首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fungus Fusarium verticillioides infects maize and produces fumonisins. The purpose of this study was to determine the ability of F. verticillioides to produce fumonisins in synthetic and natural soils and their biological availability to maize roots. Maize seeds were inoculated with a pathogenic strain of F. verticillioides (MRC826) and planted in synthetic and three different natural soils. There were statistically significant reductions in stalk weight and root mass and increased leaf lesions in the MRC826-treated seedlings in all soil types. Fumonisins were detected in all of the soils of seedlings grown from MRC826-inoculated seeds. The fumonisin produced in the soils was biologically available to seedlings as demonstrated by the statistically significant elevation of free sphingoid bases and sphingoid base 1-phosphates in their roots. These results indicate that F. verticillioides produced fumonisins in the autoclaved synthetic and natural soils and that the fumonisin produced is biologically available on the basis of evidence of inhibition of ceramide synthase.  相似文献   

2.
Fusarium verticillioides is best known for its worldwide occurrence on maize resulting in highly variable disease symptoms, ranging from asymptomatic to severe rotting and wilting and fumonisin production. The aim of this study was to investigate the influence of hybrid genotypes in the early stages of F. verticillioides infection, and the role of fumonisins as effectors in the outcome of this complex interaction. Disease symptoms, growth parameters, root morphology, and fungal colonization were evaluated at 7, 14, and 21 days after planting in seedlings from maize seeds of resistant (RH) and susceptible (SH) hybrids inoculated with F. verticillioides or watered with solutions of fumonisins. F. verticillioides induced growth enhancement or retardation depending on the plant genetic background and the fungal colonization rate, while fumonisins caused severe reduction in biomass and fitness. Seedlings watered with high fumonisin concentrations displayed lesions similar to those seen in F. verticillioides maize seedling disease, and also elicited inhibitory effects on root growth and morphology and on functional properties. In summary, these data strongly suggest a dual role for fumonisins in the F. verticillioides-maize interaction, acting as pathogenic factors at high concentrations, or triggering the plant detoxification mechanisms at low levels.  相似文献   

3.
Near-infrared (NIR) spectroscopy is a practical spectroscopic procedure for the detection of organic compounds in matter. It is particularly useful because of its nondestructiveness, accuracy, rapid response, and easy operation. This work assesses the applicability of NIR for the rapid identification of micotoxigenic fungi and their toxic metabolites produced in naturally and artificially contaminated products. Two hundred and eighty maize samples were collected both from naturally contaminated maize crops grown in 16 areas in north-central Italy and from ears artificially inoculated with Fusarium verticillioides. All samples were analyzed for fungi infection, ergosterol, and fumonisin B1 content. The results obtained indicated that NIR could accurately predict the incidence of kernels infected by fungi, and by F. verticillioides in particular, as well as the quantity of ergosterol and fumonisin B1 in the meal. The statistics of the calibration and of the cross-validation for mold infection and for ergosterol and fumonisin B1 contents were significant. The best predictive ability for the percentage of global fungal infection and F. verticillioides was obtained using a calibration model utilizing maize kernels (r2 = 0.75 and SECV = 7.43) and maize meals (r2 = 0.79 and SECV = 10.95), respectively. This predictive performance was confirmed by the scatter plot of measured F. verticillioides infection versus NIR-predicted values in maize kernel samples (r2 = 0.80). The NIR methodology can be applied for monitoring mold contamination in postharvest maize, in particular F. verticilliodes and fumonisin presence, to distinguish contaminated lots from clean ones, and to avoid cross-contamination with other material during storage and may become a powerful tool for monitoring the safety of the food supply.  相似文献   

