首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of environmental salinity on hematological parameters of great sturgeon Huso huso juveniles was studied. Five-month-old juveniles (mean body weight 28.3 ± 2.1 g) were subjected to 0, 3, 6, 9, and 12 ppt salinities. The hematological parameters were assessed after a period of 20 days rearing at these salinities. After transfer from fresh water to brackish water, red blood cells, hematocrit, haemoglobin and mean corpuscular haemoglobin decreased, but mean corpuscular volume increased. Mean corpuscular haemoglobin concentration, white blood cells, monocyte counts, and eosinophil counts showed no significant variations with increase in environmental salinity. An increase was found in lymphocyte counts according to the increase of salinity from 0 to 12 ppt, while the fresh water control group maintained basal levels. Decrease in neutrophil counts was observed in great sturgeon with increase in environmental salinity. These data show significant effect of salinity on the blood parameters of great sturgeon.  相似文献   

2.
The effect of seawater acclimation and adaptation to various salinities on the energetics of gill and kidney of Atlantic salmon (Salmo salar) was examined. Smolts and non-smolts previously reared in fresh water were exposed to a rapid increase in salinity to 30 ppt. Plasma osmolarity, [Na+], [Cl], [K+] and [Mg++] increased in both groups but were significantly lower in smolts than non-smolts. Gill Na+, K+-ATPase specific activity, initially higher in smolts, increased in both groups after 18 days in seawater. Kidney Na+, K+-ATPase specific activity was not affected by salinity in either group. Gill and kidney citrate synthase specific activity was not affected by seawater exposure in smolts but decreased in non-smolts. In a second experiment, Atlantic salmon smolts reared in fresh water were acclimated to 0, 10 or 30 ppt seawater for 3 months at a temperature of 13–14°C. Gill Na+, K+-ATPase was positively correlated with salinity, displaying 2.5- and 5-fold higher specific activity at 10 and 30 ppt, respectively, than at 0 ppt. Kidney Na+, K+-ATPase specific activity was not significantly affected by environmental salinity. Citrate synthase and cytochrome c oxidase specific activities in gill were slightly (6–13%) lower at 10 ppt than at 0 and 30 ppt, whereas kidney activities were lowest at 30 ppt. Oxygen consumption of isolated gill filaments was significantly higher when incubated in isosmotic saline and at 30 ppt than at 0 ppt, but was not affected by the prior acclimation salinity. The results indicate that although high salinity induces increased gill Na+, K+-ATPase activity, it does not induce substantial increases in metabolic capacity of gill or kidney.  相似文献   

3.
Laboratory experiments were conducted to determine the effect of salinity on embryonic development and hatching in Neobenedenia melleni , a monogenean ectoparasite of seawater-cultured (37 ppt) Florida red tilapia ( Oreochromis urolepis hornorum × O. mossambicus ). Eggs, collected from adult monogeneans at 37 ppt, were exposed to different salinities (0, 6, 12, 18, 24, 30 and 37 ppt) for 48, 72 or 96 h. Varying degrees of post-treatment development and hatching occurred when natural seawater conditions were restored. Hatching success generally declined with decreasing salinity and increasing duration of exposure. Under all durations of exposure, hatching success remained relatively high (≥ 69.6%) at salinities of 24 ppt and above, but declined markedly (≤ 32.5%) at lower salinities. Hatching did not occur in eggs exposed to fresh water (0 ppt) for 72 and 96 h. The most effective treatments in preventing hatching, other than prolonged exposure to fresh water, were 96 h exposures to low-salinity brackish water. Percent hatch after 96 h exposure to 6, 12 and 18 ppt was 5.5, 11.9 and 5.8%, respectively.  相似文献   

