首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Dietary arginine requirement of fingerling Catla catla (3.55 ± 0.05 cm; 0.61 ± 0.02 g) was determined by feeding casein–gelatin‐based isonitrogenous (33% crude protein) and isocaloric (3.40 kcal/g digestible energy) amino acid test diets containing six graded levels of l ‐arginine (1, 1.25, 1.5, 1.75, 2, and 2.25% dry diet) for 12 wk. Maximum absolute weight gain (6.93 g/fish), protein efficiency ratio (2.13), protein deposition (0.36), arginine retention efficiency (78%), and best feed conversion ratio (1.42) were recorded in fish fed 1.75% arginine of the dry diet. Maximum carcass protein (15.57%) and RNA/DNA ratio (4.79) were also recorded for the group fed 1.75% arginine of the dry diet. Quadratic regression analysis at 95% maximum or minimum response of above growth parameters yielded optimum arginine requirement of fingerling C. catla at 1.67% of the dry diet. On the basis of the above analysis of the growth parameters, it is recommended that the inclusion of dietary arginine at 1.67% of the dry diet is optimum for formulating arginine‐balanced, cost‐effective quality feeds for the mass culture of fingerling C. catla .  相似文献   

2.
A 12‐week feeding trial was conducted to determine the dietary threonine requirement of fingerling Indian major carp, Catla catla (3.35 ± 0.11 cm; 0.59 ± 0.06 g). Six casein‐gelatin based (33% crude protein; 3.23 kcal g?1 digestible energy) amino acid test diets with graded levels of analysed threonine (0.74%, 0.96%, 1.21%, 1.48%, 1.72% and 1.93% dry diet) were fed to satiation to triplicate groups of fish. Absolute weight gain (g per fish), feed conversion ratio, protein retention efficiency, threonine deposition, RNA/DNA ratio and carcass protein significantly improved with the increase in dietary threonine and peaked at 1.48% of the dry diet. Haematological indices were also found to be best in fish fed at 1.48% threonine diet. Quadratic regression analysis of absolute weight gain, feed conversion ratio, protein retention efficiency, threonine deposition, RNA/DNA ratio, carcass protein, haemoglobin (g dL?1), haematocrit (%) and RBCs (106 × mm?3) at 95% of maximum and minimum response exhibited the threonine requirement of fingerling C. catla between 1.35% and 1.48% dry diet, corresponding to 4.09–4.48% dietary protein. Present finding would be useful in formulating threonine‐balanced feeds for the intensive culture of C. catla.  相似文献   

3.
To investigate the histidine requirement of fingerling Catla catla (3.65 ± 0.15 cm; 0.65 ± 0.36 g), six casein‐gelatin based diets (33% CP; 13.58 kJ g?1 DE) containing graded levels of L‐histidine (0.25%, 0.39%, 0.53%, 0.67%, 0.83%, 0.96% of the dry diet) were fed near to satiation thrice a day for 12 weeks. Maximum absolute weight gain (AWG; 8.63 g fish?1), protein gain (PG; 1.45 g fish?1), histidine gain (HG, 48.19 mg fish?1), RNA/DNA ratio (4.15), best feed conversion ratio (FCR; 1.31), highest haemoglobin (Hb, 9.61 g dL?1), RBCs (2.84 × 106 mm?3) and haematocrit (Ht, 30.12%) were recorded in fish fed diet containing 0.67% histidine. However, broken‐line regression analysis of AWG, PG, HG, RNA/DNA ratio, FCR, Hb, Ht and RBCs against dietary histidine reflected the histidine requirement at 0.65%, 0.64%, 0.63%, 0.68%, 0.63%, 0.66%, 0.68% and 0.65% dry diet respectively. Carcass protein was found to improve significantly (P < 0.05) from 13.36% to 16.42% with the increase in dietary histidine from 0.25% to 0.67%. Based on regression analysis of AWG, PG, HG, RNA/DNA ratio, FCR, Hb, Ht and RBCs, it is recommended that the diet for fingerling catla should contain histidine in the range of 0.63–0.68% dry diet, equivalent to 1.91–2.06% of the dietary protein for optimum growth, feed utilization, blood profile and carcass composition.  相似文献   

