筑、相变蓄热技术在日光温室的应用以及温室墙体的相变传热问题分析提供参考。  相似文献   

20.
土壤蓄热-放热过程中地埋管周围土壤温度特性模拟   总被引:2,自引:1,他引:1  
为探索内蒙中部地区地源热泵蓄热-放热过程中地埋管周围土壤温度变化特性,以垂直U型地埋管周围土壤为研究对象,基于有限元分析法建立了二维非稳态传热物理数学模型。在与试验结果进行验证的基础上,对土壤蓄热、放热和蓄热-放热耦合过程进行模拟研究。分析了热作用半径、单位管长换热量和土壤温度随热泵运行时间及运行模式的变化规律;单一条件下的蓄热、放热以及蓄热-放热耦合模式下土壤热平衡问题,探讨了流体入口流速、温度、土壤类型和热泵运行模式等因素对土壤温度场的影响。研究结果表明:热作用半径随蓄热时间的增加而增大且逐渐趋于平缓,热泵运行25和28 d后,热作用半径分别为3.3和3.4 m;流体入口温度对热作用半径及单位管长换热量影响较大但流体流速影响较小,流体入口温度和速度分别为40、60℃和0.6、1.2 m/s时,对应热作用半径分别为3.7、4.5和3.5、3.6 m。合理的间歇运行模式对换热量及埋管周围土壤温度的恢复均有改善;土壤导热系数越大土壤温度恢复时间与效果越佳,土壤导热系数为3.1 W/(m?K)时恢复后温度为9.3℃(土壤初温9.5℃)。此外,蓄热-放热耦合模式下换热量不等对土壤热平衡具有较大影响。试验验证表明,所建模型具有一定的准确性其相对最大误差为5.35%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号