4.
Two 12‐wk rearing experiments were conducted to examine the effect of rearing salinities of 10–35 ppt on the growth of 3‐ and 170‐g‐size tiger puffer, Takifugu rubripes. Fish were reared in a closed recirculation system without introducing fresh culture water at 23 C and were fed commercial pellet diet for tiger puffer twice or three times daily to apparent satiation each, almost everyday. Growth of 3‐g‐size fish seemed to increase with decreasing salinity; however, there were no significant differences in the specific growth rate and weight gain among treatments because of differences in initial body weight. Final body weight and length of fish reared at 10 ppt were significantly higher than those for fish reared at 30 ppt although initial sizes were similar. Differences were not found for the feed efficiency (FE) and daily feed consumption. Apparent relationships were not observed between salinity and blood characteristics or proximate compositions of muscle of the cultured fish. Differing from smaller fish, growth of 170‐g‐size fish tended to decrease with decreasing salinity from 30 to 10 ppt and with increasing salinity from 30 to 35 ppt. Similar trends for FE were observed.  相似文献   

5.
The effects of salinity on the growth and energy budget of juvenile cobia, Rachycentron canadum, were evaluated. Triplicate tanks with ten fish per tank (initial weight 17.58 ± 0.26 g/fish, mean ± SD) reared at salinities of 5, 10, 15, 20, 25, 30, and 35 ppt were fed with fresh squid to satiety for 15 d. Results indicated that there were no significant differences in daily ration level in wet weight (RLw), dry weight (RLd), and energy (RLe) of the fish. There were also no significant variations in daily fecal production (fe) and apparent digestibility coefficient of energy (ADCe) among salinity treatments. Specific growth rates (SGRs) in wet weight (SGRw), dry weight (SGRd), and energy (SGRe) showed domed curves relative to salinity. Quadratic regression analyses of SGRw, SGRd, and SGRe against salinity indicated that the optimal salinity for maximal growth of juvenile cobia was 29.9, 29.9, and 28.5 ppt, respectively. Similar to the trend of SGR, food conversion efficiency for juvenile cobia in wet weight (FCEw), dry weight (FCEd), and energy (FCEe) increased with the increases in salinity, maximized at 30 ppt, and then decreased when salinity reached 35 ppt.  相似文献   

6.
Abstract  The short-term tolerances of northern pike, Esox lucius L., fry reared in a freshwater hatchery, to salinity were examined in the laboratory. Survival of two size groups of pike fry (mean length 21 ± 2 mm SD and 37 ± 4 mm SD) was examined over 72- to 96-h periods at 9–14 ppt salinity in combination with temperatures of 10, 14 and 18 °C. A parametric survival model found a significant correlation between survival of pike fry and temperature and salinity, respectively. L C50 values after 72 h were between 11.2 and 12.2 ppt, being lowest at 10 °C. Pike fry did not survive more than 13 ppt. Mortality at 12 ppt was significantly faster at 18 °C than 10 or 14 °C. Moreover, mortality was higher and faster for large than for small pike fry at 12 ppt and 14 °C. These results imply that pike raised in fresh water can survive stocking into brackish waters below 11 ppt at least for a short time.  相似文献   