4.
Six strains of Fusarium verticillioides, two of F. oxysporum, one strain of F. proliferatum, and a strain of an unidentified species were cultured on maize patties and rice and evaluated for their ability to simultaneously produce fumonisin B (FB) and C (FC) series analogues. Fumonisins were quantified by LC-MS-MS using positive ion electrospray ionization. FC1 provided characteristic fragment ions at m/z 690, 672, 654, 532, 514, and 338 corresponding to sequential loss of H2O and tricarboxylic acid moieties from the alkyl backbone, while FC3 and FC4 provided equivalent product ions 16 and 32 amu lower than the corresponding FC1 fragments, respectively. All isolates cultured on maize produced FC4. All isolates except for that of F. proliferatum also produced FC1, and three of the six strains of F. verticillioides produced FC3. All isolates except those of F. oxysporum produced detectable amounts of FB1, FB2, and FB3. Isolates that produced fumonisin B analogues produced at least 10 fold more of the B series analogues than they did of the C series analogues. The results confirm that at least some strains of F. oxysporum produce FC, but not FB, fumonisin analogues and also suggest that the genetics and physiological regulation of fumonisin production may be more complicated than previously envisaged since some strains of F. verticillioides and F. proliferatum as well as the strain of the unidentified species can simultaneously produce both FB and FC analogues.  相似文献   

5.
Fumonisins are mycotoxins produced by Fusarium verticillioides (Sacc. Nirenberg) in maize (Zea mays L.), a staple crop in Mexico. In this study, we report the isolation and identification of 67 Fusarium strains isolated from maize kernels collected in Northwest and Central Mexico. The strains were characterized regarding fumonisin B(1) production and the presence of the FUM1 gene. F. verticillioides was the predominant species isolated in both geographic regions, but the isolates from Northwest Mexico produced higher levels of fumonisin. A polymerase chain reaction (PCR)-based method, to detect a region of the FUM1 gene involved in fumonisin biosynthesis, was developed and employed to detect mycotoxigenic fungi in pure culture and in contaminated maize. The presence of the FUM1 gene was associated with fumonisin production in most isolates, except seven that did not synthesize fumonisin but contained the gene in their genome. The PCR method allowed the direct detection of fungal contamination in ground corn and could be employed to screen for the presence of potential mycotoxigenic fusaria.  相似文献   

6.
Fumonisins are polyketide mycotoxins produced by Fusarium verticillioides (synonym F. moniliforme), a major pathogen of maize (Zea mays) worldwide. Most field strains produce high levels of fumonisin B(1) (FB(1)) and low levels of the less-oxygenated homologues FB(2) and FB(3), but fumonisin B(1)-nonproducing field strains have been obtained by natural variation. To test the role of various fumonisins in pathogenesis on maize under field conditions, one strain producing FB(1), FB(2), and FB(3), one strain producing only FB(2), one strain producing only FB(3), and one fumonisin-nonproducing strain were applied to ears via the silk channel and on seeds at planting. Disease severity on the harvested ears was evaluated by visible symptoms and by weight percent symptomatic kernels. Fumonisin levels in kernels were determined by high-performance liquid chromatography. The presence of the applied FB(1)-nonproducing strains in kernels was determined by analysis of recovered strains for fumonisin production and other traits. All three FB(1)-nonproducing strains were able to infect ears following either silk-channel application or seed application at planting and were as effective as the FB(1)-producing strain in causing ear rot following silk-channel application. These results indicate that production of FB(1), FB(2), or FB(3) is not required for F. verticillioides to cause maize ear infection and ear rot.  相似文献   

7.
Fumonisin B2 production by Aspergillus niger   总被引:1,自引:0,他引:1  
The carcinogenic mycotoxin fumonisin B2 was detected for the first time in the industrially important Aspergillus niger. Fumonisin B2, known from Fusarium verticillioides and other Fusaria, was detected in cultures of three full genome sequenced strains of A. niger, in the ex type culture and in a culture of F. verticillioides by electrospray LC-MS analysis of methanolic extracts from agar plugs of cultures grown on several substrates. Whereas F. verticillioides produced fumonisins B1, B2, and B3 on agar media based on plant extracts, such as barley malt, oat, rice, potatoes, and carrots, A. niger produced fumonisin B2 best on agar media with a low water activity, including Czapek yeast autolysate agar with 5% NaCl. Of the media tested, only rice corn steep agar supported fumonisin production by both F. verticillioides and A. niger. However, A. niger had a different regulation of fumonisin production and a different quantitative profile of fumonisins, producing only B2 as compared to F. verticillioides. Fumonisin production by A. niger, which is a widely occurring species and an extremely important industrial organism, will have very important implications for biotechnology and especially food safety. A. niger is used for the production of citric acid and as producer of extracellular enzymes, and also as a transformation host for the expression of heterologous proteins. Certain strains of A. niger produce both ochratoxin A and fumonisins, so some foods and feeds may potentially contain two types of carcinogenic mycotoxins from this species.  相似文献   

