首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Factors affecting the levels of tea polyphenols and caffeine in tea leaves   总被引:8,自引:0,他引:8  
An isocratic HPLC procedure was developed for the simultaneous determination of caffeine and six catechins in tea samples. When 31 commercial teas extracted by boiling water or 75% ethanol were analyzed by HPLC, the levels of (-)-epigallocatechin 3-gallate (EGCG), and total catechins in teas were in the order green tea (old leaves) > green tea (young leaves) and oolong tea > black tea and pu-erh tea. Tea samples extracted by 75% ethanol could yield higher levels of EGCG and total catechins. The contents of caffeine and catechins also have been measured in fresh tea leaves from the Tea Experiment Station in Wen-Shan or Taitung; the old tea leaves contain less caffeine but more EGCG and total catechins than young ones. To compare caffeine and catechins in the same tea but manufactured by different fermentation processes, the level of caffeine in different manufactured teas was in the order black tea > oolong tea > green tea > fresh tea leaf, but the levels of EGCG and total catechins were in the order green tea > oolong tea > fresh tea leaf > black tea. In addition, six commercial tea extracts were used to test the biological functions including hydroxyl radical scavenging, nitric oxide suppressing, and apoptotic effects. The pu-erh tea extracts protected the plasmid DNA from damage by the Fenton reaction as well as the control at a concentration of 100 microg/mL. The nitric oxide suppressing effect of tea extracts was in the order pu-erh tea >/= black tea > green tea > oolong tea. The induction of apoptosis by tea extract has been demonstrated by DNA fragmentation ladder and flow cytometry. It appeared that the ability of tea extracts to induce HL-60 cells apoptosis was in the order green tea > oolong > black tea > pu-erh tea. All tea extracts extracted by 75% ethanol have stronger biological functions than those extracted by boiling water.  相似文献   

2.
The native occurrence of tea polyphenols, namely, (-)-epicatechin, (+)-catechin, (-)-epigallocatechin 3-gallate, (-)-epicatechin, and (-)-epicatechin 3-gallate, and caffeine in tea flowers was assessed by an isocratic HPLC procedure. The levels of total catechins and caffeine were determined in tea flowers collected from 10 different species of Camellia sinensis. The results showed the levels of total catechin ranged from 10 to 38 mg/g, whereas the level of caffeine ranged from 3 to 8 mg/g. Levels of catechins and caffeine in tea leaves and various teas were also determined and ranged from 2 to 126 mg/g and from 23 to 49 mg/g, respectively. Both tea flower and tea leaf extracts exert their strong hydroxyl radical scavenging effects in the Fenton reaction system and nitric oxide suppressing effects in LPS-induced RAW 264.7 cells. Most tea flowers contain less caffeine, but comparable amounts of total catechins, compared to tea leaves and teas. The present study demonstrates that both tea flowers and tea leaves contain appreciable amounts of catechins and caffeine. It is likely that tea flowers might be useful for making alternative tea beverages.  相似文献   

3.
Determination of tea components with antioxidant activity   总被引:4,自引:0,他引:4  
Levels of essential elements with antioxidant activity, as well as catechins, gallic acid, and caffeine levels, in a total of 45 samples of different teas commercialized in Spain have been evaluated. Chromium, manganese, selenium, and zinc were determined in the samples mineralized with HNO(3) and V(2)O(5), using ETAAS as the analytical technique. The reliability of the procedure was checked by analysis of a certified reference material. Large variations in the trace element composition of teas were observed. The levels ranged from 50.6 to 371.4 ng/g for Cr, from 76.1 to 987.6 microg/g for Mn, from 48.5 to 114.6 ng/g for Se, and from 56.3 to 78.6 ng/g for Zn. The four major catechins [(-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC)], gallic acid (GA), and caffeine were simultaneously determined by a simple and fast HPLC method using a photodiode array detector. In all analyzed samples, EGCG ranged from 1.4 to 103.5 mg/g, EGC from 3.9 to 45.3 mg/g, ECG from 0.2 to 45.6 mg/g, and EC ranged from 0.6 to 21.2 mg/g. These results indicated that green tea has a higher content of catechins than both oolong and fermented teas (red and black teas); the fermentation process during tea manufacturing reduces the levels of catechins significantly. Gallic acid content ranged from 0.039 to 6.7 mg/g; the fermentation process also elevated remarkably gallic acid levels in black teas (mean level of 3.9 +/- 1.5 mg/g). The amount of caffeine in the analyzed samples ranged from 7.5 to 86.6 mg/g, and the lower values were detected in green and oolong teas. This study will be useful for the appraisal of trace elements and antioxidant components in various teas, and it will also be of interest for people who like drinking this beverage.  相似文献   