7.
The influence of three different environmental salinities (seawater, SW: 38 ppt salinity; brackish water, BW: 12 ppt; and low salinity water, LSW: 6 ppt salinity) on the growth, osmoregulation and metabolism of young gilthead sea bream (Sparus aurata L.) was studied over a period of 100 days. 480 inmature fish (20 g mean body weight) were randomly divided into six tanks of 2500 l (80 fish per tank) and maintained under three different salinities (38 ppt, 12 ppt and 6 ppt) in an open system. Every three weeks, 10 fish from each tank were anesthetized, weighed and lenghed. At the end of experiment, 10 fish from each tank were anesthetized, weighed and sampled for plasma, brain, gill and liver. Gill Na+, K+-ATPase activity, plasma osmolality, ions (sodium and chloride), glucose, lactate, protein and triglyceride, and hepatosomatic index were examined. In addition, levels of glycogen, lactate, ATP and activities of potential regulatory enzymes (hexokinase, pyruvate kinase, glycogen phosphorylase, and glucose 6-phosphate dehydrogenase) were assesed in liver, brain, and gill. BW-acclimated fish showed a better growth with respect to SW- or LSW-acclimated fish (12 > 38 > 6 ppt). The same relationship was observed for weight gain and specific growth rate. Osmoregulatory parameters in plasma (osmolality, Na+ and Cl levels) were similar in SW- and BW-acclimated fish but significantly higher than those of LSW-acclimated fish. Gill Na+, K+-ATPase activity showed lower values in intermediate salinity (6 > 38 > 12 ppt). No changes were observed in metabolic parameters analyzed in plasma, whereas only minor changes were observed in metabolic parameters of liver, gills and brain that could be correlated with the higher growth rates observed in fish acclimated to BW, which do not allow us to attribute the best growth rate observed at 12 ppt to lower metabolic rates in that salinity.  相似文献   

8.
The osmoregulatory ability of chum salmon (Oncorhynchus keta), reared in fresh water for a prolonged period, was examined by transferring them directly to seawater and then back to fresh water. When fry and juveniles weighing 0.3–125g, reared in fresh water for 1.5–13 months, were transferred directly to seawater, they adjusted their plasma Na+ concentration to the seawater-adapted level within 12–24h. When they were transferred back to fresh water after having been adapted to seawater for 2 weeks, the plasma Na+ level gradually decreased during the first 12–24h, and then increased to reattain the initial freshwater level after 5–7 days. No mortality was observed during the experiment except among the smallest fry weighing about 0.3g after transfer to seawater (2.1%). The maintenance of good osmoregulatory ability of the chum salmon for a prolonged period in fresh water seems to be unique among Pacific salmon, with the possible exception of the pink salmon.Changes in plasma levels of hormones during the transfer experiments were recorded in juveniles reared in fresh water for 13 months. Prolactin levels increased maximally 3 days after transfer from seawater to fresh water, as would be expected from its well-established role in freshwater adaptation in several euryhaline teleosts. In addition, an increase in plasma growth hormone was observed during the first 12h after seawater transfer, along with a tendency towards a decrease during freshwater transfer, suggesting an important role for this hormone in seawater adaptation. There were no consistent changes in plasma levels of thyroxine and cortisol during freshwater to seawater or seawater to freshwater transfer.  相似文献   

9.
Abstract. Hypoosmoregulatory capacity was examined in anadromous Arctic char, Salvelinus alpinus (L.), caught whilst migrating towards the sea in the river Å-elva, northern Norway (69°04′N and 17°00′E). Metacercariae of the marine digenean Cryptocotyle lingua (Creplin) were found on 47% of the fish investigated, demonstrating that they had been in brackish or sea water on at least one previous occasion. The fish were randomly divided into three groups, and exposed to sea water (35 ppt salinity at 5–6°C) for 7 days- one group immediately after capture, and the other two groups after 16 days of acclimation in fresh water and brackish water (15–17ppt), respectively. Blood plasma osmolality, Na+ and Mg2+ levels showed only a small and transient rise during seawater exposure, and there were only minor changes in muscle water content, irrespective of prior treatment. A slight, but insignificant, reduction in hypoosmoregulatory capacity appeared to occur in the groups retained in fresh water or brackish water for 16 days prior to seawater exposure. The results did not indicate that the fish show any improvement of hypoosmoregulatory capacity following a period of acclimation in brackish water. The hypoosmoregulatory capacity of seaward-migrating Arctic char is well developed before they enter the sea, and may be comparable to that seen in salmonids which undergo a parr-smolt transformation. There was a negative correlation between blood plasma electrolyte levels and both body length and weight, indicating that hypoosmoregulatory capacity was affected by the size of the fish. The effects of body size upon the development of hypoosmoregulatory capacity are discussed with respect to estuarine residence and the constraints placed upon the survival of small fish in full-strength sea water.  相似文献   