8.
The present study aimed to analyze the mycoflora and potential mycotoxin contamination of soil and corn samples collected at different plant maturity stages in Cap?o Bonito and Ribeir?o Preto, two regions of the State of S?o Paulo, Brazil. In addition, the data obtained were correlated with the occurrence of wind-dispersed fungi and the predominant climatic conditions of the two regions studied. Corn mycoflora profiles showed that Fusarium verticillioides prevailed in 35% of the samples from Cap?o Bonito and in 49% of the samples from Ribeir?o Preto. Examination of wind-dispersed fungi also revealed a high incidence of F. verticillioides. Soil mycoflora analyses showed that Penicilliumwas the most prevalent genus, although F. verticillioides was present in 55.5% of Cap?o Bonito's samples and in 26.7% of Ribeir?o Preto's samples. With respect to water activity, the corn kernels most contaminated with F. verticillioides had water activity levels of 0.70-0.80. HPLC analysis of fumonisins revealed that 88.5% of Cap?o Bonito's kernels were contaminated with fumonisin B(1) (FB(1)) (0.09-10.87 microg/g) and 53.8% with fumonisin B(2) (FB(2)) (0.05-0.52 microg/g); Ribeir?o Preto's kernels presented contamination levels of 93.5% for FB(1) (0.11-17.69 microg/g) and 61.3% for FB(2) (0.05-5.24 microg/g). No aflatoxins were detected by thin-layer chromatography in corn grains of either region. The concomitant occurrence of F. verticillioides and fumonisins in most of the field corn assayed demonstrates the importance of an effective control of cultivation throughout the plant maturity stages.  相似文献   

9.
Essential oils extracted by hydrodistillation from local plants in Benin, western Africa, and oil from seeds of the neem tree (Azadirachta indica) were evaluated in vitro and in vivo for their efficacy against Fusarium verticillioides infection and fumonisin contamination. Fumonisin in corn was quantified using a fluorometer and the Vicam method. Oils from Cymbopogon citratus, Ocimum basilicum, and Ocimum gratissimum were the most effective in vitro, completely inhibiting the growth of F. verticillioides at lower concentrations over 21 days of incubation. These oils reduced the incidence of F. verticillioides in corn and totally inhibited fungal growth at concentrations of 8, 6.4, and 4.8 microL/g, respectively, over 21 days. At the concentration of 4.8 microL/g, these oils did not affect significantly fumonisin production. However, a marked reduction of fumonisin level was observed in corn stored in closed conditions. The oils adversely affected kernel germination at 4.8 microL/g and therefore cannot be recommended for controlling F. verticillioides on stored corn used as seeds, when used at this concentration. The oil of neem seeds showed no inhibitory effect but rather accelerated the growth of F. verticillioides.  相似文献   

10.
In Brazil, the southern region has the highest incidence of esophageal cancer and also the highest production and consumption of corn (Zea mays) products. Corn samples intended for human consumption from the western, northern, and southern regions of the state of Santa Catarina, southern Brazil, had mean total fumonisin B (B(1), B(2), and B(3)) levels of 3.2, 3.4, and 1.7 mg/kg, respectively. Fusarium verticillioides, the predominant fungus in the corn samples, had mean incidences (percent of kernels infected) of 14, 11, and 18% for the three regions, respectively. Additional corn samples intended for animal feed from the southern region had a mean total fumonisin level of 1.5 mg/kg and a mean F. verticillioides incidence of 10%. The fumonisin levels in corn from the state of Santa Catarina, Brazil, were similar to the high levels determined in other high esophageal cancer incidence regions of the world.  相似文献   