4.
Seven casein gelatin-based diets containing 450 g/kg CP and 18.39 kJ/g GE with different levels of pyridoxine (0, 2, 4, 6, 8, 10, and 12 mg/kg diet) were fed to fingerling Channa punctatus (4.66 ± 0.46 g) for 12 weeks to determine pyridoxine requirement. Highest absolute weight gain (AWG; 25.81 g/fish, P < 0.05), protein retention (PRE; 23.69%, P < 0.05), energy retention efficiencies (ERE; 69.63%, P < 0.05), and minimum feed conversion ratio (FCR; 1.48) were noted at 8 mg pyridoxine/kg diet. However, liver pyridoxine content achieved the positive correlation as the dietary pyridoxine increased up to 10mg/kg. On the basis of broken-line analysis of AWG, PRE, FCR, and liver pyridoxine data, pyridoxine requirement is recommended between 7.6 and 10.4 mg/kg of dry diet.  相似文献   

5.
A 12-week experiment was conducted to quantify dietary lysine requirement of fingerling Catla catla (3.65 ± 0.05 cm; 0.58 ± 0.02 g) by feeding casein–gelatine-based diets (33.0 % crude protein; 14.3 kJ/g digestible energy) with six levels of l-lysine (1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 % dry diet). The experiment was conducted in eighteen 70-L indoor polyvinyl circular troughs provided with a water flow-through system (1–1.5 L/min). Live weight gain (LWG), feed conversion ratio (FCR), protein deposition (PD), lysine retention efficiency (LRE%) and RNA/DNA ratio were used as the response criteria. Second-degree polynomial regression analysis at 95 % maximum and minimum response of LWG and FCR data exhibited the lysine requirement between 1.8 and 1.9 % dry diet, corresponding to 5.5–5.7 % dietary protein. Regression analysis of PD, LRE and RNA/DNA ratio yielded the requirement between 1.7 and 1.8 % dry diet, corresponding to 5.2–5.5 % dietary protein. Since live weight gain and protein deposition are the key parameters for estimating nutrient requirement, these tools were used to recommend the lysine requirement of fingerling C. catla which ranges between 1.7 and 1.8 % dry diet. Data generated during this study will be useful to formulate lysine-balanced feed for intensive culture of this fish.  相似文献   

6.
An 8-week feeding trial was conducted in a flow-through system (1–1.5 L min−1) at 27°C to determine dietary protein requirement for Channa punctatus fingerlings (4.58 ± 0.29 g) by feeding six isocaloric diets (18.39 kJ g−1, gross energy). Diets containing graded levels of protein (300, 350, 400, 450, 500 and 550 g kg−1) were fed to triplicate groups of fish to apparent satiation at 09:00 and 16:00 h. Maximum absolute weight gain (AWG; 8.11 g fish−1), specific growth rate (SGR; 1.82%) and best feed conversion ratio (FCR; 1.48) were recorded in fish fed diet containing 450 g kg−1 protein, whereas protein efficiency ratio (PER; 1.52), protein retention efficiency (PRE; 25%), energy retention efficiency (ERE; 78%) and RNA/DNA ratio (3.01) were maximum for the group fed dietary protein at 400 g kg−1. Second-degree polynomial regression analysis of AWG, SGR and FCR data against varying levels of dietary protein yielded optimum dietary protein requirement of fingerling between 462.24 and 476.72 g kg−1, whereas the regression analysis of PER, PRE, ERE and RNA/DNA ratio data showed a lower protein requirement of 438.28–444.43 g kg−1 of the diet. Considering the PER, PRE, ERE and RNA/DNA ratio as more reliable indicators, this protein requirement is recommended for developing quality protein commercial feeds for C. punctatus fingerlings.  相似文献   