10.
It is presumed that in hypo‐ and hypersaline environments, shrimp’s requirements for some specific nutrients, such as protein, may differ from those known in the marine habitat; however, few investigations have been conducted in this area of study. In the present investigation, the effects of salinity and dietary protein level on the biological performance, tissue protein, and water content of Pacific white shrimp, Litopenaeus vannamei, were evaluated. In a 3 × 4 factorial experiment, juvenile shrimp with an average initial weight of 0.36 ± 0.02 g were exposed for 32 d to salinities of 2, 35, and 50 ppt and fed experimental diets with crude protein contents of 25, 30, 35, and 40%. A significant effect of salinity on growth of shrimp was detected, with the growth responses (final weight, weight gain) ranked in the order 2 ppt (3.87, 3.50 g) > 35 ppt (3.40, 3.04 g) > 50 ppt (2.84, 2.47 g). No effects of dietary protein level or an interaction between salinity and protein on growth of shrimp were observed under the experimental conditions of this study. Percent survival of shrimp fed the highest protein content (40%, survival of 74%) was, however, significantly lower than those of shrimp fed the other feeds (25, 30 and 35% protein, survival of 99, 91, and 94%, respectively), a result likely associated with the concentration of total ammonia nitrogen, which increased significantly at increasing protein levels. Final water content of whole shrimp was significantly lower in animals exposed to 50 ppt (70.8%) than in shrimp held at 2 (73.7%) and 35 ppt (72.3%). No effect of salinity, protein, or their interaction was observed on the protein content of whole shrimp. The results of the present study are in agreement with reports of superior and inferior growth of L. vannamei reared in hypo‐ and hypersaline environments, respectively, as compared to what is generally observed in seawater.  相似文献   

11.
ABSTRACT: A series of experiments were conducted to examine the effects of salinity, aeration and light intensity on oil globule absorption, feeding incidence, and growth and survival of early-stage Epinephelus coioides larvae. Newly hatched larvae were transferred to 40-L aquaria at a density of 1500 individuals/aquarium. Larvae were exposed to different levels of aeration (0 mL/min per L, 0.62 mL/min per L, 1.25 mL/min per L, 2.50 mL/min per L, or 3.75 mL/min per L); salinity (8 ppt, 16 ppt, 24 ppt, 32 ppt, or 40 ppt); and light intensity (0 lx, 120 lx, 230 lx, 500 lx, or 700 lx) for 4–6 days. Twenty larvae were sampled daily at 11:00 hours to measure for total length (TL), oil globule volume, and feeding incidence. Survival rates were determined by counting the total number of larvae remaining in each aquarium at the end of the experiment. Significantly higher survival rates ( P   <  0.05) were observed at aeration levels of 0.62 mL/min per L and 1.25 mL/min per L, at salinity levels of 16 ppt and 24 ppt, and at light intensities of 500 lx and 700 lx. The influence of aeration level, salinity and light intensity on oil globule absorption, feeding incidence, and growth and survival of early-stage grouper larvae are discussed.  相似文献   

