首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.  相似文献   

2.
 Microcosms were used to determine the influence of N additions on active bacterial and active fungal biomass, cellulose degradation and lignin degradation at 5, 10 and 15 weeks in soils from blackwater and redwater wetlands in the northern Florida panhandle. Blackwater streams contain a high dissolved organic C concentration which imparts a dark color to the water and contain low concentrations of nutrients. Redwater streams contain high concentrations of suspended clays and inorganic nutrients, such as N and P, compared to blackwater streams. Active bacterial and fungal biomass was determined by direct microscopy; cellulose and lignin degradation were measured radiometrically. The experimental design was a randomized block. Treatments were: soil type (blackwater or redwater forested wetlands) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, the active bacterial biomass in redwater soils was lower than in blackwater soils; the active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in redwater wetland soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. Cellulose and lignin degradation was higher in redwater than in blackwater soils. After 10 and 15 weeks of incubation, the addition of 200 or 400 kg N as NH4NO3 ha–1 decreased cellulose and lignin degradation in both wetland soils to similar levels. This study indicated that the addition of N may slow organic matter degradation and nutrient mineralization, thereby creating deficiencies of other plant-essential nutrients in wetland forest soils. Received: 7 April 1999  相似文献   

3.
 We hypothesized that the integration of trees and shrubs in agricultural landscapes can reduce NO3 leaching and increase utilization of subsoil N. A field survey was conducted on 14 farms on acid soils in the subhumid highlands of Kenya, where there is little use of fertilizers, to determine the effect of vegetation types (VT) on soil NH4 + and NO3 to 4 m depth. The VT included maize (Zea mays) with poor growth and good growth, Markhamia lutea trees scattered in maize, natural weed fallow, banana (Musa spp.), hedgerow, and eucalyptus woodlot. The effect of VT on NH4 + was small (<1 mg N kg–1). NO3 within a VT was about constant with depth below 0.25 m, but subsoil NO3 varied greatly among VT. Mean NO3 -N concentrations at 0.5–4 m depth were low beneath hedgerow and woodlot (<0.2 mg kg–1), intermediate beneath weed fallow (0.2–0.7 mg kg–1), banana (0.5–1.0 mg kg–1) and markhamia (0.5–1.6 mg kg–1), and high beneath both poor (1.0–2.1 mg kg–1) and good (1.9–3.1 mg kg–1) maize. Subsoil NO3 (0.5–4 m) was agronomically significant after maize harvest with 37 kg N ha–1 m–1 depth of subsoil beneath good maize and 27 kg N ha–1 m–1 depth beneath poor maize. In contrast, subsoil NO3 was only 2 kg N ha–1 m–1 depth beneath woodlot and hedgerow. These results demonstrate that the integration of perennial vegetation and the rotation of annual and perennial crops can tighten N cycling in agricultural landscapes. Received: 8 July 1999  相似文献   

4.
 Microcosms were used to determine the influence of N additions on active bacterial and fungal biomass, atrazine and dichlorophenoxyacetic acid (2,4-D) mineralization at 5, 10 and 15 weeks in soils from blackwater and redwater wetland forest ecosystems in the northern Florida Panhandle. Active bacterial and fungal biomass was determined by staining techniques combined with direct microscopy. Atrazine and 2,4-D mineralization were measured radiometrically. Treatments were: soil type, (blackwater or redwater forested wetland soils) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, active bacterial biomass in redwater soils was lower when N was added. Active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. Active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. Active fungal biomass in redwater soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. After 15 weeks of incubation 2,4-D degradation was higher in redwater wetland soils than in blackwater soils. After 10 and 15 weeks of incubation the addition of 200 or 400 kg N ha–1 decreased both atrazine and 2,4-D degradation in redwater soils. The addition of 400 kg N ha–1 decreased 2,4-D degradation but not atrazine degradation in blackwater soils after 10 and 15 weeks of incubation. High concentrations of N in surface runoff and groundwater resulting from agricultural operations may have resulted in the accumulation of N in many wetland soils. Large amounts of N accumulating in wetlands may decrease mineralization of toxic agricultural pesticides. Received: 26 June 1998  相似文献   