11.
This study was designed to determine the efficacy of extrusion in reducing fumonisin B1 in corn flaking grits in the presence and absence of glucose. In addition, degradation products of fumonisin B1 during extrusion were identified and quantitated with a mass balance approach. Uncontaminated clean corn grits, grits spiked with 30 microg/g fumonisin B1, and grits fermented with Fusarium verticillioides M-2552 (40-50 microg/g fumonisin B1) were extruded in the presence and absence of glucose (10%, w/w) using a single-screw extruder. Extrusion decreased fumonisin B1 by 21-37%, whereas the same process with added glucose further decreased fumonisin B1 by 77-87%. LC-fluorescence and LC-MS showed that most fumonisin in the extruded samples without added glucose was the fumonisin B1 form, whereas the main degradation product in grits extruded with glucose was N-(deoxy- d-fructos-1-yl)fumonisin B1. The formation of hydrolyzed fumonisin B1 was not significant during extrusion. Results suggest that extrusion in the presence of glucose may reduce fumonisin B1 in corn grits significantly.  相似文献   

12.
Cowpea seed samples from South Africa and Benin were analyzed for seed mycoflora. Fusariumspecies detected were F. equiseti, F. chlamydosporum, F. graminearum, F. proliferatum, F. sambucinum, F. semitectum, and F. subglutinans. Cowpea seed from South Africa and Benin and F. proliferatum isolates from Benin, inoculated onto maize patty medium, were analyzed for fumonisin production. Samples were extracted with methanol/water and cleaned up on strong anion exchange solid phase extraction cartridges. HPLC with precolumn derivatization using o-phthaldialdehyde was used for the detection and quantification of fumonisins. Cowpea cultivars from South Africa showed the presence of fumonisin B(1) at concentrations ranging between 0.12 and 0.61 microg/g, whereas those from Benin showed no fumonisins. This is believed to be the first report of the natural occurrence of FB(1) on cowpea seed. Fumonisin B(1), B(2), and B(3) were produced by all F. proliferatum isolates. Total fumonisin concentrations were between 0.8 and 25.30 microg/g, and the highest level of FB(1) detected was 16.86 microg/g.  相似文献   

13.
Fumonisins are polyketide-derived mycotoxins produced by the maize pathogen Fusarium verticillioides. Previous analyses identified naturally occurring variants of the fungus that are deficient in fumonisin C-10 hydroxylation or that do not produce any fumonisins. In the current study, gene deletion and genetic complementation analyses localized the C-10 hydroxylation deficiency to a cytochrome P450 monooxygenase gene in the fumonisin biosynthetic gene (FUM) cluster. Sequence analysis indicated that the hydroxylation deficiency resulted from a single nucleotide insertion that caused a frame shift in the coding region of the gene. Genetic complementation localized the fumonisin-nonproduction phenotype to the polyketide synthase gene in the FUM cluster, and sequence analysis indicated that the nonproduction phenotype resulted from a nucleotide substitution, which introduced a premature stop codon in the coding region. These results provide the first direct evidence that altered fumonisin production phenotypes of naturally occurring F. verticillioides variants can result from single point mutations in the FUM cluster.  相似文献   

14.
For better understanding of mechanisms responsible for genotypic differences in uptake and translocation of cadmium (Cd) in different plant species, two maize (Zea mays L.) inbred lines (B37 and F2) and a bean (Phaseolus vulgaris L.) cultivar (Saxa) were grown in a complete nutrient solution with additional 0.5 μM Cd and 250 μM buthionine sulfoximine (BSO), an inhibitor of PC synthesis, alone or in combination. The maize line B37 had a much higher Cd content in shoots (116.2 mg Cd kg?1 dry wt.) than F2 (32.7 mg Cd kg?1 dry wt.) and bean (1.83 in leaves, and 2.85 mg Cd kg?1 dry wt. in stems), whereas in roots the Cd content was much higher in bean (602.6 mg Cd kg?1 dry wt.) than in maize (427.1 mg Cd kg?1 dry wt. in B37, and 428.2 mg Cd kg?1 dry wt. in F2). Application of BSO markedly decreased Cd contents in roots of bean and maize lines, and also Cd contents in shoots and stem basis of both maize lines, while Cd contents in leaves, stems and stem basis of bean were not reduced by BSO. In root extracts (Tris-HCl buffer, pH 8.0) the proportion of Cd in the soluble fraction was much lower in bean (29.6%) than in the maize lines B37 (58.6%) and F2 (60.1%). Compared with the whole root tissue, Cd contents in the stele of the roots were much lower, especially in bean, and decreased by BSO in both maize lines, but not in bean. Gel-chromatography of root extracts strongly suggested that in the soluble fraction about 80% of the Cd was present as Cd-phytochelatin (PC) complexes in B37, whereas in F2 this Cd fraction accounted for about 50%, and in bean only for a few percent in the soluble fraction, Our results suggest that Cd-PC complexes constitute a mobile form in plants. The lower proportion of Cd in the soluble fraction as well as lower PC production in roots of bean compared to maize lines may be the main reasons for the very low Cd translocation from roots to shoots in bean plants.  相似文献   