4.
The four major commercial teas, oolong, black, pu-erh, and green teas, have been manufactured in southeast Asia. In this study, we evaluated the growth suppressive and hypolipidemic effect of these four different tea leaves by oral feeding to male Sprague-Dawley rats for 30 weeks. The results showed that the suppression of body weights of tea leaves-fed groups were in the order: oolong tea > pu-erh tea > black tea > green tea. Pu-erh tea and oolong tea could lower the levels of triglyceride more significantly than that of green tea and black tea, but pu-erh tea and green tea were more efficient than oolong tea and black tea in lowering the level of total cholesterol. In lipoprotein, 4% pu-erh tea could increase the level of HDL-C and decrease the level of LDL-C, but other teas simply decrease the levels of both. The activity of antioxidant enzyme SOD is increased in all tea-fed groups as compared to the basal diet-fed group. Finally, relative weight ratios of liver to epididylmal adipose tissue were lower in feeding oolong tea and pu-erh tea groups. On the basis of these findings, it seemed that the fully fermented pu-erh and black tea leaves and partially fermented oolong tea leaves were more effective on their growth suppressive and hypolipidemic effects as compared to the nonfermented green tea leaves.  相似文献   

5.
A standardized profiling method based on liquid chromatography with diode array and electrospray ionization mass spectrometric detection (LC-DAD-ESI/MS) was applied to establish the phenolic profiles of 41 green teas and 25 fermented teas. More than 96 phenolic compounds were identified that allowed the teas to be organized into five groups. Epigallocatechin gallate (EGCG) was the major phenolic component of green tea made from mature leaves (group 2), while green tea made from the younger buds and leaves (group 1) contained lower flavonoid concentrations. Partially fermented teas (group 3) contained one-half the EGCG content of the green tea. Fully fermented black teas (group 4) had a trace of EGCG, but contained theaflavins. Highly overfermented black tea (group 5) contained only trace amounts of flavonol glycosides and theaflavins. Over 30 phenolics are new for tea, and this is the first phenolic profile to simultaneously detect C- and O-glycosylated flavonoids, catechins, proanthocyanidins, phenolic acid derivatives, and purine alkaloids.  相似文献   

6.
The content of the biologically active amino acid theanine in 15 commercial black, green, specialty, and herbal tea leaves was determined as the 2,4-dinitrophenyltheanine derivative (DNP-theanine) by a validated HPLC method. To define relative anticarcinogenic potencies of tea compounds and teas, nine green tea catechins, three black tea theaflavins, and theanine as well as aqueous and 80% ethanol/water extracts of the same tea leaves were evaluated for their ability to induce cell death in human cancer and normal cells using a tetrazolium microculture (MTT) assay. Compared to untreated controls, most catechins, theaflavins, theanine, and all tea extracts reduced the numbers of the following human cancer cell lines: breast (MCF-7), colon (HT-29), hepatoma (liver) (HepG2), and prostate (PC-3) as well as normal human liver cells (Chang). The growth of normal human lung (HEL299) cells was not inhibited. The destruction of cancer cells was also observed visually by reverse phase microscopy. Statistical analysis of the data showed that (a) the anticarcinogenic effects of tea compounds and of tea leaf extracts varied widely and were concentration dependent over the ranges from 50 to 400 microg/mL of tea compound and from 50 to 400 microg/g of tea solids; (b) the different cancer cells varied in their susceptibilities to destruction; (c) 80% ethanol/water extracts with higher levels of flavonoids determined by HPLC were in most cases more active than the corresponding water extracts; and (d) flavonoid levels of the teas did not directly correlate with anticarcinogenic activities. The findings extend related observations on the anticarcinogenic potential of tea ingredients and suggest that consumers may benefit more by drinking both green and black teas.  相似文献   