12.
Abstract.— In South Carolina, studies have been conducted to develop rearing techniques for southern flounder Paralichthys lethostigma a candidate for aquaculture development and stock enhancement programs. To help define environmental tolerances, a variety of salinity studies were conducted with the early life stages of this species. Eggs were buoyant at 32 ppt and sank at 29 ppt with salinities of 30–31 ppt providing varying levels of suspension in the water column. Eggs incubated at 0 and 5 ppt all died, whereas 82.5% hatched at 10 ppt but larvae died shortly thereafter. At 63 h post-fertilization, there were no differences in hatch level for eggs incubated at salinities of 15 to 35 ppt (mean hatch level 98.5%). In a 72-h study, fish 3 wk post-metamorphosis (13.7 mm TL, 50-d-old) were acclimated to seven salinities ranging from 0–30 ppt. Fish held at 0 ppt salinity exhibited a statistically (P < 0.05) lower survival (20.0%) than those exposed to 5–30 ppt salinity concentrations. No differences were detected in survival (mean 99.1%) among fish held in the higher salinities. A second study examined the tolerance of older juveniles to lower salinities. Juvenile flounder (95.2 mm TL, 220-d-old) were acclimated to 0, 1,5 and 10 ppt salinities and reared for 2 wk. Results showed that fish could tolerate salinities of 0–10 ppt (100% survival). These data indicate that salinity tolerance of southern flounder increases with age. In addition to the short duration studies, a replicated 11-mo duration tank grow-out study was conducted at mean salinity 5.4 ppt and mean temperahue 22.6 C with an all male population. Flounder grew from a mean length of 100 mm to 213 mm TL and weight from 8.9 to 104.3 g. Growth of the cultured fish approximated that observed among male flounders in the wild.  相似文献   

13.
The purpose of this study was to analyse the influence of water salinity on the incubation of eggs and growth of the larvae of sichel Pelecus cultratus (L.) under controlled conditions. The following water salinity was considered: 3, 6, 9, 12, 15 and 0 ppt for the control. The eggs incubation time depended on the water salinity, lasting from 56.3°D [9 ppt] to 107.7°D [0 ppt]. The higher water salinity, shorter the incubation time. The highest survivability of larvae was obtained in water of the salinity equal 3 ppt and in freshwater, where respectively 87% and 84% of the larvae survived. No hatched larvae were obtained in water of the salinity of 12 and 15 ppt, as all embryos died during the experiment. Larvae were reared up for 21 days. The final body weight, depending on the water salinity, reached from 43.5 mg [9 ppt] to 74.6 mg [3 ppt], at the respective body lengths of 19.3 mm and 23.2 mm. The highest body gains and lengths of larvae were observed in water of the salinity of 3 ppt. The lowest survivability of sichel larvae occurred in water of the salinity 9 ppt, where it was only 53.2%. The survivability of larvae in freshwater and water of the salinity of 3 ppt was quite similar: 96.2% and 95.6% respectively. Water salinity degree of 12 and 15 ppt appeared to be lethal for both embryos and larvae of the sichel.  相似文献   

14.
The goal is to determine the requirements allowing cultured Salvelinus alpinus to thrive in seawater, as they do in the wild. In late-June, eight families of individually identified 1+ year-old charr (mean wt: 427 g) of a domesticated strain derived from the Fraser River population were directly transferred from freshwater (9 °C) to salinities of either 0, 10, 20 and 30 ppt at 10 °C, then on-grown in tanks until December. Cumulative mortality was 16% in 30 ppt salinity, and < 4% in the lower salinities. Repeated measures analysis revealed somatic growth was inhibited by both elevated salinity and sexual maturation. Among immature fish, final mean weight and condition factor in 30 ppt salinity was 490 g and 1.2, compared to nearly 1 kg and > 1.7 in 0 and 10 ppt. In 20 ppt salinity, growth was initially similar to that in ≤ 10 ppt salinity but deteriorated from September onwards. Sexually maturing fish in ≤ 10 ppt salinity attained a final mean weight about 35% less than immatures. Plasma osmolality was only slightly elevated in the 30 ppt salinity, remaining < 340 mOsm kg− 1. Food intake and conversion were affected by the interaction between salinity and time, being optimum in 0 and 10 ppt treatments. Family effects on final body size were large, but the effect of salinity on growth was independent of family. In conclusion, despite their large body size, direct transfer of this strain from freshwater to seawater does not appear viable for commercial aquaculture.  相似文献   