7.
The dietary folic acid requirement of fingerling Catla catla (3.4 ± 0.17 g; 7.6 ± 0.41 cm) was evaluated by feeding casein–gelatin‐based isonitrogenous (350 g/kg crude protein) and isocaloric (16.72 kJ/g GE) diets containing different concentrations of folic acid (0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 mg/kg) to triplicate groups to apparent satiation at 08:00, 12:30 and 17:30 hr for 16 weeks. Absolute weight gain (AWG; 40.07 g/fish), specific growth rate (SGR; 2.25%), feed conversion ratio (FCR; 1.53), protein retention efficiency (PRE; 31.42%) and protein gain (PG; 6.74) improved significantly (p < .05) with increasing folic acid levels up to 0.4 mg/kg diet and then reached a plateau. However, maximum liver folic acid concentration increased up to 0.6 mg/kg diet. Dietary folic acid levels also significantly affected (p < .05) body composition of fish. No significant change (p > .05) in haematological parameters except in fish fed folic acid‐free diet was noted. Antioxidant and immune parameters increased with increasing concentration of dietary folic acid up to 0.4 mg/kg diet. Broken‐line regression analysis of AWG, FCR, PRE, PG, HCT and liver folic acid concentrations of fingerling C. catla against dietary folic acid levels indicated optimum growth, FCR, PRE, PG, HCT and liver folic acid saturation ranging between 0.22 and 0.56 mg/kg diet, respectively.  相似文献   

8.
Dietary arginine requirement of Heteropneustes fossilis fry (3.0 ± 0.5 cm; 5.1 ± 0.3 g) was determined by feeding casein‐gelatin‐based isonitrogenous (400 g kg?1 crude protein) and isocaloric (17.97 kJ g?1) amino acid test diets containing graded levels of l ‐arginine (15, 17, 19, 21, 23 and 25 g kg?1 dry diet) for 12 weeks. Maximum absolute weight gain (AWG) (44.4), best feed conversion ratio (FCR) (1.22), highest protein retention efficiency (PRE%) (41%), energy retention efficiency (ERE%) (75%), best condition factor, hepatosomatic index and viscerosomatic index were noted at 21 g kg?1 arginine of the dry diet. Maximum body protein (189.8 g kg?1) was also obtained in fish fed above diet. Highest haematocrit value (35%), Hb concentration (9.54 g dL?1), RBC count (3.44 × 109 mL?1) and lowest Erythrocyte sedimentation rate (ESR) (1.93 mm h?1) were obtained at the above level of arginine in the diet. AWG, FCR, PRE% and ERE% data were analysed using broken‐line and an exponential fit to obtain more precise dietary arginine requirement. On the basis of broken‐line and exponential analyses of AWG, FCR, PRE and ERE data, inclusion of dietary arginine in the range of 20.4–22.6 g kg?1 dry diet, corresponding to 51–56.5 g kg?1 dietary protein, is recommended for formulating arginine‐balanced feeds for rearing H. fossilis fry.  相似文献   

9.
In order to determine the dietary isoleucine requirement of fingerling catla, Catla catla (4.25 ± 0.15 cm, 0.61 ± 0.04 g), six isonitrogenous (33.0 % crude protein) and isocaloric (13.7 kJ/g digestible energy) amino acid test diets containing casein, gelatin and l-crystalline amino acids with graded levels of isoleucine (0.5, 0.75, 1.0, 1.25, 1.5 and 1.75 % of the dry diet) were prepared. Triplicate groups of fish were randomly stocked in eighteen 70-l indoor polyvinyl circular troughs at a density of 25 fingerling per trough provided with a water flow-through system (1–1.5 l min?1). The experimental diets were fed to fish to apparent satiation at 08:00, 12:30 and 17:30 h for 12 weeks. Growth of the fish was found to increase with the incremental levels of dietary isoleucine up to 1.25 % of the dry diet. Quadratic regression analysis at 95 % maximum response of absolute weight gain (6.18 g fish?1), protein productive value (0.32), isoleucine retention efficiency (71.91 g fish?1), RNA/DNA ratio (4.81) and carcass protein (15.7 %) yielded the optimum isoleucine requirement in the range of 1.13–1.18 % of the dry diet, corresponding to 3.42–3.58 % of dietary protein. Data generated in this experiment would be useful to formulate isoleucine-balanced, cost-effective quality feeds for fingerling catla.  相似文献   

