首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out to verify the applicability of variable rate fertilization (VRF) based on soil testing and diagnosis of rice plant growth for high quality rice production of var. Chucheongbyeo at the farm level. The field trials were conducted at Icheon in Gyeonggi province on a 10 ha farm consisting of 45 experimental fields. For comparative study, 15 field trials were carried out adopting fertilizer management (FPM) practices currently used by farmers. FPM fields were managed by each rice grower using current cultivation methods, but in each VRF field fertilizer application was prescribed using soil test results and the amount of N fertilizer for top-dressing at panicle initiation stage was calculated using rice growth value at that stage. In VRF fields, the total amount of N fertilizer application was less (72 kg ha−1) than that in FPM fields (103 kg ha−1). However, the amount of K2O fertilizer application was more in VRF fields (60 kg ha−1) than that in FPM fields (52 kg ha−1). The amount of P2O5 fertilizer application was similar between the VRF and FPM fields. Plant height was significantly shorter and the number of tillers was significantly more at VRF fields than at the FPM fields. Coefficient of variation (CV) of each growth characteristic measured in VRF was lower than that of FPM fields at panicle initiation stage. There was no difference in culm and panicle length and panicle number between them at the grain filling stage, but CV of panicle numbers per m2 decreased in VRF compared with that of the FPM fields. Rice yield was not different between VRF and FPM fields despite higher brown rice recovery and 1,000-grain weight in VRF fields. Under VRF management, head rice yield increased due to an increase in head rice ratio accompanied by a reduction in brown rice protein content and variation of quality characteristics. These results suggest that VRF application based on soil tests and measurement of rice growth value at panicle initiation stage has the potential for quality control and production of high quality rice through increasing uniformity of growth and reducing the variability in quality among individual fields.  相似文献   

2.
春玉米叶面积系数动态特征的密度效应   总被引:17,自引:0,他引:17  
孙锐  朱平  王志敏  丛艳霞  勾玲  方立锋  赵明 《作物学报》2009,35(6):1097-1105
为进一步明确春玉米不同密度群体叶面积系数(LAI)特征参数的密度效应,以吉单209和郑单958为材料,于2005年和2006年在东北春玉米区(吉林)分别设置4.5~10.5万株 hm-2 5个密度和3.0~12.0万株 hm-2 7个密度处理试验,应用作物高产群体相对LAI动态普适模型方程y= (a+bx)/(1+cx+dx2)模拟分析不同密度对LAI动态特征参数的影响。结果表明,春玉米群体最大LAI在3.0~12.0万株hm-2范围内随密度增加呈近似直线增大趋势,而最大LAI出现的时间随密度增加而提早;将LAI数据相对化处理后,不同密度群体的LAI差异在最大LAI之后较之前表现明显,高密度群体较低密群体LAI衰减迅速。全生育期平均LAI随密度增加呈显著线性增大趋势,而平均LAI与最大LAI的比率则随密度增加呈显著线性减小趋势。密度对模拟方程各参数均有不同程度的影响,相邻密度差异不明显,间隔3.0万株 hm-2的差异显著;不同参数变化趋势不同,其中参数a接近“0”,受密度影响不大;b、c均随密度的增加而减小,d随密度的增加而增大。全生育期群体LAI变化速率呈“N”形变化趋势,且与群体LAI变化及生育期对应,高密度群体LAI增加及衰减的速率均大于低密度群体,拔节期和大喇叭口期为密度响应敏感期。由此可见,密度对春玉米全生育群体LAI动态具有调节作用,尤其群体LAI变化速率、最大LAI及其到达的时间、平均LAI及其与最大LAI的比率等重要特征参数对密度响应较为敏感,可作为对春玉米群体密度调控的参考指标。  相似文献   