7.
Theanine, caffeine, and catechins in fresh tea leaves and oolong tea were determined by using capillary electrophoresis (CE). CE separated these tea polyphenols from three other tea ingredients, namely, caffeine, theophylline, and theanine, within 8 min. The young leaves (apical bud and the two youngest leaves) were found to be richer in caffeine, (-)-epigallocatechin gallate (EGCg), and (-)-epicatechin gallate (ECg) than old leaves (from 5th to 7th leaves). On the other hand, the old leaves (from 8th to 10th leaves) contained higher levels of theanine, (-)-epigallocatechin (EGC), and (-)-epicatechin (EC). Results from a comparison of fresh young tea and oolong tea compositions indicated oolong tea contained more theanine and catechins than fresh young tea. Furthermore, it was found that the levels of theanine, EGC, and EGCg in young leaves rose markedly with the withering process. Caffeine did not markedly change. However, fully or partially fermented teas (oolong tea or pauchong tea) have a common initial step in the withering process. Fresh tea leaves or oolong tea extract (0.1%, w/v) markedly inhibited neurosphere adhesion, cell migration, and neurite outgrowth in rat neurospheres. Theanine (348 micrograms/mL) and caffeine at high concentration (50 micrograms/mL) did not inhibit neurosphere adhesion or migration activities, but EGCg at 20 micrograms/mL effectively inhibited neurosphere adhesion for 24 h. These results indicated that EGCg might affect neural stem cell survival or differentiation.  相似文献   

8.
Tea catechins have been shown to reduce plasma cholesterol and suppress hypertriacylglycerolemia by reducing triglyceride absorption. However, the mechanism is not yet clear. One of the possible mechanisms is that tea polyphenols may modify dietary fat emulsification in the gastrointestinal tract. The digestive enzyme (lipase) acts on specific emulsion interface properties (droplet size and surface area). Therefore, changes in these properties may modify emulsification and lead to changes in dietary fat digestion and absorption. In this study, the effect of both green and black tea on the changes of emulsification was examined by measuring the droplet size and the surface area. A model emulsion system containing olive oil, phosphatidylcholine (PC), and bile salt was developed to simulate small intestinal conditions. Initial changes in droplet size (from 1.4 to 52.8 microm and from 1.4 to 25.9 microm) of the emulsion were observed in the presence of 1.04 mg/mL and 0.10 mg/mL of total catechins prepared from green and black tea, respectively. Both teas caused similar changes on the emulsion properties; however, black tea was more effective than green tea. The underlying mechanisms of actions of tea polyphenols are discussed.  相似文献   

9.
Profiles of nucleotide levels in two varieties of Japanese green teas (cv. Yabukita and Saemidori), a Chinese green tea (Longjing), and two Japanese black teas (cv. Benifuuki and Benihikari) were determined and compared with that of fresh tea leaves. The concentration of 5'-nucleotides in green tea was much higher than in black tea. Nucleoside diphosphates were present in larger amounts than nucleoside triphosphates in manufactured green and black teas, whereas the triphosphates predominated in fresh tea leaves. Low levels of 3'-nucleotides were found in green and black teas. Inosine 5'-monophosphate, which is utilized as a seasoning component, was found in all manufactured teas in concentrations ranging from 50 to 200 nmol/g of dry weight. The levels of both inosine 5'-monophosphate and guanosine 5'-monophosphate were high in Chinese Longjing green tea. The unique profiles of nucleotides in manufactured teas may be a consequence of the action of degradation enzymes, such as ribonuclease, apyrase, phosphatase, nucleotidase, and adenosine 5'-monophsphate deaminase during the commercial processing of the young leaves.  相似文献   