10.
To quantify dietary L‐tryptophan requirement of fingerling Heteropneustes fossilis (6.66 ± 0.08 g), casein–gelatin‐based isonitrogenous (38% CP) and isoenergetic (14.72 kJ g?1 DE) purified diets with eight levels of L‐tryptophan (0.12%, 0.16%, 0.20%, 0.24%, 0.28%, 0.32%, 0.36%, 0.40% dry diet) were fed to triplicate groups of fish twice daily to apparent satiation for 12 weeks. Incremental levels of dietary tryptophan from 0.12 to 0.28% significantly (P < 0.05) improved absolute weight gain (AWG; 14.3–65.9 g fish?1), feed conversion ratio (FCR; 5.9–1.5), protein retention efficiency (PRE; 6.2–32.2%), haemoglobin (Hb; 6.5 to 11.9 g dL?1) and haematocrit (Hct; 23.5–33.8%). To determine the precise information on tryptophan requirement, data were subjected to broken‐line and second‐degree polynomial regression analysis. Broken‐line regression analysis reflected highest R2 values for AWG g fish?1 (0.999), PRE% (0.993), Hb g dL?1 (0.995) and Hct% (0.993) compared with R2 values obtained using second‐degree polynomial regression analysis of AWG g fish?1(0.949), PRE% (0.890), Hb g dL?1(0.969) and Hct% (0.943), indicating that data were better fit to broken‐line regression analysis. Hence, based on broken‐line regression analysis at 95% maximum response, tryptophan requirement of fingerling H. fossilis is recommended between 0.24% and 0.27% dry diet (0.63–0.71% protein).  相似文献   

11.
A 12‐wk experiment was conducted to determine the dietary biotin requirement of the fingerling Catla catla (7.9 ± 0.37 cm; 3.5 ± 0.12 g). Eight diets (35% crude protein, 16.72 kJ/g gross energy) with different levels of biotin (0, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) were fed to triplicate groups of fish to apparent satiation. Highest percent weight gain, protein retention efficiency, and best feed conversion ratio were observed in fish fed 0.5 mg biotin per kg diet. However, fish fed diets containing dietary biotin of 1.0, 1.5, 2.0, and 2.5 mg/kg did not show significant (P > 0.05) differences compared to those fed on dietary biotin of 0.5 mg/kg. Hematological indices, including hematocrit value, hemoglobin content, and red blood cell counts were found to be directly proportional (P < 0.05) to the dietary biotin levels up to 0.5 mg/kg, beyond which a plateau was recorded. Pyruvate carboxylase activity (PCA) was also found to increase with the incremental levels of dietary biotin up to 0.5 mg/kg and further increasing dietary biotin concentration led to stagnation in PCA of fish. Liver biotin concentrations responded positively (P < 0.05) until saturation, which occurred at 1.0 mg/kg diet. Broken‐line analysis of percent weight gain, protein retention efficiency, PCA, and liver biotin concentrations demonstrated that fingerling C. catla require biotin in the range of 0.41–0.87 mg/kg diet.  相似文献   

12.
Two separate 12 weeks feeding trials were performed to quantify the total sulphur amino acid (TSAA) requirement (experiment I) and cysteine replacement value for methionine (experiment II) of fingerling Catla catla. In experiment I, six casein–gelatin based (33% crude protein; 16.72 kJ g?1 gross energy) diets with graded levels of TSAA (0.56%, 0.81%, 1.06%, 1.31%, 1.56%, 1.81% dry diet) were fed to triplicate groups of fish (3.55 ± 0.06 cm; 0.65 ± 0.02 g) near to satiation. The TSAA requirement was determined by quadratic regression analysis of absolute weight gain (AWG), protein efficiency ratio (PER), feed efficiency (FE), protein gain (PG) and TSAA gain (TSAAG) against dietary TSAA concentrations at 95% maximum response. Above analysis revealed that inclusion of TSAA at 1.28% dry diet (1.22% methionine + 0.06% cysteine), corresponding to 3.87% of dietary protein is optimum. In experiment II, to determine the replacement value of cysteine for methionine, six diets containing 1.28% TSAA determined in experiment I with different ratios of l ‐methionine and l ‐cysteine (80:20, 70:30, 60:40, 50:50, 40:60, 30:70) on equimolar sulphur basis were fed to fish (3.65 ± 0.08 cm; 0.67 ± 0.04 g). Broken‐line regression analysis of AWG, PER, FE, PG and TSAAG against varying methionine to cysteine ratios yielded the optimum cysteine replacement value at 40.3%. Based on above analysis, it is recommended that inclusion of 1.28% dietary TSAA, corresponding to 3.87% of dietary protein is optimum of which 40.3% could be spared by cysteine. Data generated during this study would be useful in formulating TSAA balanced, cost‐effective feeds for the intensive culture of this fish.  相似文献   