3.
春玉米叶面积系数动态特征的密度效应   总被引:1,自引:0,他引:1  
孙锐  朱平  王志敏  丛艳霞  勾玲  方立锋 《作物学报》1963,35(6):1097-1105
为进一步明确春玉米不同密度群体叶面积系数(LAI)特征参数的密度效应,以吉单209和郑单958为材料,于2005年和2006年在东北春玉米区(吉林)分别设置4.5~10.5万株 hm-2 5个密度和3.0~12.0万株 hm-2 7个密度处理试验,应用作物高产群体相对LAI动态普适模型方程y= (a+bx)/(1+cx+dx2)模拟分析不同密度对LAI动态特征参数的影响。结果表明,春玉米群体最大LAI在3.0~12.0万株hm-2范围内随密度增加呈近似直线增大趋势,而最大LAI出现的时间随密度增加而提早;将LAI数据相对化处理后,不同密度群体的LAI差异在最大LAI之后较之前表现明显,高密度群体较低密群体LAI衰减迅速。全生育期平均LAI随密度增加呈显著线性增大趋势,而平均LAI与最大LAI的比率则随密度增加呈显著线性减小趋势。密度对模拟方程各参数均有不同程度的影响,相邻密度差异不明显,间隔3.0万株 hm-2的差异显著;不同参数变化趋势不同,其中参数a接近“0”,受密度影响不大;b、c均随密度的增加而减小,d随密度的增加而增大。全生育期群体LAI变化速率呈“N”形变化趋势,且与群体LAI变化及生育期对应,高密度群体LAI增加及衰减的速率均大于低密度群体,拔节期和大喇叭口期为密度响应敏感期。由此可见,密度对春玉米全生育群体LAI动态具有调节作用,尤其群体LAI变化速率、最大LAI及其到达的时间、平均LAI及其与最大LAI的比率等重要特征参数对密度响应较为敏感,可作为对春玉米群体密度调控的参考指标。  相似文献   

4.
Growth and photosynthetic performance were analyzed in alloplasmic tomato at a high- (25/17 °C; HTR) and low-temperature regime (12/6 °C; LTR) in order to establish the role of cytoplasmic variation on low-temperature tolerance of tomato (Lycopersicon esculentum Mill.). Four alloplasmic tomato lines, containing the nuclear genome of tomato and the plastome of L. hirsutum LA 1777 Humb. & Bonpl., an accession collected at high-altitude in Peru, were reciprocally crossed with 11 tomato entries with a high inbreeding level and a wide genetic variation, resulting in a set of 44 reciprocal crosses. Irrespective of growth temperature, alloplasmic families with alien chloroplasts of L. hirsutum (h) were on average characterized by a high shoot biomass, a large leaf area, and a low specific leaf area in comparison with their euplasmic counterparts. These results do not directly point to an advantageous effect of h-chloroplasts on biomass accumulation at low temperature but rather towards a small general beneficial effect on growth and/or distribution of assimilates. Significant chloroplast-related differences in photosynthetic performance, however, were not detected at both temperature regimes, indicating that h-chloroplasts can properly function in a variable nuclear background of L. esculentum. It is concluded that chloroplast substitution is not an effective method for breeding tomato plants with improved low-temperature tolerance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
缺磷对已结瘤大豆生长和固氮功能的影响   总被引:5,自引:0,他引:5  
磷对大豆生长起着非常重要的作用,然而区别磷在大豆生长和根瘤功能中的影响非常困难。为阐明根瘤形成后缺磷对大豆植株生长和固氮功能的影响,采用水培方法,营养液中供给正常磷酸盐浓度(30 µmol L-1)条件下,待根瘤形成后,将营养液中的磷水平分别转换为0 µmol L-1 (无磷)和4 µmol L-1 (缺磷),研究缺磷对大豆生长和结瘤固氮的影响。结果表明,大豆根瘤具有固氮功能后,进行营养液中不同浓度的磷酸盐处理,从处理第9天开始,缺磷对大豆生物量的影响才表现出来,而缺磷对根瘤形成和生长的影响从处理开始就比较明显。处理第9天,无磷、缺磷和正常磷处理根瘤数比处理第3天分别增加11.8%、15.4%和20.0%,单位植株豆血红蛋白含量和单位根瘤豆血红蛋白含量都随磷浓度增加而增加。该结果表明,在保证大豆形成一定数目的根瘤后,缺磷会明显影响根瘤生长和固氮能力。  相似文献   