10.
  【目的】  探究在茶树不同生育时期叶面喷施不同硒肥对夏茶产量、品质及硒含量的影响,为生产富硒茶提供技术依据。  【方法】  田间试验在浙江嵊州进行,供试茶树品种为‘中茶108’。 试验采用二因素列区设计,主处理为硒肥种类(A因素),副处理为硒肥喷施时期(B因素)。主处理设喷施清水对照(A0)、硒酸钠(A1)、亚硒酸钠(A2)和酵母硒(A3);副处理设夏茶顶芽萌发前(5月12日,B1)与1芽1叶期(5月20日,B2)两个喷施时期。硒肥喷施浓度均为Se 50 mg/L,硒肥溶液喷施量为1.8 L/m2。当茶树蓬面1芽2叶占比达30%左右时,每个小区随机选取30 cm×30 cm茶蓬,调查蓬面新梢总数、1芽2叶数量、1芽2叶长度和百芽重。同时,取1芽2叶新梢样品,测定茶多酚、儿茶素、咖啡碱、游离氨基酸、花青素以及硒含量。  【结果】  与A0B1处理相比,A3B1处理茶树萌展值显著降低了0.14,但对茶树蓬面新梢总数无明显影响;A2B1处理茶树1芽2叶新梢长度和百芽重分别显著降低了1.04 cm和1.94 g。A1B2和A3B2处理茶树蓬面新梢总数分别显著降低了17.66和22.33,但不影响其萌展值;A1B2显著降低茶树1芽2叶新梢长度和百芽重,分别降低0.88 cm和1.70 g。A1B1和A2B1处理的茶叶总硒含量分别显著提高了1.15和1.47 mg/kg,有机硒含量分别显著提高了1.13 和1.38 mg/kg,但A3B1处理未显著提高茶叶硒含量。A1B2、A2B2和A3B2处理均显著提高了茶叶总硒和有机硒含量,其中总硒增加量分别为5.97、7.88 和2.61 mg/kg,有机硒含量分别增加了5.17、7.51和2.48 mg/kg。另外,A1B1显著降低了茶叶咖啡碱、没食子酸和儿茶素含量;A1B2处理显著降低了茶叶游离氨基酸含量,但显著增加了茶多酚和儿茶素总量,儿茶素组成中的没食子酸、表没食子儿茶素没食子酸酯和表儿茶素没食子酸酯等酯型儿茶素显著增加。  【结论】  夏茶萌芽前喷施外源硒能够提高茶叶总硒和有机硒含量,改善茶叶品质,尤以硒酸钠的效果最好。  相似文献   

11.
This study aimed to compare in vitro antioxidant power of different types of tea (Camellia sinensis). The ferric reducing/antioxidant power (FRAP) assay was used to measure the total antioxidant power of freshly prepared infusions of 25 types of teas. Results showed that different teas had widely different in vitro antioxidant power and that the antioxidant capacity was strongly correlated (r = 0. 956) with the total phenolics content of the tea. Expressed as micromol of antioxidant power/g of dried tea leaves, values ranged as 132-654 micromol/g for black ("fermented") teas, 233-532 micromol/g for Oolong ("semifermented") teas, and 272-1144 micromol/g for green ("nonfermented") teas. One cup of tea of usual strength (1-2%), therefore, can provide the same potential for improving antioxidant status as around 150 mg of pure ascorbic acid (vitamin C).  相似文献   

12.
Seven kinds of green tea leaves were manufactured with far-infrared (FIR) irradiation, and the physicochemical characteristics of the green tea were determined. Appropriate FIR irradiation during the manufacturing process significantly increased the polyphenolic content of green tea. FIR irradiation at 90 degrees C for 10 min, replacing the roasting step, and of the fully processed green tea leaves (GTP3) increased the total phenol content of green tea from 475.6 to 811.1 mg/g and the total flavanol content from 175.7 to 208.7 mg/g, as compared to the control. Epigallocatechin and epigallocatechin gallate increased from 57.68 and 9.60 mg/g in a nonirradiated control to 89.88 and 16.33 mg/g in GTP3, respectively. Ascorbic acid, caffeine, and nitrite scavenging activities were also increased in GTP3. However, the overall color change of GTP3 was negligible. These results indicate that the chemical properties of green tea are significantly affected by FIR irradiation at specific stages of the manufacturing process of green tea leaves and that this FIR irradiation results in high-quality green tea.  相似文献   