13.
Two feeding experiments were conducted to quantify the total sulphur amino acid (TSAA) requirement and replacement value of cystine for methionine for fingerling Labeo rohita. In Experiment I, isonitrogenous (380 g kg?1 CP) and isocaloric (17.90 kJ g?1 GE) amino acid test diets with graded levels of methionine (4, 6, 8, 10, 12, 14 g kg?1 dry diet) and 0.4 g kg?1 cystine were fed to fish (4.62 ± 0.2 cm; 0.66 ± 0.1 g) and methionine requirement determined by analysing absolute weight gain (AWG) (5.48), feed conversion ratio (FCR) (1.26), protein retention efficiency (PRE%) (39%) and energy retention efficiency (ERE%) (85%) data which were best at 10 g kg?1 methionine of dry diet. In Experiment II, six diets with different ratios of L‐cystine and L‐methionine on equimolar sulphur basis were fed to fish (4.71 ± 0.1 cm; 0.69 ± 0.2 g) under identical conditions. Maximum AWG (5.58), best FCR (1.24), PRE (41%) and ERE (86%) in fish fed Diet IV indicated cystine replacement value to be 40%. On the basis of the broken‐line and second‐degree polynomial regression analyses of results obtained in Experiments I and II, it is concluded that inclusion of TSAA in the range of 25.2–31.31 g kg?1 of protein is optimum of which 33–39% could be spared by cystine.  相似文献   

14.
An 8‐week feeding trial was conducted to assess the effects of dietary l ‐threonine on growth, protein utilization, threonine retention efficiencies, nucleic acid indices and body composition of fingerling Heteropneustes fossilis (6.6 ± 0.1 g; 10.9 ± 0.2 cm). Casein–gelatin based isonitrogenous (38% crude protein; CP) and isocaloric (15.3 kJ g?1 digestible energy; DE) amino acid test diets with six levels of dietary l ‐threonine (0.75%; 1.0%; 1.25%; 1.5%; 1.75%; 2.0% dry diet) were prepared and hand‐fed to quadruplicate groups of fingerling to apparent visual satiation twice daily. Weight gain (WG; 46.3 g fish?1), feed conversion ratio (FCR; 1.98), protein utilization efficiency (PUE; 0.25), threonine retention efficiency (TRE; 0.69), lipid productive value (LPV; 0.45), body protein (18.2%) and RNA/DNA ratio (3.6) of fish fed graded levels of dietary threonine increased significantly (P < 0.05) up to 1.49% threonine of dry diet. To generate precise information, the WG, RNA/DNA and LPV data were subjected to broken‐line and quadratic regression analyses. The two models were superimposed and requirement was determined by establishing the point, where the quadratic curve first intersected the plateau of broken‐line. Based on the above mathematical analyses, optimum dietary threonine requirement of fingerling Hfossilis was estimated to range between 1.62% and 1.69% of the diet, corresponding to 4.26–4.44% protein.  相似文献   

