首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen biomarkers and their fate in soil   总被引:3,自引:0,他引:3  
More than 90 % of the nitrogen (N) in soils can be organically bound, but the mechanisms and rates by which it is cycled have eluded researchers. The objective of this research was to contribute to a better understanding of the origin and transformation of soil organic N (SON) by using amino sugars and the enantiomers of amino acids as markers for microbial residues and/or aging processes. Studied samples presented here comprised (1) soil transects across different climates, (2) arable soils with different duration of cropping, and (3) radiocarbon‐dated soil profiles. The results suggested that increased microbial alteration of SON temporarily results in a sequestration of N in microbial residues, which are mineralized at later stages of SON decomposition. Microorganisms increasingly sequestered N within intact cell wall residues as frost periods shortened. At a mean annual temperature above 12–15 °C, these residues were mineralized, probably due to limitations in additional substrates. Breaking the grassland for cropping caused rapid SON losses. Microbial residues were decomposed in preference to total N, this effect being enhanced at higher temperatures. Hence, climate and cultivation interactively affected SON dynamics. Nevertheless, not all SON was available to soil microorganisms. In soil profiles, L‐aspartic acid and L‐lysine slowly converted into their D‐form, for lysine even at a similar rate in soils of different microbial activity. Formation of D‐aspartate with time was, therefore, induced by microorganisms while that of D‐lysine was not. The racemization of the two amino acids indicates that SON not available to microorganisms ages biotically and abiotically. In native soils, the latter is conserved for centuries, despite N deficiency frequently occurring in living terrestrial environments. Climate was not found to affect the fate of old protein constituents in surface soil. When native grassland was broken for cropping, however, old SON constituents had become available to microorganisms and were degraded.  相似文献   

2.
Characterizing amino sugar dynamics in cultivated soils helps to further understand the influence of cultivation on soil organic matter turnover. This study was designed to evaluate accumulations and patterns of four amino sugars in 17 surface (0–10 cm) soil samples along a climosequence in the North American long-term cultivated prairie from Saskatoon, Candada, to Texas, USA. Mean annual temperature (MAT) ranged from 0.9 to 22.2°C and mean annual precipitation (MAP) from 300 to 1308 mm. Samples were analyzed for glucosamine, mannosamine, galactosamine, and muramic acid. Amino sugar contents (mg kg?1 soil) varied markedly among the 17 sites and were controlled by mean annual temperature (MAT) and clay and silt contents, mainly. The relationship between amino sugar-N proportions to total N (%) and MAT followed parabolic regression models. Compared with native sites, amino sugars were depleted by 53% and the amino sugar-N by 18% of the total, on average, after long-term cropping. The intensity of amino sugar-N depletion correlated positively with MAT (r = 0.77***). Bacterially-derived galactosamine and muramic acid declined preferentially to mainly chitin-derived glucosamine after long-term cropping. The glucosamine-to-galactosamine and glucosamine-to-muramic acid ratios can be used, therefore, as indicators for the identification of land use effects on microbially-derived SOM residues.  相似文献   

3.
为揭示可溶性有机氮(soluble organic nitrogen,SON)在土壤剖面的分布状况,选取中亚热带地区发育于相同母质的黄泥田、灰黄泥田和灰泥田3种不同类型水稻土为对象,研究不同类型水稻土剖面中SON含量、组分及主控因子。结果表明,不同类型水稻土SON、游离氨基酸氮(FAA-N)、酰胺氮(AN-N)和可溶性蛋白氮(SP-N)含量具有明显的剖面分异,均表现为0~20 cm土层>20~40 cm土层>40~60 cm土层。不同类型水稻土SON及各组分含量差异主要表现在0~20 cm土层,均表现为灰泥田>灰黄泥田>黄泥田,灰泥田SON、FAA-N、AN-N和SP-N含量分别高于灰黄泥田50.5%、41.7%、44.8%和2.1%,高于黄泥田196.5%、200.9%、180.4%和76.5%。0~20 cm土层3种不同类型水稻土FAA-N和AN-N分别占SON的54.4%~58.7%和45.5%~48.1%,而底层(40~60 cm)FAA-N和AN-N分别占SON的33.1%~55.7%和50.3%~52.8%,说明FAA-N和AN-N具有向下累积的趋势...  相似文献   