6.
A new fertilization method with deep placement of slow‐release N fertilizers, such as coated urea and lime nitrogen (LN) (calcium cyanamide) at 20 cm depth was found to promote soy bean seed yield. In the present study, the effect of deep placement of LN was investigated on different parameters such as growth, N accumulation, N2 fixation activity and yield of soy bean by applying LN at different rates in the rotated paddy field of Niigata, Japan. In addition to the basal fertilizer, ammonium sulphate (16 kg N ha?1), deep placement of LN was conducted by applying various amounts such as 50 kg N ha?1 (A50), 100 kg N ha?1 (A100) and 200 kg N ha?1 (A200) at 20 cm depth in separate plots. A 15N‐labelled LN fertilizer was also employed for each of the above treatments to calculate N utilization from LN in separate plots. Soya bean plant growth and N2 fixation activity were periodically analysed. Both plant growth and N accumulation were found to increase with LN treatment compared with control plants. An increase in N2 fixation activity was found in the A100 plots. The total seed yield was the highest in the deep placement of LN with A100 (73 g per plant) compared with other treatments. The visual quality of harvested seeds also showed that A100 enhanced the quality of seeds compared with other treatments. Thus, it is suggested that N fertilization management with particular reference to optimum amount of fertilizers is important for maximum growth, N2 fixation and enhancement of seed yield of soy bean.  相似文献   

7.
北方旱寒区北移冬油菜生长发育特性   总被引:11,自引:3,他引:11  
采用多点试验,对冬油菜在原种植区(天水)与北移种植区(张掖等)的主要气候因子、越冬率、生育时期及经济性状进行分析比较。研究结果表明,冬油菜北移后越冬率由原种植区的93.0%~100.0%降为40.0%~95.0%;生育期由280~284 d延至287~289 d,其冬前与冬后生长期缩短,而越冬期延长1倍左右,即140 d左右,整个生长期呈"短-长-短"的特点,即营养生长有效期缩短及营养生长至生殖生长的过渡期均缩短;株高与分枝部位降低,分枝数减少,单株角果数减少,但千粒重、角粒数等相对增加。冬油菜北移后产量发生了较大变化,抗寒性弱的早熟品种天油8号由原种植区的2 518.8 kg hm-2降为1 666.5 kg hm-2,减产34.0%,而抗寒性强的晚熟品种陇油6号等由原种植区的741 kg hm-2增加到3 333 kg hm-2,增幅349.5%。由于生长在相对恶劣的气候生态条件下,越冬期漫长而极端低温低,北移冬油菜栽培品种必须具备优异的抗寒性,同时采用合理播期和密度,保证冬前营养生长期和营养生长量,以确保安全越冬。  相似文献   

8.
A field study was conducted to investigate the influence of variable rates of application of N and P fertilizers in splits at various times on the growth and the seed and oil yields of canola (Brassica napus L.) during 1995–97. Rates of fertilizer application were 0 and 0 (F0), 60 and 0 (F1), 0 and 30 (F2), 60 and 30 (F3), 90 and 60 (F4) and 120 and 90 (F5) kg N ha?1 and kg P2O5 ha?1. All the P was applied at sowing while N was applied in splits, i.e. all at sowing, half at sowing and half with first irrigation, or half at sowing and half at flowering. The responses of growth, seed yield and components of yield were consistent in both years. Increasing the rate of fertilizer application from F4 (90/60 kg N/P2O5 ha?1) to F5 (120/90 kg N/P2O5 ha?1) increased the leaf area index (LAI) relative to the control and to lower rates of fertilizer application. For both crops, application of 90/60 kg N/P2O5 ha?1 significantly enhanced total dry matter (TDM) and seed yield. Seed yield increased mainly due to a greater number of pods per plant and seeds per seed‐pod. The time of fertilizer application did not significantly affect seed yield or components of yield in either season. Oil yield generally followed seed yield, increasing with increasing rate of fertilizer application up to 90/60 kg N/P2O5 ha?1. The maximum oil contents were obtained from the control. The results show that seed and oil yields of canola were maximized at the F4 (90/60 kg N/P2O5 ha?1) rate of application under the agro‐ecological conditions of Faisalabad, Pakistan.  相似文献   