15.
Although a stenohaline freshwater fish, the stinging catfish Heteropneustes fossilis, is also available in the freshwater fringes of the coastal areas of Bangladesh, the tolerance of this species to variable environmental salinity has not been thoroughly investigated. Based on median lethal salinity (MLS‐50 96 h), three sublethal salinity levels (3 ppt, 6 ppt and 9 ppt) and a control (0 ppt), each with three replications were selected to observe the effects of mildly brackish conditions on the fish for a period of 90‐day exposure. Better growth and survival were found up to 6 ppt compared with control. Salinity more than 6 ppt appeared unsuitable for H. fossilis fingerling due to increased mortality and reduced growth. To determine biochemical alterations, a few important physiological parameters were observed after 90 days of exposure. Glycogen level of liver and muscle in the fish reared at 9 ppt salinity decreased significantly (P < 0.05) as compared to the control. Glucose level in blood and liver was also found to be increased in fish with increase in salinity. ALP and ATPase activities were reduced significantly in both muscle and liver tissues at higher salinity, indicating the stress mitigation effect. However, all the biochemical parameters were found in normal condition up to 6 ppt compared with control. This evidence suggests that H. fossilis can sustain and grow well below 6 ppt and can be a potential candidate for culture in coastal areas after heavy downpour when the salinities level falls to 6 ppt or lower.  相似文献   

16.
Along the Atlantic coast black sea bass occur from the Gulf of Maine to Florida and support important commercial and recreational fisheries. Interest in commercial production of black sea bass has increased in recent years due to high demand and limited seasonable availability. Efforts towards large-scale production have been hampered by a high incidence of early larval mortality. Two of the most important environmental variables affecting hatchery production of marine finfish larvae are temperature and salinity. In the wild, larval black sea bass are found in waters with temperatures of 12–24 C and salinity levels of 30–35 ppt. Studies were conducted to define the temperature and salinity ranges that support growth and development of black sea bass during early life stages. Three developmental phases were investigated: 1) fertilization to hatch: 2) hatch through yolk sac absorption: and 3) during the initial exogenous feeding stage (5–14 days post hatch: DPH). Fertilized eggs were obtained by manual spawning of fish following administration of LHRHa. Fertilized eggs were transferred to 300-mL glass Petri dishes or 500-mL beakers to assess the effects of salinity and temperature through hatch and yolk sac absorption, respectively. To determine environmental effects on growth and survival during initial exogenous feeding 400 actively feeding larvae were cultured in green water and fed enriched rotifers for a 9-d period. For investigation of the effect of salinity, sea water (35 ppt) was diluted gradually to 15, 20, 25, and 30 ppt and maintained at 21 C. For examination of the effect of temperature, seawater was adjusted from 21 C to 12, 15, 21, 27, or 30 C at a rate of 3 C/h. No eggs hatched at 12 C or when salinity was maintained at 0 or 5 ppt. Hatching was uniformly high (≥ 85%) at temperatures between 15 and 27 C and at salinities ≥ 15 ppt. Survival through yolk sac absorption was greatest at temperatures between 18 and 27 C and at salinities ≥ 20 ppt. Survival through first feeding stage was highest at temperatures ≥ 18 C and 30 ppt salinity. Larval growth through first feeding was not significantly affected by salinity level but did increase with rearing temperature. The results indicate that survival and development of black sea bass during early life stages are most favorable at temperatures >18 C with salinity levels approaching full strength seawater.  相似文献   