5.
Water quantity and quality were monitored for 3 years in a 360-m-long wetland with riparian fences and plants in a pastoral dairy farming catchment. Concentrations of total nitrogen (TN), total phosphorus (TP) and Escherichia coli were 210–75,200 g N m−3, 12–58,200 g P m−3 and 2–20,000 most probable number (MPN)/100 ml, respectively. Average retentions (±standard error) for the wetland over 3 years were 5 ± 1%, 93 ± 13% and 65 ± 9% for TN, TP and E. coli, respectively. Retentions for nitrate–N, ammonium–N, filterable reactive P and particulate C were respectively −29 ± 5%, 32 ± 10%, −53 ± 24% and 96 ± 19%. Aerobic conditions within the wetland supported nitrification but not denitrification and it is likely that there was a high conversion rate from dissolved inputs of N and P in groundwater, to particulate N and P and refractory dissolved forms in the wetland. The wetland was notable for its capacity to promote the formation of particulate forms and retain them or to provide conditions suitable for retention (e.g. binding of phosphate to cations). Nitrogen retention was generally low because about 60% was in dissolved forms (DON and NOX–N) that were not readily trapped or removed. Specific yields for N, P and E. coli were c. 10–11 kg N ha−1 year−1, 0.2 kg P ha−1 year−1 and ≤109 MPN ha−1 year−1, respectively, and generally much less than ranges for typical dairy pasture catchments in New Zealand. Further mitigation of catchment runoff losses might be achieved if the upland wetland was coupled with a downslope wetland in which anoxic conditions would promote denitrification.  相似文献   

6.
 N2O emissions were periodically measured using the static chamber method over a 1-year period in a cultivated field subjected to different agricultural practices including the type of N fertilizer (NH4NO3, (NH4)2SO4, CO(NH2)2 or KNO3 and the type of crop (rapeseed and winter wheat). N2O emissions exhibited the same seasonal pattern whatever the treatment, with emissions between 1.5 and 15 g N ha–1 day–1 during the autumn, 16–56 g N ha–1 day–1 in winter after a lengthy period of freezing, 0.5–70 g N ha–1 day–1 during the spring and lower emissions during the summer. The type of crop had little impact on the level of N2O emission. These emissions were a little higher under wheat during the autumn in relation to an higher soil NO3 content, but the level of emissions was similar over a 7-month period (2163 and 2093 g N ha–1 for rape and wheat, respectively). The form of N fertilizer affected N2O emissions during the month following fertilizer application, with higher emissions in the case of NH4NO3 and (NH4)2SO4, and a different temporal pattern of emissions after CO(NH2)2 application. The proportion of applied N lost as N2O varied from 0.42% to 0.55% with the form of N applied, suggesting that controlling this agricultural factor would not be an efficient way of limiting N2O emissions under certain climatic and pedological situations. Received: 1 December 1997  相似文献   

7.
 Rapid nitrate leaching losses due to current agricultural N management practices under the humid tropical environmental conditions of the Pacific island of Guam may contaminate fresh and salt water resources. Potential environmental contamination of the Northern Guam aquifer, which is overlain by shallow limestone-derived soils, is a major public concern because the aquifer is the sole underground source of fresh water for the island. The objectives of this study were to examine the use of waste office paper as a possible management alternative for reducing nitrate leaching due to N fertilizer applications in northern Guam while also providing sufficient N for crop growth. In a laboratory study, increasing rates of waste paper application reduced NO3 -N leaching up to approximately 200 days after incorporation of N fertilizer and paper treatments. Subsequent mineralization of immobilized N from paper applications was also observed, although cumulative NO3 -N leaching at the highest rate of paper addition was lower than the control after 394 days of incubation. The effect of waste paper on N availability and NO3 -N leaching after application of N fertilizer at rates up to 500 kg N ha–1 was also evaluated in two field experiments planted with sweet corn (Zea mays var. rugosa Bonaf.) during consecutive dry and wet periods. Leaching losses of NO3 -N were higher during the wet cropping season, leading to lower crop yields and crop N uptake. Combining paper with N fertilizer reduced NO3 -N leaching losses but also decreased crop ear yields up to N fertilizer application rates of 250 kg N ha–1 during the dry cropping season and up to rates of 100 kg N ha–1 during the wet period. Although combining waste paper with N fertilizer reduced NO3 -N leaching losses, no improvements in fertilizer N recovery were observed during the field experiments. This lack of crop response may be due to the importance of early season N availability for the short-season horticultural crops grown on Guam. We suggest that the application of waste paper may be a useful management practice to reduce NO3 -N leaching losses when high soil NO3 -N levels remain after cropping due either to crop failure or to over-application of N fertilizer. Received: 11 May 1999  相似文献   