15.
This study was designed to investigate the role of hybrids in maize Fusarium section Liseola interaction and fumonisin production, with particular emphasis on the occurrence and accumulation of hidden fumonisins in maize (masking phenomenon). In this 2 year study, naturally infected field crops were chosen with 10 maize hybrids, six of them grown in both years. Maize samples collected in 2010 showed a higher incidence of fungal infection as well as higher fumonisin contamination than those obtained in 2009 but a very similar incidence of F. section Liseola. Fumonisin masking was confirmed in raw maize, with a lower amount of hidden forms as compared to free fumonisins detected in the year with higher contamination. The chemical composition of the different hybrids was determined and correlated with the contamination data: the results obtained highlight the main role of fatty acids, with a higher fumonisin contamination in hybrids showing a higher linoleic acid content and a higher masking action in hybrids with higher oleic to linoleic ratio. These results represent a good basis to explain maize hybrid susceptibility to F. section Liseola infection, fumonisin contamination, and masking not related to a specific commercial hybrid but extendable to all hybrids.  相似文献   

16.
Fumonisins are carcinogenic mycotoxins produced by the maize ear rot pathogen Gibberella moniliformis (anamorph Fusarium verticillioides). These toxins consist of a linear polyketide-derived backbone substituted at various positions with an amine, one to four hydroxyl, two methyl, and two tricarballylic ester functions. In this study, we generated and characterized deletion mutants of G. moniliformis for five genes, FUM7, FUM10, FUM11, FUM14, and FUM16 in the fumonisin biosynthetic gene cluster. Functional analysis of mutants in four genes, predicted to encode unrelated proteins, affected formation of the tricarballylic esters. FUM7 deletion mutants produced a previously undescribed homologue of fumonisin B1 with an alkene function in both tricarballylic esters, FUM10 and FUM14 deletion mutants produced homologues of fumonisin B3 and fumonisin B4 that lack tricarballylic ester functions, and FUM11 deletion mutants produced fumonisins that lack one of the tricarballylic ester functions. These phenotypes indicated specific roles for FUM7, FUM10, FUM11, and FUM14 in fumonisin biosynthesis that are consistent with the predicted proteins encoded by each gene. Deletion of FUM16 had no apparent effect on fumonisin production. The phenotypes of the deletion mutants provide further insight into the order of steps in fumonisin biosynthesis.  相似文献   

17.
Fumonisins are mycotoxins produced by Fusarium verticillioides, a widespread pathogen of corn. Although the gene cluster for the biosynthesis of fumonisins has been cloned, the majority of the genes have not been biochemically characterized. Here, we report the biochemical characterization of FUM13, a gene that encodes a short-chain dehydrogenase/reductase required for fumonisin biosynthesis. FUM13 has been expressed in E. coli, and the produced protein, Fum13p, has been purified. When the protein was incubated with 3-keto fumonisin B(3) (FB(3)) in the presence of NADPH, FB(3) was produced. The data provide direct evidence for the role of FUM13 in the 3-ketoreduction of fumonisins. In a functional complementation experiment, FUM13 gene was introduced into tsc10 mutants of the yeast Saccharomyces cerevisiae, which carry a mutation in the 3-ketosphinganine reductase gene in the sphingolipid pathway. The tsc10 mutants were not able to grow on the selection medium, but the same mutants transformed with FUM13 were able to grow. The results further confirm the function of FUM13 in 3-ketoreduction in vivo.  相似文献   