4.
Chisel ploughing is considered to be a potential conservation tillage method to replace mouldboard ploughing for annual crops in the cool-humid climate of eastern Canada. To assess possible changes in some soil physical and biological properties due to differences in annual primary tillage, a study was conducted for 9 years in Prince Edward Island on a Tignish loam, a well-drained Podzoluvisol, to characterize several mouldboard and chisel ploughing systems (at 25 cm), under conditions of similar crop productivity. The influence of primary tillage on the degree of soil loosening, soil permeability, and both organic matter distribution throughout the soil profile and organic matter content in soil particle size fractions was determined. At the time of tillage, chisel ploughing provided a coarser soil macrostructure than mouldboard ploughing. Mouldboard ploughing increased soil loosening at the lower depth of the tillage zone compared to chisel ploughing. These transient differences between primary tillage treatments had little effect on overall soil profile permeability and hydraulic properties of the tilled/non-tilled interface at the 15–30 cm soil depth. Although soil microbial biomass, on a volume basis, was increased by 30% at the 0–10 cm soil depth under chisel ploughing, no differences were evident between tillage systems over the total tillage depth. Mouldboard ploughing increased total orgainc carbon by 43% at the 20–30 cm soil depth, and the carbon and nitrogen in the organic matter fraction ≤ 53 μm by 18–44% at the 10–30 cm soil depth, compared to chisel ploughing.  相似文献   

5.
Soil organic nitrogen (ON) accounts for more than 90%of the total nitrogen (TN) in paddy soils. Inadequate understanding of the different ON fractions in paddy soils and their corresponding bioavailability under different climatic conditions has constrained the development of appropriate nutrient management strategies for rice production. In this study, we applied a modified Bremner method coupled with high-performance liquid chromatography to characterize how soil ON fractions and amino acid ch...  相似文献   

6.
《Geoderma》2006,130(1-2):77-96
Base- and acid-hydrolysable fractions of humic acids (HAs) isolated from a forest soil, an agricultural soil and a lignite deposit were analysed, and comparisons were made between the base hydrolysable lipid (bound lipid), carbohydrate and amino acid signatures of the different humic acids.Bound lipids differ depending on the humic acid origin. Their composition were rather similar for the two soil humic acids, with three main lipid classes identified: (i) aliphatic components, (ii) aromatic components and (iii) sterols and triterpenols. The aliphatic subfraction was the most abundant and consisted predominantly of cutin- and suberin-derived moieties some of which could be clearly related to the vegetation. A minor bacterial input was indicated by the presence of short chain α- and β-hydroxyalkanoic acids. Aromatic subfraction contributed to a low amount to the total base hydrolysates and consisted mainly of lignin-derived methoxyphenols. Present in trace amounts, sterols and triterpenols are mainly of higher plant origin. The base hydrolysate from lignite humic acid markedly differs. Bound lipids released from lignite HA comprised almost exclusively aliphatic components, largely dominated by long chain alkanoic acids. Lignin-derived moieties, hardly detected, consisted solely of vanillic and 4-hydroxybenzoic acids indicating a much higher degree of lignin alteration in lignite humic acid. Sterols and triterpenols were absent.Although the composition of monosaccharides released upon acid hydrolysis was rather uniform irrespective of the humic acid origin, the distribution changed with the degree of humification of the HAs. Ratios of (Galactose+Mannose) to (Xylose+Arabinose) increased from soil to lignite humic acids. The high values of the ratios indicate that carbohydrates are primarily of microbial origin.In all humic acids neutral and acidic protein amino acids dominated. Non protein amino acids were only minor components consisting mainly of hydroxy proline and ornithine. The amino acid distributions of both soil HAs were similar. The amino acid distribution of lignite HA resembled that of soil HAs except for the following differences: (1) the absence of hydroxy proline and the greater abundance of ornithine suggesting a higher microbial contribution to the amino acids as the degree of humification increases, (2) the higher contribution of polar amino acids suggesting a preferential preservation of these amino acids possibly by interaction with the humic acid surface through hydrogen bonds.  相似文献   