8.
 Generally, grasslands are considered as sinks for atmospheric CH4, and N input as a factor which reduces CH4 uptake by soils. We aimed to assess the short- and long-term effects of a wide range of N inputs, and of grazing versus mowing, on net CH4 emissions of grasslands in the Netherlands. These grasslands are mostly intensively managed with a total N input via fertilisation and atmospheric deposition in the range of 300–500 kg N ha–1 year–1. Net CH4 emissions were measured with vented, closed flux chambers at four contrasting sites, which were chosen to represent a range of N inputs. There were no significant effects of grazing versus mowing, stocking density, and withholding N fertilisation for 3–9 years, on net CH4 emissions. When the ground-water level was close to the soil surface, the injection of cattle slurry resulted in a significant net CH4 production. The highest atmospheric CH4 uptake was found at the site with the lowest N input and the lowest ground-water level, with an annual CH4 uptake of 1.1 kg CH4 ha–1 year–1. This is assumed to be the upper limit of CH4 uptake by grasslands in the Netherlands. We conclude that grasslands in the Netherlands are a net sink of CH4, with an estimated CH4 uptake of 0.5 Gg CH4 year–1. At the current rates of total N input, the overall effect of N fertilisation on net CH4 emissions from grasslands is thought to be small or negligible. Received: 27 January 1998  相似文献   

9.
 In a first experiment, the effect of land use on the uptake rate of atmospheric CH4 was studied in laboratory incubations of intact soil cores. A soil under deciduous forest showed the highest CH4 oxidation. Its overall CH4 uptake during the measuring period (202 days) was 1.03 kg CH4 ha–1. Natural grassland showed the second highest CH4 oxidizing capacity (0.71 kg CH4 ha–1). The overall amount of CH4 uptake by fertilized pasture was 0.33 kg CH4 ha–1. CH4 oxidation in arable soils with different fertilizer treatments varied between 0.34 and 0.37 kg CH4 ha–1. Undisturbed soils had a higher CH4 uptake capacity than agricultural soils. The moisture content of the soil was found to be an important parameter explaining temporal variations of CH4 oxidation. Different methods of fertilization which had been commenced 10 years previously were not yet reflected in the total CH4 uptake rate of the arable soil. In a second experiment, a number of frequently used pesticides were screened for their possible effect on CH4 oxidation. In a sandy arable soil lenacil, mikado and oxadixyl caused significantly reduced CH4 oxidation compared to the control. Under the same conditions, but in a clayey arable soil, mikado, atrazine and dimethenamid caused a reduction of the CH4 uptake. In a landfill cover soil, with a 100-fold higher CH4 oxidation rate, no inhibition of CH4 oxidation was observed, not even when the application rate of pesticides was tenfold higher than usual. Received: 1 December 1998  相似文献   