17.
The southern flounder, Paralichthys lethostigma, is an important commercial and recreational marine flatfish that inhabits estuaries and shelf waters in the south Atlantic, from North Carolina through the Gulf coasts, with the exception of south Florida. Because juvenile and adult fish are highly euryhaline, it is a prime candidate for aquaculture. Methods for captive spawning of southern flounder are well developed; however, information on optimal culture requirements of the early larval stages is required for reliable mass production of juveniles.To determine the optimal photoperiod and salinity conditions for culture from hatching to day 15 post-hatching (d15ph), embryos were stocked into black 15-l tanks (75 l−1) under four photoperiods (24L:0D, 18L:6D, 12L:12D, and 6L:18D) and two salinities (25 and 34 ppt) in a 4×2 factorial design. Temperature was 18 °C, light intensity was 150 lx, and aeration was 50 ml min−1. Significant (P<0.05) effects of photoperiod and salinity on growth (notochord length, wet and dry weights) were obtained. Growth increased with increasing photoperiod and salinity and was significantly greater at 24L and 18L than at 12L or 6L, and at 34 than at 25 ppt. On d11ph and d15ph, significant interactive effects between photoperiod and salinity on growth (wet and dry weights) were also evident. Growth of larvae reared at 25 ppt increased with increasing photoperiod to a maximum at 24L, while growth of larvae at 34 ppt reached a plateau at 18L. While there were no significant photoperiod effects on these parameters, larval survival, body water percentage, and larval osmolality on d15ph were significantly higher at 34 than at 25 ppt (41% vs. 16% survival; 322 vs. 288 mosM kg−1; and 84% vs. 76% water, respectively), suggesting stress and nonadaptation to 25 ppt, a salinity more nearly isoosmotic than full-strength seawater. Since larvae from both salinity treatments were neutrally or positively buoyant at 34 ppt, but negatively buoyant at 25 ppt, larvae reared at 25 ppt probably allocated energy to maintain vertical positioning, compromising growth and survival.The results demonstrate that growth and survival of early-stage southern flounder larvae are maximized under long photoperiods of 18–24L and in full-strength seawater. Longer photoperiods probably extend the time larvae have for feeding, while full-strength seawater salinity optimizes buoyancy and vertical positioning, conserving energy. The results show that early larval stage southern flounder larvae are not entirely euryhaline, which involves not only the ability to osmoregulate, but to conserve energy under reduced buoyancy. This is consistent with suboptimal vs. maximal growth of larvae reared at 25 and 34 ppt, respectively, under 18L (i.e., photoperiod×salinity interaction). This is also consistent with other reports that tolerance to lower salinities in these euryhaline flatfish increases post-metamorphosis when transition from a pelagic to benthic existence alleviates the need to counteract reduced buoyancy.  相似文献   

18.
This study was carried out to examine the effect of Artemia urmiana nauplii enriched with HUFA, and vitamins C and E on stress tolerance, hematocrit, and biochemical parameters of great sturgeon, Huso huso juveniles. Cod liver oil (EPA 18% and DHA 12%), ascorbyl-6-palmitate and α-tocopherol acetate were used as lipid, and vitamin C and E sources, respectively. Beluga juveniles at the stage of first feeding (69.7 ± 5.9 mg body weight) were randomly divided into five treatments and three tanks were assigned to each diet. All fish groups were fed non-enriched Artemia for the initial 5 days and then fed enriched Artemia for 7 days. Juveniles were fed with Artemia enriched with HUFA + 20% vitamin C (C group); HUFA + 20% vitamin E-enriched Artemia nauplii (E group); HUFA + 20% vitamin C + 20% vitamin E (C and E group); HUFA without vitamins (HUFA) and non-enriched Artemia (control). After the period of enrichment, Juveniles were fed with Daphnia sp. from the 13th to the 40th day. At day 40, the fish were transferred directly from fresh water (0.5 ppt) to brackish water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (from 27 to 33°C) to evaluate juvenile resistance to salinity and thermal shocks. Moreover, all treatments were separately exposed to freshwater in tanks with the same capacity as used for osmotic and thermal tests (as fresh water control). The addition of vitamins C, E, and C + E to HUFA significantly increased fish resistance to 12 ppt salinity and temperature stress tests, whereas survival was not significantly different among challenges at 6 ppt. There was no significant difference in the hematocrit index under stress conditions. Enrichment had significant influence on plasma Na+ level in the C group on the 4th day at 6 ppt. Na+ and Ca2+ concentrations in C, E, and C and E groups on the 1st day at 12 ppt, and Ca2+ level in E group on the 2nd day at 12 ppt were lower than the other groups. The glucose level in the C and C and E groups was lower than the other treatments on the 1st day at 12 ppt and the 2nd day at 33°C. Regardless of Artemia enrichment, plasma ions (Na+, K+, Ca2+, and Mg2+) and glucose concentrations in fish exposed to salinity stress tests were higher than fish in fresh water. Glucose concentration in plasma also increased after 2 days at 33°C. Although most of our results were not significantly different, the use of vitamins C, E, and HUFA in Artemia enrichment can improve Juveniles tolerance under stress conditions, and regardless of enrichment, these data show that beluga juveniles are partly sensitive to high salinity and temperature.  相似文献   