13.
Caffeine is widely used in the food and pharmaceutical industries. For safety concerns, natural caffeine is preferred over synthetic products despite of its high cost. To explore more economical methods of acquiring natural caffeine, we adopted a microbial fermentation technique to increase the caffeine content of tea leaves. Our studies showed that the caffeine content in tea leaves increased reasonably after treating leaves with microorganisms for a period of time (i.e. orthodox pile-fermentation), and the amount of caffeine content increase varied significantly between black and green teas (27.57% and 86.41%). These results suggested that the change of caffeine content in tea leaves during the pile-fermentation depended not only on the growth and reproduction of microorganisms, but also on the tea composition.  相似文献   

14.
Pu-erh tea is a popular beverage in southwestern China and South Asian countries. To explain the differences of aged pu-erh tea and ripened pu-erh tea, the chemical constituents of these teas were identified by HPLC-DAD-ESI-MS(n). In addition, HPLC was used to determine the contents of the major polyphenols, gallic acid, caffeine, and theobromine, in various types of teas. These results showed that the majority of chemical constituents in ripened pu-erh tea and aged pu-erh tea were similar, but the contents of catechins and gallic acid presented significant differences between these two teas. After fermentation by microorganism, the levels of catechins in ripened pu-erh tea were decreased, but the contents of gallic acid and caffeine were conversely elevated compared with aged pu-erh tea.  相似文献   

15.
Black tea, green tea, red wine, and cocoa are high in phenolic phytochemicals, among which theaflavin, epigallocatechin gallate, resveratrol, and procyanidin, respectively, have been extensively investigated due to their possible role as chemopreventive agents based on their antioxidant capacities. The present study compared the phenolic and flavonoid contents and total antioxidant capacities of cocoa, black tea, green tea, and red wine. Cocoa contained much higher levels of total phenolics (611 mg of gallic acid equivalents, GAE) and flavonoids (564 mg of epicatechin equivalents, ECE) per serving than black tea (124 mg of GAE and 34 mg of ECE, respectively), green tea (165 mg of GAE and 47 mg of ECE), and red wine (340 mg of GAE and 163 mg of ECE). Total antioxidant activities were measured using the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays and are expressed as vitamin C equivalent antioxidant capacities (VCEACs). Cocoa exhibited the highest antioxidant activity among the samples in ABTS and DPPH assays, with VCEACs of 1128 and 836 mg/serving, respectively. The relative total antioxidant capacities of the samples in both assays were as follows in decreasing order: cocoa > red wine > green tea > black tea. The total antioxidant capacities from ABTS and DPPH assays were highly correlated with phenolic content (r2 = 0.981 and 0.967, respectively) and flavonoid content (r2 = 0.949 and 0.915). These results suggest that cocoa is more beneficial to health than teas and red wine in terms of its higher antioxidant capacity.  相似文献   

16.
The caffeine level of instant tea extracted from decaffeinated leaf tea with 4.0 mg g-1 caffeine is commonly above 10.0 mg g-1, the maximum limit of caffeine for decaffeinated instant tea. Further removal of caffeine by active carbon (AC) from the green tea extract was investigated. It showed that the removal of caffeine from the tea extract solutions depended on the treatment time and tea extract concentration while the ethanol concentration and pH had little effect on the removal of caffeine. According to the removal of caffeine and the ratio of total catechins to caffeine in the tested samples, the optimum decaffeination conditions were determined to be as follows: tea extract concentration 15-30 g L-1 for common tea extract but higher for partially decaffeinated tea leaf extract; ratio of tea solution to AC, 100 mL:4 g; treatment time, 4 h; and natural tea extract pH. Instant tea powder extracted from partially decaffeinated leaf tea with a caffeine level of 4.03 mg g-1 and further decaffeinated by AC had a caffeine level of 7.81 mg g-1, which was 31% lower than that without AC treatment.  相似文献   

17.
The contents of soluble and total phenolic acids were analyzed in samples of 29 berries and berry products, 24 fruits and fruit peels, and 12 beverages. Variation of phenolic acids in berries was also studied. Soluble phenolic acids were extracted with methanolic acetic acid, and a tentative quantification was performed by high-performance liquid chromatography (HPLC). The total phenolic acid content was determined by HPLC after alkaline and acid hydrolyses. The content of total phenolic acids as aglycones in the above samples varied from 0 (pear cider) to 103 mg/100 g fresh weight (rowanberry). Besides rowanberry, the best phenolic acid sources among berries were chokeberry (96 mg/100 g), blueberry (85 mg/100 g), sweet rowanberry (75 mg/100 g), and saskatoon berry (59 mg/100 g). Among fruits, the highest contents (28 mg/100 g) were determined in dark plum, cherry, and one apple variety (Valkea Kuulas). Coffee (97 mg/100 g) as well as green and black teas (30-36 mg/100 g) were the best sources among beverages. Caffeic acid dominated in all of these samples except in tea brews. Variation in the phenolic acid contents of the berries was either small or moderate.  相似文献   