15.
An 8‐week feeding experiment was conducted in a water flow‐through system (26–28 °C) to determine the dietary threonine requirement of fingerling Labeo rohita (3.90±0.03 cm; 0.58±0.02 g). Growth, feed utilization and body composition of fish fed test diets (40% crude protein; 17.9 kJ g?1 gross energy) with graded levels of l ‐threonine (0.75%, 1.0%, 1.25%, 1.50%, 1.75% and 2.0% dry diet) to apparent satiation were response variables used to assess threonine adequacy. Diets were made isonitrogenous and isoenergetic by adjusting the levels of glycine and dextrin. The amino acid profiles of the test diets were formulated to that of 40% whole chicken egg protein except for threonine. The performance of fish fed experimental diets was evaluated using calculated values for weight gain (g fish?1), feed conversion ratio (FCR), protein efficiency ratio (PER) and protein productive value (PPV) data. Maximum weight gain (g fish?1) (1.79), lowest FCR (1.39), highest PER (1.76) and PPV (0.33) were recorded at 1.50 g per 100 g dietary threonine. Statistical analysis of weight gain, FCR, PER and PPV data reflected significant differences (P<0.05) among treatments. Except for reduced growth performance in fish fed threonine‐deficient diets, no deficiency signs were noted. Weight gain, FCR, PER and PPV data were also analysed using second‐degree polynomial regression analysis to obtain a more accurate threonine requirement estimate, which was found, using each response variable, to be at 1.70, 1.63, 1.65 and 1.51 g per 100 g of dry diet, corresponding to 4.2, 4.07, 4.12 and 3.77 g per 100 g of dietary protein respectively. Based on the second‐degree polynomial regression analysis of the live weight gain, FCR, PER and PPV data, the optimum dietary level of threonine for fingerling L. rohita was found to be in the range of 1.51–1.70 g per 100 g of the dry diet, corresponding to 3.77–4.2 g per 100 g of dietary protein.  相似文献   

16.
The effects of feeding rates on growth, feed conversion, protein deposition and carcass quality of fingerling Catla catla (3.61 ± 0.03 cm; 0.71 ± 0.04 g) were worked out by conducting a 16‐week feeding trial. Fingerlings were fed with a casein‐gelatin‐based purified diet (40% crude protein CP; 14.95 MJ kg?1 digestible energy; DE) at 1%, 2%, 3%, 4%, 5%, 6% and 7% body weight per day. The absolute weight gain (AWG; 10.50 g fish?1) and feed conversion ratio (FCR; 1.41) were highest at the feeding rate of 5% body weight per day. However, protein gain (PG; 0.36 g fish?1) and carcass protein content attained the maximum values at 4% BW day?1. Quadratic regression analyses of AWG g fish?1 and PG g fish?1 at 95% maximum response indicated that these parameters attained the best values at 4.19% and 3.81% BW day?1. On the basis of the above results it is recommended that the feeding rate in the range of 3.81–4.19% BW day?1 with a P:E ratio of 26.69–27.74 mg protein MJ?1 DE is optimum for maximum growth, efficient feed conversion and best carcass quality in fingerling C. catla.  相似文献   

17.
Growth, feed conversion, and nutrient retention efficiencies of African catfish fingerling, Clarias gariepinus (5.22 ± .07 cm; 8.22 ± 0.03 g), fed diets with varying levels of protein were assessed by feeding seven casein/gelatin based isocaloric (17.62 kJ/g GE) experimental diets with graded levels of dietary protein (20%, 25%, 30%, 35%, 40%, 45%, and 50% of the diet) to triplicate groups of fish to apparent satiation for eight weeks. Effects of feeding these diets on live weight gain (LWG%), feed conversion ratio (FCR), protein efficiency ratio (PER), protein retention efficiency (PRE%), and energy retention efficiency (ERE%) were assessed. Maximum LWG% (867%), PER (2.01), highest PRE (32%), ERE (69%), best FCR (1.39), and maximum body protein were recorded in fish fed diet containing 35% protein. On the basis of the second-degree polynomial regression analysis of the above response variables, it is recommended that the inclusion of protein in the range of 34.4%–39.6% is optimum for maximizing growth potential, feed conversion, and nutrient retention in African catfish fingerling, Clarias gariepinus.  相似文献   