7.
A wide range of tillage systems have been used by producers in the Corn-Belt in the United States during the past decade due to their economic and environmental benefits. However, changes in soil organic carbon (SOC) and nitrogen (SON) and crop responses to these tillage systems are not well documented in a corn–soybean rotation. Two experiments were conducted to evaluate the effects of different tillage systems on SOC and SON, residue C and N inputs, and corn and soybean yields across Iowa. The first experiment consisted of no-tillage (NT) and chisel plow (CP) treatments, established in 1994 in Clarion–Nicollet–Webster (CNW), Galva–Primghar–Sac (GPS), Kenyon–Floyd–Clyde (KFC), Marshall (M), and Otley–Mahaska–Taintor (OMT) soil associations. The second experiment consisted of NT, strip-tillage (ST), CP, deep rip (DR), and moldboard plow (MP) treatments, established in 1998 in the CNW soil association. Both corn and soybean yields of NT were statistically comparable to those of CP treatment for each soil association in a corn–soybean rotation during the 7 years of tillage practices. The NT, ST, CP, and DR treatments produced similar corn and soybean yields as MP treatment in a corn–soybean rotation during the 3 years of tillage implementation of the second experiment. Significant increases in SOC of 17.3, 19.5, 6.1, and 19.3% with NT over CP treatment were observed at the top 15-cm soil depth in CNW, KFC, M, and OMT soil associations, respectively, except for the GPS soil association in a corn–soybean rotation at the end of 7 years. The NT and ST resulted in significant increases in SOC of 14.7 and 11.4%, respectively, compared with MP treatment after 3 years. Changes in SON due to tillage were similar to those observed with SOC in both experiments. The increases in SOC and SON in NT treatment were not attributed to the vertical stratification of organic C and N in the soil profile or annual C and N inputs from crop residue, but most likely due to the decrease in soil organic matter mineralization in wet and cold soil conditions. It was concluded that NT and ST are superior to CP and MP in increasing SOC and SON in the top 15 cm in the short-term. The adoption of NT or CP can be an effective strategy in increasing SOC and SON in the Corn-Belt soils without significant adverse impact on corn and soybean yields in a corn–soybean rotation.  相似文献   

8.
Understanding the spatial variability of soil carbon(C) storage and its relationship with climate and soil texture is critical for developing regional C models and for predicting the potential impact of climate change on soil C storage. On the basis of soil data from a transect across the Inner Mongolian grasslands, we determined the quantitative relationships of C and nitrogen(N) in bulk soil and particle-size fractions(sand, silt, and clay) with climate and soil texture to evaluate the major factors controlling soil C and N storage and to predict the effect of climate changes on soil C and N storage. The contents of C and N in the bulk soil and the different fractions in the 0–20 and 20–40 cm soil layers were positively correlated with the mean annual precipitation(MAP) and negatively correlated with the mean annual temperature(MAT). The responses of C storage in the soil and particle-size fractions to MAP and MAT were more sensitive in the 0–20 cm than in the 20–40 cm soil layer. Although MAP and MAT were both important factors influencing soil C storage, the models that include only MAP could well explain the variation in soil C storage in the Inner Mongolian grasslands. Because of the high correlation between MAP and MAT in the region, the models including MAT did not significantly enhance the model precision. Moreover, the contribution of the fine fraction(silt and clay) to the variation in soil C storage was rather small because of the very low fine fraction content in the Inner Mongolian grasslands.  相似文献   

9.
Analysis and behavior of soluble organic nitrogen in forest soils   总被引:2,自引:0,他引:2  

Background, aim, and scope  

A large proportion of soil nitrogen (N; >80%) is present in organic form. Current research on plant N uptake in terrestrial ecosystems has focused mainly on inorganic N such as ammonium (NH4 +) and nitrate (NO3 ), while soluble organic N (SON) has received little attention. In recent years, the increasing evidence showing the direct uptake of various amino acids by plants and the predominance of the organic form in N loss by leaching in many forest ecosystems has drawn attention to critically re-examine the nature and the ecological role of soil SON in terrestrial N cycling. However, little is known about the sources and dynamics, chemical nature, and ecological functions of soil SON in forest ecosystems. This paper reviews recent advances in the areas of research on current techniques for characterizing soil SON and the size, nature, and dynamics of soil SON pools in forest ecosystems.  相似文献   

10.
INTRODUCTION Nitrogen is a key component of soil organic matter. Only when we have succeeded in characterizing the major part of organic N-containing compounds will we be able to understand fully the transformation reactions in the soil and to use soil-N more efficiently. However, only about 1/4-1/2 of the total N in humic acid (HA), one of the major constituents of soil organic matter, can be accounted for as amino acids and amino sugars, and most of the remainder has still to be accounted for.  相似文献   