18.
Fumonisins are mycotoxins produced by Fusarium verticillioides (=F. moniliforme) and other Fusarium species. They are found in corn and corn-based foods. Cooking decreases fumonisin concentrations in food products under some conditions; however, little is known about how cooking effects biological activity. Baked cornbread, pan-fried corncakes, and deep-fried fritters were made from cornmeal that was spiked with 5% w/w F. verticillioides culture material (CM). The cooked materials and the uncooked CM-spiked cornmeal were fed to male rats (n = 5/group) for 2 weeks at high (20% w/w spiked cornmeal equivalents) or low (2% w/w spiked cornmeal equivalents) doses. A control group was fed a diet containing 20% w/w unspiked cornmeal. Toxic response to the uncooked CM-spiked cornmeal and the cooked products included decreased body weight gain (high-dose only), decreased kidney weight, and microscopic kidney and liver lesions of the type caused by fumonisins. Fumonisin concentration, as determined by HPLC analysis, in the 20% w/w pan-fried corncake diet [92.2 ppm of fumonisin B(1) (FB(1))] was slightly, but not statistically significantly, lower than those of the 20% w/w baked cornbread (132.2 ppm of FB(1)), deep-fried fritter (120.2 ppm of FB(1)) and CM-spiked cornmeal (130.5 of ppm FB(1)) diets. Therefore, baking and frying had no significant effect on the biological activity or concentration of fumonisins in these corn-based products, and the results provided no evidence for the formation of novel toxins or "hidden" fumonisins during cooking.  相似文献   

19.
A total of 52 corn samples collected in 2000 from four main corn production provinces of Iran (Fars, Kermanshah, Khuzestan, and Mazandaran) were analyzed for contamination with Fusarium verticillioides and fumonisins (FB(1), FB(2), FB(3), and 3-epi-FB(3)). The mean incidence of F. verticillioides (percent of kernels infected) for these four areas was 26.7, 21.4, 24.9, and 59.0%, respectively. The incidence in Mazandaran was significantly (p < 0.05) above that of the other areas. All samples from Mazandaran were contaminated with fumonisins with a mean level of total fumonisins of 10674 microg/kg. In contrast, the incidence of fumonisin contamination above 10 microg/kg was 53 (8/15), 42 (5/12), and 57% (8/14) in the samples from Fars, Kermanshah, and Khuzestan, respectively, and the corresponding mean total fumonisin levels were 215, 71, and 174 microg/kg, respectively. No statistical differences (p > 0.05) were observed in the fumonisin levels of the corn samples from these three provinces, which were significantly (p < 0.05) lower than the fumonisin contamination in samples from Mazandaran.  相似文献   

20.
It is known that sap beetles (Coleoptera: Nitidulidae) can vector the fungus Fusarium verticillioides (Sacc.) Nirenb. (= F. moniliforme Sheldon), which causes an important ear-rot disease in corn and also produces fumonisin mycotoxins. The volatiles produced by this fungus were studied to establish whether they could attract sap beetles. Such an association would suggest more than just an incidental role in transmission of the fungus by the beetles. F. verticillioides consistently produces a blend of five alcohols (ethanol, 1-propanol, 2-methyl-1-propanol, 3-methyl-1-butanol, and 2-methyl-1-butanol), acetaldehyde, and ethyl acetate. Ethanol is the most abundant alcohol. The fungus also produces four phenolic compounds (the most abundant of which is ethylguaiacol), a series of presently unidentified sesquiterpene hydrocarbons, and an unidentified compound that is probably a 10-carbon ketone. Solid-phase microextraction was the key technique used in volatile analysis. The volatile profiles change over time and differ somewhat among fungal strains: The alcohols, aldehyde, and ester always appeared first and were present for each strain. Production of the phenolics lagged by several days, and in some strains these compounds were barely detectable. Volatile production eventually diminished in all strains. All strains were attractive to the sap beetle, Carpophilus humeralis (F.), in wind-tunnel bioassays. Attraction was correlated primarily to the presence of the alcohols, acetaldehyde, and ethyl acetate, rather than to the phenolics. To verify that the identified culture volatiles were responsible for beetle attraction, cultures were quantitatively simulated with synthetic chemicals, and the cultures and corresponding synthetic mixtures were then compared by bioassay. The comparisons were favorable. Volatile emission patterns from cultures were fairly robust with respect to inoculum level or incubation temperature, but some manipulation was possible. For example, after freeze-drying and rehydrating (a rapid simulation of winter/spring conditions), F. verticillioides produced ethyl acetate and other esters at unusually high levels. The fungus produced attractive volatiles following ear inoculation of milk-stage field corn as well as on sterile, mature kernels in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号