19.
The purpose of the current study was to examine seasonal changes in seawater tolerance and growth performance of anadromous Arctic charr (Salvelinus alpinus L.) held at the same temperature (8°C) during winter and summer. Charr (20–27 cm), previously reared in freshwater under natural photoperiod, were transferred either directly (DT) from freshwater to seawater (35 ppt), from freshwater to brackish water (20 ppt), or were gradually adapted (GT) to seawater over a period of 10 days. Control fish were held in freshwater. Feed intake and osmoregulatory ability were then monitored on three occasions during the following 59 days. Two experiments were carried out, one during winter (December–January) and the other during summer (June–July). In both experiments fish mortality was low. Plasma osmolalities recorded in fish transferred to seawater were within normal ranges, but osmolalities on day 10, were significantly lower in summer (313 mOsm/kg (DT), 328 mOsm/kg (GT)) than in winter (323 mOsm/kg (DT), 352 mOsm/kg (GT)). In winter, feed intake and growth rates were high in fish kept in fresh and brackish water, but charr transferred directly to seawater ate little and lost weight. Fish that were gradually adapted to seawater occupied an intermediate position. During summer the observed differences in feed intake were small and all fish had relatively high growth rates. These results suggest that Arctic charr display seasonal changes in feed intake and growth performance that parallel seasonal changes in hypoosmoregulatory capacity. The ability to survive and hypoosmoregulate in full strength seawater does not, however, seem to be a particularly good indicator of successful seawater adaptation with respect to the ability to display high rates of feed intake and growth. During winter, a gradual transfer to seawater appeared to lead to improved feeding and growth compared to direct transfer.  相似文献   

20.
The activity of the enzyme Na+,K+-ATPase and morphological changes of gill chloride cells in grouper, Epinephelus coioides larvae and juveniles were determined 6–48 h after abrupt transfer from ambient rearing conditions (30–32 ppt, 26.5–30 °C) to different salinity (8, 18, 32, 40 ppt) and temperature (25, 30 °C) combinations. Na+,K+-ATPase activity in day 20 larvae did not change at salinities 8–32 ppt. Activity decreased significantly (P <0.01) after exposure to 40 ppt at 25–30 °C, which was accompanied by an increase (P <0.05) in density and fractional area of chloride cells. Enzyme activity in 40 ppt did not reach a stable level and larvae failed to recover from an osmotic imbalance that produced a low survival at 25 °C and death of all larvae at 30 °C. Enzyme activity and chloride cell morphology in day 40 groupers did not change in 8–40 ppt at 25 °C and 8–32 ppt at 30 °C. A significant decrease and a subsequent increase in Na+,K+-ATPase activity in 40 ppt at 30 °C was associated with the increase in chloride cell density resulting in an increased fractional area but a decreased cell size. Enzyme activity and chloride cells of day 60 grouper were unaffected by abrupt transfer to test salinities and temperatures. These results demonstrate that grouper larvae and juveniles are efficient osmoregulators over a wide range of salinities. Salinity adaptation showed an ontogenetic shift as the larvae grew and reached the juvenile stage. This development of tolerance limits may reflect their response to actual conditions existing in the natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号