11.
Soil amino acids are important sources of organic nitrogen for plant nutrition, yet few studies have examined which amino acids are most prevalent in the soil. In this study, we examined the composition, concentration, and seasonal patterns of soil amino acids across a primary successional sequence encompassing a natural gradient of plant productivity and soil physicochemical characteristics. Soil was collected from five stages (willow, alder, balsam poplar, white spruce, and black spruce) of the floodplain successional sequence on the Tanana River in interior Alaska. Water-extractable amino acid composition and concentration were determined by HPLC. Irrespective of successional stage, the amino acid pool was dominated by glutamic acid, glutamine, aspartic acid, asparagine, alanine, and histidine. These six amino acids accounted for approximately 80% of the total amino acid pool. Amino acid concentrations were an order of magnitude higher in coniferous-dominated late successional stages than in early deciduous-dominated stages. The composition and concentration of amino acids were generally constant throughout the growing season. The similar amino acid composition across the successional sequence suggests that amino acids originate from a common source or through similar biochemical processes. These results demonstrate that amino acids are important components of the biogeochemical diversity of nitrogen forms in boreal forests.  相似文献   

12.
  【目的】  明确沼液替代化肥对稻田土壤有机氮(SON)矿化的影响及其与土壤微生物群落变化的关系。  【方法】  田间试验于2017年在江苏滨海稻田上进行,在总氮投入量225 kg/hm2的前提下,设置4个沼液替代化肥氮比例:0%、33%、66%、100% (即,BS0、BS33、BS66、BS100处理)。试验连续进行3年后(2019年),取土测定了有机氮的矿化特征,分析有机氮中酸解氮、非酸解氮、酸解铵态氮、氨基酸态氮、氨基糖态氮、酸解未知态氮的含量及细菌组成结构。  【结果】  与BS0处理相比,BS66处理的土壤氮矿化势(N0)增幅最大,达39.7%。氨基酸态氮和非酸解氮含量沼液施用处理有显著升高(P<0.05),BS66处理的氨基酸态氮较BS0增加了39.2%,BS100处理的非酸解氮含量增加了73.9%。沼液替代化肥提高了土壤Chloroflexi (绿弯菌门)与Actinobacteria (放线菌门)的相对丰度,显著降低了Nitrospirae (硝化螺旋菌门)的相对丰度(P<0.05)。不同细菌属对沼液替代化肥水平的响应差异较大,随着沼液替代化肥比例的上升Subgroup_6_unclassified的相对丰度增加;而Subgroup_17_unclassified的相对丰度则呈下降趋势;KD4-96_unclassified的相对丰度在BS33处理下降低而在BS66处理及BS100处理下升高;沼液替代化肥模式下新增了相对丰度≥1%的细菌属Subgroup_7_unclassified。冗余分析结果显示,土壤N0与Thermodesulfovibrionia_unclassified呈极显著负相关(P<0.01),非酸解氮与Subgroup_6_unclassified呈显著正相关(P<0.05),而与Betaproteobacteria_unclassified呈显著负相关(P<0.05),氨基酸态氮与Proteobacteria_unclassified、氨基糖态氮与KD4-96_unclassified呈显著正相关(P<0.05),酸解未知态氮和Desulfarculaceae_unclassified呈显著负相关(P<0.05)。  【结论】  沼液替代化肥改变了土壤微生物群落结构,增加了土壤氮库容量,显著提高了土壤氮矿化势,增强了土壤供氮能力。  相似文献   

13.
The agricultural soil carbon pool plays an important role in mitigating greenhouse gas emission ana unaerstanamg the son orgamc carbon-climate-soil texture relationship is of great significance for estimating cropland soil carbon pool responses to climate change. Using data from 900 soil profiles, obtained from the Second National Soil Survey of China, we investigated the soil organic carbon (SOC) depth distribution in relation to climate and soil texture under various climate regimes of the cold northeast region (NER) and the warmer Huang-Huai-Hai region (HHHR) of China. The results demonstrated that the SOC content was higher in NER than in HHHR. For both regions, the SOC content at all soil depths had significant negative relationships with mean annual temperature (MAT), but was related to mean annual precipitation (MAP) just at the surface 0-20 cm. The climate effect on SOC content was more pronounced in NER than in HHHR. Regional differences in the effect of soil texture on SOC content were not found. However, the dominant texture factors were different. The effect of sand content on SOC was more pronounced than that of clay content in NER. Conversely, the effect of clay on SOC was more pronounced than sand in HHHR. Climate and soil texture jointly explained the greatest SOC variability of 49.0% (0-20 cm) and 33.5% (20-30 cm) in NER and HHHR, respectively. Moreover, regional differences occurred in the importance of climate vs. soil texture in explaining SOC variability. In NER, the SOC content of the shallow layers (0-30 cm) was mainly determined by climate factor, specifically MAT, but the SOC content of the deeper soil layers (30-100 cm) was more affected by texture factor, specifically sand content. In HHHR, all the SOC variability in all soil layers was predominantly best explained by clay content. Therefore, when temperature was colder, the climate effect became stronger and this trend was restricted by soil depth. The regional differences and soil depth influence underscored the importance of explicitly considering them in modeling long-term soil responses to climate change and predicting potential soil carbon sequestration.  相似文献   