9.
To optimize wheat segregation for the various markets, it is necessary to add to genotype segregation, a prediction before harvest of the values of yield and grain protein concentration (GPC) for the different fields of the collecting area. Different tools allowing a prediction of crop production exist. Among them, the evaluation of nitrogen concentration by a chlorophyll meter (Soil–Plant Analysis Development (SPAD) readings), classically used to adapt the nitrogen fertilizer application, has been used in few works to foresee grain yield and grain protein concentration. But the relationships between N crop status and SPAD measurements varies among varieties and this genotypic effect has rarely been incorporated in models of forecasting grain quality.This paper compares several models to forecast yield, nitrogen uptake in grain (NUG) and grain protein concentration from trials carried out in 2001 and 2002 at the INRA experiment station of Grignon (West of Paris). Trials crossed nine varieties by four (2002) or five (2001) nitrogen rates. Input variables of those models are mainly chlorophyll meter measurements (SPAD) on the penultimate leaf at GS65 and on the flag leaf at GS71 Zadoks growth stages and ear number per square meter (NE).A square root model of yield based on NE × SPAD gave the best fit (RMSE = 0.6 t ha−1 for both stages) if considering three different groups of genotypes. Based on the same variable, NE × SPAD, a quadratic model for NUG without significant effect of genotypes gave the best fit (RMSE, between 21 and 30 kg ha−1 depending of the growth stage). And, for GPC, considering the same three groups of genotypes, the slope of the linear model with the ratio of predicted grain nitrogen concentration to predicted yield, is the same at both stages and very close to the standard value used to calculate protein concentration from nitrogen concentration (5.7), but the predictive quality of the model is more than 10% higher at GS71 (R2 of 0.77) than at flowering (R2 of 0.64). Finally, the sensibility of the models to delay in the stage of measurement is discussed.  相似文献   

10.
Observations were made on six grafts for each of 25 clones in three Scots pine (Pinus sylvestris) seed orchards in Turkey. The characters studied were number of female and male strobili, height below and above the longest branch, total height; diameter at base and breast height, crown diameter, and number of branches. Variation, broad-sense heritability (H 2) and correlations between characters were estimated. Variation among clones was lower than among grafts within clone for all characters. The genetic variation for number of strobili varied between 0 and 17% of total variation, while that for growth characters values varied between 2 and 13%. The number of female strobili appeared more variable among trees than the number of male strobili. H 2 was not consistently high for any character or seed orchard. The number of strobili increased with the size of the tree, but not dramatically. Correlations between measures of tree size (both on clone level and individual graft level) and the number of strobili were in the magnitude r ≈ 0.3. Diameter at breast height seems a reasonable predictor for number of strobili.  相似文献   

11.
Crop tolerance to salinity is of high importance due to the extent and the constant increase in salt-affected areas in arid and semi-arid regions. Pearl millet (Pennistum glaucum), generally considered as fairly tolerant to salinity, could be an alternative crop option for salt affected areas. To explore the genotypic variability of vegetative-stage salinity tolerance, 100 pearl millet lines from ICRISAT breeding programs were first screened in a pot culture containing Alfisol with 250 mM NaCl solution as basal application. Subsequently, 31 lines including many parents of commercial hybrids, selected from the first trial were re-tested for confirmation of the initial salinity responses. Substantial variation for salinity tolerance was found on the basis of shoot biomass ratio (shoot biomass under salinity/ non-saline control) and 22 lines with a wide range of tolerance varying from highly tolerant to sensitive entries were identified. The performance of the genotypes was largely consistent across experiments. In a separate seed germination and seedling growth study, the seed germination was found to be adversely affected (more than 70% decrease) in more than half of the genotypes with 250 mM concentration of NaCl. The root growth ratio (root growth under salinity/control) as well as shoot growth ratio was measured at 6 DAS and this did not reflect the whole plant performance at 39 DAS. In general, the whole plant salinity tolerance was associated with reduced shoot N content, increased K+ and Na+ contents. The K+/Na+ and Ca++/Na+ ratios were also positively related to the tolerance but not as closely as the Na+ content. Therefore, it is concluded that a large scope exists for improving salt tolerance in pearl millet and that shoot Na+ concentration could be considered as a potential non-destructive selection criterion for vegetative-stage screening. The usefulness of this criterion for salinity response with respect to grain and stover yield remains to be investigated.  相似文献   