10.
A study was conducted to investigate the effects of cow manure and sewage sludge application on the activity and kinetics of soil l-glutaminase. Soil samples were collected from a farm experiment in which 0, 25, and 100 Mg ha−1 of either cow manure or sewage sludge had been applied annually for 4 consecutive years to a clay loam soil (Typic Haplargid). A chemical fertilizer treatment had also been applied. Results indicated that the effects of chemical fertilizer and the solid waste application on pH in the 18 surface soil (0–15 cm) samples were not significant. The organic C content, however, was affected significantly by the different treatments, being the greatest in soils treated with 100 Mg ha−1 cow manure, and the least in the control treatment. l-Glutaminase activity was generally greater in solid-waste applied soils and was significantly correlated (r = 0.939, P < 0.001) with organic C content of soils. The values of l-glutaminase maximum velocity (Vmax) ranged from 331 to 1,389 mg NH4 +–N kg−1 2 h−1. Values of the Michaelis constant (K m) ranged from 35.1 to 71.7 mM. Organic C content of the soils were significantly correlated with V max (r = 0.919, P < 0.001) and K m (r = 0.763, P < 0.001) values. These results demonstrate the considerable influence that solid waste application has on this enzymatic reaction involved in N mineralization in soil.  相似文献   

11.
 The 15N isotope dilution method was combined with a field incubation technique to provide simultaneous measurements of gross and net rates of N turnover in three long-term swards: unfertilized (Z) or receiving N either from N fixation as clover (C), or as 200 kg fertilizer N ha–1 year–1 (F). Uniform N enrichment of soil microplots was achieved with a multi-point soil injector to measure mineralization/immobilization turnover and nitrification over a 4-day incubation. Net rates of mineralization ranged between 0.6 and 2.9 μg N g–1 day–1 and in all three treatments were approximately half the gross rates. Nitrification rates (gross) were between 1.0 and 1.6 μg N g–1 day–1. In the F treatment, the turnover of NH4 +-N and NO3 -N pools was on a 2- and 4-day cycle, respectively, whereas in the N-limited treatments (C and Z) turnover rates were faster, with the NO3 -N pools turning over twice as fast as the NH4 +-N pools. Therefore, available N was recycled more efficiently in the C and Z treatments, whereas in the F treatment a higher N pool size was maintained which would be more vulnerable to leakage. A large proportion of the added 15N was recovered in the soil microbial biomass (SMB), which represented a 4–5 times larger sink for N than the plant biomass. Although the C treatment had a significantly lower SMB than the grass-only treatments, there were no differences in microbial activity. Gross rates of nitrification increased along the gradient of N input intensity (i.e. Z<C<F), and the addition of a nitrification inhibitor (C2H2) tended to increase microbial immobilization, but did not influence plant N uptake. In this study, the value of combining different techniques to verify net rates was demonstrated and the improved methodology for 15N labelling of soil enabled measurements to be obtained from relatively undisturbed soil under natural field conditions. Received: 25 May 1999  相似文献   

12.
Short-term effects of nitrogen on methane oxidation in soils   总被引:6,自引:0,他引:6  
 The short-term effects of N addition on CH4 oxidation were studied in two soils. Both sites are unfertilized, one has been under long-term arable rotation, the other is a grassland that has been cut for hay for the past 125 years. The sites showed clear differences in their capacity to oxidise CH4, the arable soil oxidised CH4 at a rate of 0.013 μg CH4 kg–1 h–1 and the grassland soil approximately an order of magnitude quicker. In both sites the addition of (NH4)2SO4 caused an immediate reduction in the rate of atmospheric CH4 oxidation approximately in inverse proportion to the amount of NH4 + added. The addition of KNO3 caused no change in the rate of CH4 oxidation in the arable soil, but in the grassland soil after 9 days the rate of CH4 oxidation had decreased from 0.22 μg CH4 kg–1 h–1 to 0.13 μg CH4 kg–1 h–1 in soil treated with the equivalent of 192 kg N ha–1. A 15N isotopic dilution technique was used to investigate the role of nitrifiers in regulating CH4 oxidation. The arable soil showed a low rate of gross N mineralisation (0.67 mg N kg–1 day–1), but a relatively high proportion of the mineralised N was nitrified. The grassland soil had a high rate of gross N mineralisation (18.28 mg N kg–1 day–1), but negligible nitrification activity. It is hypothesised that since there was virtually no nitrification in the grassland soil then CH4 oxidation at this site must be methanotroph mediated. Received: 31 October 1997  相似文献   