14.
The O1, O2 and A1 horizons of a hardwood forest mineralized and incorporated into organic matter 15S-labelled cysteine and methionine. Based upon assays of samples collected seasonally during 1 yr (n = 10–30), mineralization was the dominant process for cysteine whereas with methionine the reverse was true, except in the A1 horizon. Analysis of samples for existing amounts of organic S revealed that carbon-bonded S was a major component throughout the sampling period in all horizons. This S pool was fractionated further into sulphonate S and amino acid S. The former component represented, on a mean annual basis, 59, 44 and 28% of total S in the O1, O2 and Al horizons, respectively. In contrast, amino acid S comprised 22, 24 and 15% of the total S in these respective horizons. With Al horizon samples, decreases in existing amounts of amino acid S coincided with increases in cysteine mineralization suggesting that cysteine is an important component of this S pool in the Al horizon.  相似文献   

15.
The aim of this work is to review current knowledge on inputs, sources and regulation of protease activities in soils from different ecosystems, while exploring limitations to proteolysis and N mineralisation. Extracellular proteases enter the soil via microbial production and other sources, including plant root exudates, animal excrements, decomposition processes and leaching from agro-industrial fertilisers. The synthesis and activities of proteases in soil are regulated by many factors, including climate, soil properties and the presence of organic compounds of plant and microbial origin. Two particularly important areas for future research are the regulation of proteolysis by low-molecular-weight organic compounds, including amino acids, sugars, flavonoids, plant hormones and siderophores, as well as the identification and characterisation of proteinaceous protease inhibitors of plant and microbial origin in the soil. Despite all the work that has been performed on soil proteases, our understanding of the roles of extracellular plant root proteases in N nutrition is weak. Furthermore, the regulation of soil proteolytic activities of different ecosystems, especially in terms of pollutant inputs and the impact of climate change, requires investigation. Other areas that pose important questions for the future include assessments of protease inhibitor inputs to the soil, regulation of these inhibitors via naturally occurring soil organic compounds and the interactions between soil organisms.  相似文献   

16.
Two arable soils and one pasture soil had previously been air-dried for 6 d and stored at room temperature. The enzyme activities remaining after this treatment were constant. The soils were then extracted with 140 mM sodium pyrophosphate at pH 7.1. Amino acid N and total organic C content of soils and soil extracts, together with humic and fulvic acids content of soil extracts were determined. Total organic C was determined in soil residues obtained after extraction. Chemical characterization of the organic matter of soils, soil extracts and soil residues was carried out by pyrolysis–gas chromatography (Py–GC). Protease activity was determined in soil extracts and soil residues by using three different substrates: N-benzoyl- -argininamide (BAA), specific for trypsin; N-benzyloxycarbonyl- -phenylalanyl -leucine (ZPL), specific for carboxypeptidases, and casein, essentially non-specific. Comparative studies between specific activities referred to organic C in soils, soil extracts and soil residues and their corresponding pyrogram composition, and also between total extracted or residual activity and the humine or unhumified organic matter content of the corresponding soil, allowed us to establish hypotheses about the type of organic matter the enzymes are associated with. From 12% to 21% of the soil organic C (33% to 39% of which were humic acids) and from 3% and 18% of amino acid N were extracted from soil using pyrophosphate. Py–GC analyses showed that pyrophosphate was effective in extracting condensed humic substances and glycoproteins and that the organic matter present in soil extracts was especially rich in intact or partially-decomposed fresh residues of carbohydrate origin and also in certain humus-associated proteins. Extracted BAA-hydrolysing activity accounted for 11% to 36% of the soil activity, depending on soil type. Extracted ZPL- and casein-hydrolysing activities were, with one exception, remarkably high, accounting for about 100% or even more of the soil activity, depending on soil type. According to the results BAA-hydrolysing proteases are probably mostly associated with highly condensed humus, ZPL-hydrolysing proteases with less condensed humic substances and casein-hydrolysing proteases with fresh organic matter.  相似文献   