12.
吴妍  张岁岐  刘小芳  山仑 《作物学报》2010,36(6):1044-1049
利用10%PEG-6000模拟–0.2 MPa的水分胁迫,研究了外源Ca2+(在1/2 Hoagland营养液中添加10 mmol L-1 CaCl2)对水分胁迫7 d后及复水2 d,玉米幼苗整株根系水力导度(Lpr)、根系生长及叶水势(ψw)的影响。结果表明,正常水分条件下,外源Ca2+处理降低了Lpr,但对叶水势无影响;水分胁迫条件下,外源Ca2+显著提高了Lpr、叶水势,减缓了水分胁迫对植物的伤害;复水1 d,两种钙水平下Lp均无明显恢复,但Ca2+处理的Lpr显著高于对照,而叶水势无显著差异且均能恢复至正常供水时的水平;复水2 d,Ca2+处理的Lpr即能恢复至正常供水时的水平,对照仅恢复为正常供水时的59.06%。进一步用HgCl2检测表明,正常水分条件下外源Ca2+对水通道蛋白(AQP)活性没有影响;而水分胁迫下,外源Ca2+提高了AQP活性,对照AQP活性下降,说明水分胁迫时外源Ca2+促进了水分跨膜途径运输;复水2 d,外源Ca2+处理AQP活性恢复至正常供水时的水平,对照AQP活性未能恢复。另外,外源Ca2+处理减缓了水分胁迫对植物生长发育的抑制作用,促进了复水时侧根发育,增加根系吸水面积,为植株迅速恢复供水提供了形态学基础,增加了复水后的补偿效应。  相似文献   

13.
The distribution and uptake of various phosphorus fractions such as soluble reactive phosphorus (SRP), enzymatically hydrolysable phosphorus (EHP) and soluble unhydrolysable phosphorus (SUP) were studied in coastal waters of the North Sea with special emphasis on those areas inhabited by dense blooms of Phaeocystis pouchetii (Hariot) Lagerheim. A comparison was made between the uptake rates of SRP and the capacity of the phytoplankton to utilize the EHP fraction as a phosphorus source. In areas not directly influenced by the discharge of the river Rhine the phytoplankton depleted the SRP down to the detection level of 0.02 μmol·dm−3, while the concentration of EHP was always higher. Inorganic phosphate (SRP) was rapidly assimilated by the microplankton (algae and bacteria) as measured by the uptake of 32P-orthophosphate. Concurrently, the alkaline phosphatase activity (APA) was high and appeared to be associated with the phytoplankton mainly. The various measurements indicated that the plankton was P-limited. The calculated rate of enzymatic hydrolysis of EHP was highly variable, but could provide the cells with orthophosphate at a rate comparable with that eeasured for the direct uptake of inorganic phosphate.The diversity and availability of phosphate sources in the area near the river Rhine varied strongly. The abundant supply of phosphorus by the river to the coastal waters can cause further growth of the phytoplankton, unrestricted by nutrient limitation. Here it seemed that EHP and APA played only an insignificant role. The dominance of Phaeocystis in these coastal waters is discussed in view of its capacities to exploit transient phosphate supply.  相似文献   