18.
The processed green tea leaves were irradiated by far-infrared (FIR) at eight temperatures (80, 90, 100, 110, 120, 130, 140, and 150 degrees C) for 10 min. After FIR irradiation, green teas were prepared by soaking the leaves in boiling water, and the physicochemical characteristics of the green tea were determined. FIR irradiation at 90 degrees C increased total phenol contents of green tea from 244.7 to 368.5 mg/g and total flavanol contents from 122.0 to 178.7 mg/g, compared with non-irradiated control. FIR irradiation also significantly affected the amounts of epigallocatechin and epigallocatechin gallate. Nitrite scavenging activity also increased with increasing FIR irradiation until the temperature reached 110 degrees C. However, the overall color changes of green tea irradiated with FIR at 90 and 100 degrees C were negligible. These results indicate that the chemical quality of green tea is significantly affected by FIR irradiation temperature of the green tea leaves.  相似文献   

19.
The dependence of global green tea metabolome on plucking positions was investigated through (1)H nuclear magnetic resonance (NMR) analysis coupled with multivariate statistical data set. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), were employed for a finding metabolic discrimination among fresh green tea leaves plucked at different positions from young to old leaves. In addition to clear metabolic discrimination among green tea leaves, elevations in theanine, caffeine, and gallic acid levels but reductions in catechins, such as epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG), glucose, and sucrose levels were observed, as the green tea plant grows up. On the other hand, the younger the green tea leaf is, the more theanine, caffeine, and gallic acid but the lesser catechins accumlated in the green tea leaf, revealing a reverse assocation between theanine and catechins levels due to incorporaton of theanine into catechins with growing up green tea plant. Moreover, as compared to the tea leaf, the observation of marked high levels of theanine and low levels of catechins in green tea stems exhibited a distinct tea plant metabolism between the tea leaf and the stem. This metabolomic approach highlights taking insight to global metabolic dependence of green tea leaf on plucking position, thereby providing distinct information on green tea production with specific tea quality.  相似文献   

20.
Adsorbent is one of the most important factors for separation efficiency in fixed-bed purification techniques. The adsorption behavior of catechins and caffeine onto polyvinylpolypyrrolidone (PVPP) was investigated by static adsorption tests. The results showed that catechins rather than caffeine were preferred to adsorb onto PVPP since the adsorption selectivity coefficient of total catechins vs caffeine was around 22.5, and that adsorption of catechins could be described by the pseudo-second-order model. Adsorption amount of caffeine onto PVPP in green tea extracts solution was much higher than that in purified caffeine solution although the initial concentration of caffeine was similar in the two solutions, indicating the caffeine might be attached with catechins which were adsorbed by PVPP instead of being adsorbed by PVPP directly. The results also showed that the adsorption capacity of catechins and caffeine decreased with an increase in temperature, and that Freundlich and Langmuir models were both suitable for describing the isothermal adsorption of catechins, but not suitable for caffeine. The predicted maximum monolayer adsorption capacity of total catechins by PVPP was 671.77 mg g(-1) at 20 °C, which was significantly higher than that by other reported adsorbents. The thermodynamics analyses indicated that the adsorption of catechins onto PVPP was a spontaneous and exothermic physisorption process, revealing lower temperature was favorable for the adsorption of catechins. Elution tests showed that the desorption rates of catechins and caffeine were higher than 91% and 99% after two elution stages; in detail, almost all of the caffeine could be washed down at the water eluting stage, while catechins could be recovered at the dimethyl sulfoxide/ethanol solution eluting stage. Thus, the PVPP could be used as an excellent alternative adsorbent candidate for separating catechins from crude tea extracts, although some investigations, such as exploring the new eluants with low boiling point and high desorption efficiency, should be conducted furthermore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号