13.
The objective of this study was to evaluate plant-available N pools and the role of N management index (NMI) in the surface (0–20 cm) of a fluvo-aquic soil after 18 years of fertilization treatments under a wheat–maize cropping system in the North China Plain. The experiment included seven treatments: (1) NPK, balanced application of chemical fertilizer NPK; (2) OM, application of organic manure; (3) 1/2OMN, application of half organic manure plus chemical fertilizer NPK; (4) NP, application of chemical fertilizer NP; (5) PK, application of chemical fertilizer PK; (6) NK, application of chemical fertilizer NK; and (7) CK, unfertilized control. Total organic N (TON), microbial biomass N (MBN), labile N (LN), inorganic N (ION, including ammonium (NH4+)–N and nitrate (NO3)–N) contents, net ammonification rate (NAR), net nitrification rate (NNR), net N mineralization rate (NNMR), and NMI in the fertilized treatments were higher than in the unfertilized treatment. Application of chemical fertilizer N (NPK, NP, and NK) increased ION in soils, compared with application of organic N or control. Nitrate N prevailed over exchangeable NH4+–N in all treatments. Nitrogen storage of the OM- and 1/2OMN-treated soils increased by 50.0% and 24.3%, respectively, over the NPK-treated soil, which had 5.4–22.5% more N than NP-, PK-, and NK-treated soils. The MBN, LN, and ION accounted for 1.7–2.4%, 25.7–34.2%, and 1.4–2.9% of TON, respectively, in different fertilization treatments. The surface soils (0–20-cm layer) in all treatments mineralized 43.6–152.9 kg N ha–1 year–1 for crop growth. Microbial biomass N was probably the better predictor of N mineralization, as it was correlated significantly (P < 0.01) with NNMR. The OM and 1/2OMN treatments were not an optimal option for farmers when the crop yield and labor cost were taken into consideration but an optimal option for increasing soil N supply capacity and N sequestration in soil. The NPK treatment showed the highest crop yields and increased soil N fractions through crop residues and exudates input, and thus, it may be considered as a sustainable system in the North China Plain.  相似文献   

14.
Fluxes of N2O were studied in a Norway spruce forest in the southwest of Sweden. Three differently treated catchments were compared: Limed (6 t dolomite ha–1), Nitrex (additional N-deposition corresponding to 35 kg ha–1 year–1, in small doses) and Control (used as control site). The N-retention was still high (95%) after 2years of N-addition at the Nitrex site when the flux measurements were performed. Each catchment contained both well-drained and poorly drained soils (covered with Sphagnum sp.). The emissions of N2O were in general low with both a high spatial and temporal variation for all three sites. The measured emissions were 25, 71 and 96 (gN2O-N ha–1 year–1) for the well-drained Limed, Control and Nitrex sites, respectively. The average emissions of N2O from the wet areas were significantly higher than the well-drained areas within the catchments. For the wet areas the measured emissions were larger: 90, 118 and 254 (g N2O-N ha–1 year–1) for the Limed, Control and Nitrex sites, respectively. Comparison between treatments showed the wet Nitrex site to have a significantly higher emission than all other sites. The increased N-deposition at the Nitrex site increased the N2O emissions by 0.2% of the added N for the well-drained soils and about 1% for the wet areas, compared with the control site. Since the wet areas represented only a small part of the forest, their larger emissions did not contribute significantly to the overall emission of the forest. Neither temperature nor water content of the soil was well correlated with the N2O emissions. Soil gas samples showed that most of the N2O was produced below a 0.3-m depth in the soil. Received: 27 September 1996  相似文献   