14.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

15.
Environmental effects on genetic variation for chilling resistance were studied in nine cultivars and breeding lines (referred to as cultigens hereafter) of cucumber (Cucumis sativus L.). Five experiments were carried out in controlled-environment chambers to measure the effects of growth temperature, photoperiod, duration of chilling, light level during chilling, and watering frequency on chilling resistance of seedlings at the cotyledon and first true leaf growth stages. Significant interactions were found between cultigen and all environmental factors studied except for the photoperiod and watering frequency. Cultigen rank was affected by growth temperature before chilling, chilling duration, and light level during chilling, but shifts in rank were not consistent. Genetic variation was largest when the plants were grown at 22/18 °C, most pronounced after a chilling duration of 5 to 9 hours and a light level during chilling of 270 μmol·m-2·s-1. Variation was larger at the first true leaf stage than at the cotyledon stage. Differences among cultigens in chilling damage were largest 5 days after chilling. Therefore, it seems that testing for genetic variation in chilling damage can be restricted to one set of environmental conditions. We recommend the following conditions for screening cucumber for genetic variation in chilling resistance: grow the plants at 22/18 °C, under a 9-hour photoperiod with a 3-hour night interruption, water them once daily, subject them at the first true leaf stage to a chilling treatment of 7 hours at 4°C at a light level of 270 μmol·-2·s-1, and evaluate damage 5 days after treatment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Long-term (>6 months) current measurements from five moorings in the Iceland Basin have been analysed for the mean currents and the structure of the variable current components. The time-averaged flow at all five moorings had a strong baroclinic character. The mean circulation in the upper layers with relatively warm Sub-Polar Mode Water appears to have a general north-eastward direction with maximum mean velocities of 6 to 7 cm·s−1. In the bottom layer south of Iceland, where the cold Iceland-Scotland Overflow Water flows westwards along the topography in a Deep Northern Boundary Current, mean velocities of the order of 10 to 20 cm·s−1 have been observed. Over the deep slope of the Hatton Bank, water enters the Iceland Basin in a branch of the Deep Northern Boundary Current which has a cyclonic rotation sense in the Iceland Basin. The variable part of the current has been analysed by means of principal-component analysis. The current variations in the central Iceland Basin appear to have a mainly barotropic character while variations in the baroclinic flow of Iceland-Scotland Overflow Water contributed 10% or less to the total energy of the variable deep flow. Over the slope of the Hatton Bank the variable currents had a mainly baroclinic character with shear in both current speed and direction. Comparison of the geostrophic velocity with the mean Eulerian velocity has revealed that the σθ=27.725 kg·m−3 surface can be used adequately as level of non-motion for the geostrophic modelling of the flow along the Iceland and Hatton slopes. The mean westward geostrophic transport of ISOW south of Iceland relative to this reference surface amounted to 3.5 Sv, in agreement with existing independent estimates.  相似文献   

17.
Groups of Macoma balthica were kept during 4-week periods in an experimental set up at a constant temperature and food concentration. Food concentrations (expressed in particulate organic carbon) for the different groups ranged from 0 to 16 mg C·I−1. The experiment was repeated 6 times, viz. in different months, and the temperatures were changed accordingly to correspond with levels found in the field. The rates of food intake, water clearance and growth were followed throughout the experiment. The flagellate Isochrysis galbana served as food.With increasing food concentration all 3 rates (food intake, water clearance and growth) increased up to maximum to decrease again at high food concentrations. Such bell-shaped relationships were observed in all seasons. The dependence of growth on food concentration was similar in all seasons. Zero growth or weight losses were observed at food concentrations below 1.3 mg C·I−1, and maximum growth rates were reached at food concentrations between 5 and 7 mg C·I−1. The daily maintenance ration amounted to about 1.2% of the body weight.Seasonal differences were observed in the relationships of the rates of both water clearance and food intake with food concentration. During the winter and spring the optimum curves for these relationships reached their maximum at food concentrations of 8 to 10 mg C·I−1. During summer and early autumn the optimum curves were shifted to lower food concentrations, around 2 to 4 mg C·I−1, probably as an adaptation to low food concentrations observed in the field during these periods.  相似文献   

18.
用GGE双标图分析种植密度对高油花生生长和产量的影响   总被引:19,自引:1,他引:18  
花生群体密度直接影响花生产量及产量构成因素,系统研究不同种植密度下花生产量和性状差异,可为花生高产栽培提供理论依据。以高产高油花生冀花4号为材料,设置5个密度处理,分别为每公顷7.5、10.5、15.0、19.5和24.0万穴,探索种植密度对高产花生农艺性状、经济性状、产量形成因素和经济产量的影响,并用GGE双标图法对结果进行系统分析。结果表明,不同指标对种植密度的敏感程度表现不一,单株开花数、单株结果数、单株产量和荚果产量表现最敏感,而主茎高、侧枝长、出米率、籽仁含油量及蛋白质含量表现相对较稳定。随花生密度增大,单株开花数、单株结果数、百果重和单株产量显著降低,荚果产量则逐渐提高,但提高幅度逐渐降低。冀花4号种植密度每公顷10.5~15.0万穴时可获最大经济效益。GGE双标图为研究不同密度下花生生长状况和产量反应提供了更为直观有效的分析手段。  相似文献   