18.
A 16‐week experiment was conducted to determine the dietary riboflavin requirement of the fingerling Channa punctatus (6.7 ± 0.85 cm; 4.75 ± 0.72 g) by a feeding casein–gelatin‐based (450 g/kg crude protein; 18.39 kJ/g gross energy) purified diet containing graded levels of riboflavin (0, 2, 4, 6, 8, 10 and 12 mg/kg diet) to triplicate groups of fish near to satiation at 09:30 and 16:30 hr. Absolute weight gain (AWG), protein efficiency ratio (PER), specific growth rate (SGR, % per day), protein retention efficiency (PRE%) and RNA/DNA ratio were positively affected by increasing concentrations of dietary riboflavin to 6 mg riboflavin per kg diet. Feed conversion ratio (FCR) decreased up to 6 mg riboflavin per kg diet but did not decrease further with higher riboflavin supplementation. Hepatic thiobarbituric acid‐reactive substance (TBARS) concentration also supported the pattern of FCR, whereas superoxide dismutase and catalase activities increased with increasing concentrations of dietary riboflavin from 0 to 6 mg/kg. Liver riboflavin concentrations increased with increasing levels of riboflavin up to 8 mg/kg diet. Broken‐line regression analysis of AWG, PRE and liver riboflavin concentrations of fingerling C. punctatus with dietary riboflavin level indicated optimum growth and liver riboflavin saturation at 5.7, 6.1 and 7.7 mg riboflavin per kg diet, respectively.  相似文献   

19.
This study was conducted to quantify dietary vitamin C requirement of fingerling, Cirrhinus mrigala, (0.79 ± 0.07 g; 3.51 ± 0.15 cm) by feeding casein‐gelatin based purified diets (400 g/kg crude protein; 3.45 kcal/g digestible energy) containing nine levels of vitamin C as l‐ascorbyl‐2‐polyphosphate (0.0, 5, 15, 25, 35, 45, 55, 75, and 95 mg vitamin C equivalent/kg diet) to triplicate groups of fish to apparent satiation for 16 wk. Absolute weight gain (AWG, g/fish), feed conversion ratio (FCR), protein retention efficiency (PRE%), RNA/DNA ratio, hemoglobin (Hb, g/dL), and hematocrit value (Hct%) were taken as the response criteria to determine vitamin C requirement of mrigal. Fish fed diet with 35 mg/kg vitamin C had significantly higher AWG (9.94 g/fish), FCR (1.39), PRE (27.72%), RNA/DNA ratio (4.18), Hb (11.15 g/dL), and Hct (34.44%) values. However, liver vitamin C concentration was found to be higher (64.92 µg/g wet tissue) in diet containing 45 mg vitamin C/kg. Broken‐line regression analysis of AWG data estimated the requirement of 35.65 mg/kg, whereas that of the liver vitamin C concentration data projected the requirement to 41.99 mg/kg.  相似文献   

20.
An 8‐week feeding trial was conducted to quantify the dietary valine requirement of cultured juvenile Nile tilapia, Oreochromis niloticus. Six isonitrogenous (280 g/kg crude protein) and isoenergetic (16.06 MJ/kg gross energy) diets with graded levels of valine (amounting to 4.1, 7.2, 9.9, 12.7, 15.6 and 18.8 g/kg of dry diet) were formulated. Each diet was randomly assigned to triplicate groups of 20 fish (6.48 ± 0.06 g). Results showed that the weight gain, specific growth rate, protein efficiency ratio and protein retention efficiency all increased with an increasing level of dietary valine up to 12.7 g/kg, but remained relatively constant for fish fed higher levels of dietary valine. In addition, the total protein concentration and aspirate aminotransferase activity in plasma, hepatic lysozyme and catalase activities were all significantly (< .05) improved by dietary valine supplementation. Based on the broken‐line regression analysis of weight gain and protein retention efficiency, the optimal dietary valine requirement for juvenile Nile tilapia occurred between a level of 11.5 g/kg of diet (equivalent to 41.1 g/kg of dietary protein) and 12.7 g/kg of diet (equivalent to 45.3 g/kg of dietary protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号