15.
The present paper summarizes the results from a long-term experiment setup in 1980 in the Taihu Lake region, China, to address the yield sustainability, the dynamic changes of soil organic carbon (SOC) storage, and soil fertility in the rice–wheat ecosystem. Treatments in three replicates comprising manure-treated and chemical fertilizer-treated groups (two factors), each having seven sub-treatments of different combinations of inorganic nitrogen (N), phosphorus (P), potassium (K), and rice straw, were randomly distributed. Results showed that the treatments of manure (pig manure from 1980 to 1996 and oil rape cake thereafter) + N + P + K (MNPK) and chemical fertilizer + N + P + K (CNPK) produced the highest and the most stable yields for both rice and wheat within the respective fertilizer treatment group. Potassium fertilization was necessary for yield sustainability in the ecosystem. Treatments of straw (as rice straw) + N (CRN) and manure + straw + N (MRN) produced more stable yield of rice but less stable of wheat. It was therefore recommended that straw should be only incorporated during the rice season. SOC contents in all treatments showed increasing trends over the period, even in the control treatment. Predicted SOC in chemical fertilizer-treated plots (mostly yet attainable) ranged from 16 to 18 g C kg−1, indicating the high carbon (C) sequestration potential of the soil as compared to the initial SOC. SOC in manure- or straw-treated plots ranged from 17 to 19 g C kg−1, which had been attained roughly 10 years after the experiment was initiated. Nutrient balance sheet showed that there was P surplus in all P-treated plots and a steady increase in Olsen-P over a 24-year period in 0–15 cm soil, which contributed little to crop yield increases. It was therefore suggested that P fertilization rate should be decreased to 30–40 kg P ha−1 year−1. Comparison of yields among the treatments showed that wheat was more responsive to P fertilizer than rice. Thus P fertilizer should be preferably applied to wheat. Soil pH decrease was significant over the 24-year period and was not correlated with fertilizer treatments. The overall recommendation is to incorporate straw at 4,500 kg ha−1 year−1 during the rice season only, with additional 190 kg N ha−1 year−1, 30–40 kg P ha−1 year−1 mainly during the rice season, and 150–160 kg K ha−1 year−1. Further research on the unusual P supply capacity of the soil is needed.  相似文献   

16.
 N2 fixation by leguminous crops is a relatively low-cost alternative to N fertilizer for small-holder farmers in developing countries. N2 fixation in faba bean (Vicia faba L.) as affected by P fertilization (0 and 20 kg P ha–1) and inoculation (uninoculated and inoculated) with Rhizobium leguminosarium biovar viciae (strain S-18) was studied using the 15N isotope dilution method in the southeastern Ethiopian highlands at three sites differing in soil conditions and length of growing period. Nodulation at the late flowering stage was significantly influenced by P and inoculation only at the location exhibiting the lowest soil P and pH levels. The percentage of N derived from the atmosphere ranged from 66 to 74%, 58 to 74% and 62 to 73% with a corresponding total amount of N2 fixed ranging from 169 to 210 kg N ha–1, 139 to 184 kg N ha–1 and 147 to 174 kg N ha–1 at Bekoji, Kulumsa and Asasa, respectively. The total N2 fixed was not significantly affected by P fertilizer or inoculation across all locations, and there was no interaction between the factors. However, at all three locations, N2 fixation was highly positively correlated with the dry matter production and total N yield of faba bean. Soil N balances after faba bean were positive (12–58 kg N ha–1) relative to the highly negative N balances (–9–44 kg N ha–1) following wheat (Triticum aestivum L.), highlighting the importance of rotation with faba bean in the cereal-based cropping systems of Ethiopia. Received: 13 January 2000  相似文献   

17.
 The evoluion of NH4 +-N and NO3 -N was monitored during three growing seasons, 1992–1993, 1993–1994, 1994–1995 in the soil profile (0–60 or 0–90 cm) under bare fallow and wheat on a vertisol site of the Sais plateau, Morocco. The aim of this study was to relate the soil mineral N dynamics to crop N uptake and soil N transformation processes. The efficacy of the current N fertilisation rate (100 kg N ha–1) for wheat production in the region was evaluated. The high level of residual mineral N in the soil profile resulted from a low N plant uptake relative to the soil N supply and N fertilisation, and masked the effect of N fertilisation on dry matter accumulation. NH4 +-N was present in considerable amounts, suggesting a low nitrification rate under the given pedo-climatic conditions. An artefact due to the sampling procedure was encountered shortly after the application of N fertiliser. Losses through leaching and denitrification occurred after heavy rainfall, but were limited. At least part of the exchangeable NH4 +-N seemed to be barely taken up by the crop. NO3 -N was therefore considered to be a better indicator of plant-available N than total mineral N for this type of soil. The low N fertiliser use efficiencies demonstrated clearly that the current fertilisation rate (100 kg N ha–1) for wheat production in this region is unsustainable. The maximum N uptake ranged from 40 kg N ha–1 to 180 kg N ha–1. The estimation of the seasonal production potential is considered to be the main prerequisite for the determination of the best rates and timing of N fertiliser application in this region. Received: 9 December 1997  相似文献   