19.
为探讨共生期和密度对棉田套播油菜生长和产量的影响, 设置3个共生期: 棉油共生10 d (T10)、20 d (T20)和30 d (T30)及4个种植密度 30 (D1)、45 (D2)、60 (D3)和75万株 hm–2 (D4)裂区试验。结果表明: (1)同一密度下, 延长共生期, 越冬期、蕾薹期和花期绿叶数、叶面积指数均增加, 促进了根系及地上部干物质累积, 根冠比、株高、根茎粗增加, 茎秆酸不溶木质素和总木质素含量下降, 可溶性糖、半纤维素和纤维素含量升高。油菜根倒角度虽增加, 但茎倒角度、总倒伏角度减小, 油菜单株和群体产量均增加, 以T30D2群体产量最高。(2)密度对油菜生长和产量的影响因共生期不同存在差异。相同共生期处理下, 随密度增加, 单株绿叶数减少, 根系干物质、地上部干物质累积量降低, 单株产量降低。T30条件下, 叶面积指数(LAI)随密度增加呈先增后减的趋势, 在D3密度时, LAI最大; 在T20、T10条件下, LAI则随密度增加而增加。群体产量与LAI变化趋势一致。在T30、T20处理下, 茎倒角度随密度增加呈先降后增趋势, 在T10处理下, 则逐渐增加, 与茎秆纤维素含量变化趋势相反, 两试点均为T30D3田间总倒伏角度最小。(3)武穴及天门试点棉田套播油菜产量所要求的共生期及密度最优配置分别为29.8 d、48.8万株 hm–2, 29.7 d、57.6万株 hm–2; 在此配置下, 两试点油菜产量理论值分别为3243.0、3082.8 kg hm–2, 与当地棉田套播油菜常用栽培模式(共生期15 d, 密度15.0~22.5万株 hm–2, 产量约2625 kg hm–2)相比, 可实现增产23.5%、17.4%。  相似文献   

20.
There is much data on the impact of weather variables on the growth of sugar beet from studies conducted under controlled conditions or single field experiments, but these data are of only limited validity for other sites or larger areas. The aim of the present study was to quantify the influence of weather conditions on the growth of sugar beet for the further development of simulation models, based on data representative of sugar beet cultivation in Germany. For this purpose, 27 field trials were conducted in 2000–2001 in commercial fields with variable climatic and soil conditions. From the end of May until the end of the season, beets were harvested manually every 4 weeks, the dry matter yield of leaves and taproot was determined and their growth rates were calculated. Temperature, solar radiation, rainfall and humidity were recorded daily for each site and the potential evapotranspiration and climatic water balance were estimated. The soil water content to a depth of 0.9 m was determined at every harvest date.Several functions were developed to describe the growth of sugar beet as affected by the given meteorological variables. From sowing to the end of June, the dry matter accumulation of both leaves and taproot was strongly enhanced by increasing temperature and during this period leaf dry matter increased linearly with thermal time. After reaching 700 °C d, the taproot dry matter accumulated exponentially with thermal time. The optimum mean daily air temperature for taproot growth was approximately 18 °C. Higher temperature occurring in July and August decreased final taproot yield, but by the end of the season, growth was independent of temperature. High solar radiation advanced growth during the first 65 days after sowing and again in October.Neither the water input by rainfall and irrigation nor the climatic water balance adequately described the growth of the leaves or taproot, but it was shown that the increase in taproot dry matter during July and August depended on the amount of available water in the soil. The maximum sugar yield that can theoretically be achieved in Germany and comparable agroclimatic regions was calculated as 24 t ha−1. The present data reliable for a large agroclimatic region in Europe are of significant value as input for simulation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号