17.
Most nitrogen (N) enters many Arctic and Antarctic soil ecosystems as protein. Soils in these polar environments frequently contain large stocks of proteinaceous organic matter, which has decomposed slowly due to low temperatures. In addition to proteins, considerable quantities of d-amino acids and their peptides enter soil from bacteria and lengthy residence times can lead to racemisation of l-amino acids in stored proteins. It has been predicted that climate warming in polar environments will lead to increased rates of soil organic N turnover (i.e. amino acids and peptides of both enantiomers). However, our understanding of organic N breakdown in these soils is very limited. To address this, we tested the influence of chain length and enantiomeric composition on the rate of breakdown of amino acids and peptides in three contrasting tundra soils formed under the grass, moss or lichen-dominated primary producer communities of Signy Island in the South Orkney Islands. Both d- and l-enantiomers of the amino acid monomer were rapidly mineralized to CO2 at rates in line with those found for l-amino acids in many other terrestrial ecosystems. In all three soils, l-peptides were decomposed faster than their amino acid monomer, suggesting a different route of microbial assimilation and catabolism. d-peptides followed the same mineralization pattern as l-peptides in the two contrasting soils under grass and lichens, but underwent relatively slow decomposition in the soil underneath moss, which was similar to the soil under the grass. We conclude that the decomposition of peptides of l-amino acids may be widely conserved amongst soil microorganisms, whereas the decomposition of peptides of d-amino acids may be altered by subtle differences between soils. We further conclude that intense competition exists in soil microbial communities for the capture of both peptides and amino acids produced from protein breakdown.  相似文献   

18.
Nie  Xiuqing  Peng  Yunfeng  Li  Fan  Yang  Lucun  Xiong  Feng  Li  Changbin  Zhou  Guoying 《Journal of Soils and Sediments》2019,19(1):322-331
Purpose

Although large amounts of soil organic carbon (SOC) stored in the shrublands, information about SOC storage was little on the Tibetan Plateau. This study aims to evaluate the spatial patterns and storage of SOC in the shrublands and the relationships of climatic variables and soil pH on the Tibetan Plateau.

Materials and methods

We used 177 profiles of soil samples obtained from 59 shrubland sites on the northeast Tibetan Plateau from 2011 to 2013. Ordinary least squares regressions, curve estimation, and multiple linear regressions were used to evaluate controlling factors on SOC stock. Kriging interpolation was used to upscale sit-level measurements to the whole study area.

Results and discussion

We found that SOC storage in the northeast Tibetan shrublands was 1.36 Pg C in the top 1 m with an average SOC stock of 12.38 kg m?2. SOC stock decreased from east to west and south to north but generally increased significantly with the mean annual temperature (MAT) and the mean annual precipitation (MAP), and tended to decrease with soil pH. Although similar relationships were also observed in alpine shrublands, the trends among SOC stock, MAP, and MAT were not observed in desert shrublands. Our results indicate that a reduction in soil pH accelerates the C sequestration potential. Furthermore, global warming contributed to C sequestration in alpine shrublands, specifically, SOC stock increased 8.44 kg m?2 with an increased unit of MAT in alpine shrublands just considering temperature effects. Meanwhile, the C sequestration was different among different regions due to the uneven increases in precipitation. However, in desert shrublands, MAP and MAT did not significantly affect SOC stock.

Conclusions

The results indicate that though a reduction in soil pH could contribute to C sequestration, MAT and MAP have different effects on SOC stock in different Tibetan Plateau shrublands. Increased MAT and MAP were 0.05 °C and 1.67 mm every year on the Tibetan Plateau, which will increase C sequestration in alpine shrublands, but might have limited impacts on desert shrublands, which help us comprehend soil C cycling in the global climate change scenario.

  相似文献   

19.
A laboratory incubation study was conducted to examine the effects of exogenous humic acids on the forms of organic phosphorus (P) in three contrasting soil types: red soil, brown soil, and drab soil. Results indicated that the Olsen P concentration increased in all the three types of soil with addition of the humic acid extracts, with the magnitude of increment ranked in a sequence of brown soil > drab soil > red soil. For the soil organic P fractions, addition of the humic acid extracts increased the labile organic P and moderately labile organic P concentrations while reducing the moderately resistant organic P and highly resistant organic P concentrations, suggesting that the exogenous humic acids could enhance transformation of organic P from resistant forms to labile forms. The activation of organic P by addition of the humic acid extracts varied with soil type, and this variation was related to soil characteristics.  相似文献   

20.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号