18.
Elevated emissions of nitrogen oxides (NOx) in the Athabasca Oil Sands Region, Alberta and higher foliar nitrogen (N) concentrations in jack pine (Pinus banksiana) needles close to major emission sources has led to concerns that the surrounding boreal forest may become N-saturated. Despite these concerns, N deposition and impacts on upland forests in the region is poorly quantified. The objective of this study was to characterize N cycling in five plots representing the two dominant upland forest types (jack pine and trembling aspen, Populus tremuloides) close (<30 km) to the largest mining operations in the region, during a 2-year period. Despite the high level of NOx emissions, bulk throughfall and deposition measured at both study sites were surprisingly very low (<2 kg N ha−1 year−1). Internal N cycling was much greater in aspen stands; annual N input in litterfall was ten times greater, and net N mineralization rates were two to five times greater than in jack pine stands. Nitrogen use efficiency (NUE) was much greater in jack pine when calculated based on N litterfall indices, but not when N pools in biomass were considered. Despite differences in internal cycling among forest types, nitrate leaching from mineral soil in both forest types was negligible (<0.1 kg N ha−1 year−1) and patterns of 15N in roots, foliage, and mineral soil were typical of N-limited ecosystems, and both sites show no evidence of N saturation.  相似文献   

19.
Press mud cake (PMC) is an important organic source available for land application in India. Adequate information regarding availability of nitrogen and phosphorous contained in PMC to rice–wheat (RW) cropping system is lacking. In field experiments conducted for 4 years to study the effect of PMC application to rice as N and P source in RW system, application of 60 kg N ha−1 along with PMC (5 t ha−1) produced grain yield of rice similar to that obtained with the 120 kg N ha−1 in unamended plots. In the following wheat, the residual effects of PMC applied to preceding rice were equal to 40 kg N and 13 kg P ha−1. Immobilization of soil and fertilizer N immediately after the application of PMC was observed in laboratory incubation. The net amount of N mineralized from the PMC ranged from 16% at 30 days to 43% at 60 days after incubation. Available P content in the soil amended with PMC increased by about 60% over the unamended control within 10 days of its application. The P balance for the no-PMC treatment receiving recommended dose of 26 kg P ha−1 year−1 was −13.5 kg P ha−1 year−1. The P balance was positive (+42.3 to 53.5 kg P ha−1 year−1) when PMC was applied to rice. Application of PMC increased total N, organic carbon, and available P contents in the soil.  相似文献   

20.
 Rates of methane uptake were measured in incubation studies with intact cores from adjacent fenland peats that have been under arable management and woodland management for at least the past 30 years. On two separate occasions the woodland peat showed greater rates of uptake than the arable peat. These rates ranged from 23.1 to 223.3 μg CH4 m–2 day–1 for the woodland peat and from 29.6 to 157.6 μg CH4 m–2 day–1 for the arable peat. When the peats were artificially flooded there was a decrease in the rate of methane oxidation, but neither site showed any net efflux of methane. 15N isotopic dilution was used to characterise nitrogen cycling within the two peats. Both showed similar rates of gross nitrogen mineralisation (3.58 mg N kg–1 day–1, arable peat; 3.54 N kg–1 day–1, woodland peat) and ammonium consumption (4.19 arable peat and 4.70 mg N kg–1 day–1 woodland peat). There were significant differences in their inorganic ammonium and nitrate pool sizes, and the rate of gross nitrification was significantly higher in the woodland peat (4.90 mg N kg–1 day–1) compared to the arable peat (1.90 mg N kg–1 day–1). These results are discussed in the light of high atmospheric nitrogen deposition. Received: 1 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号