首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ecological Area-wide Management Leafy Spurge, or TEAM Leafy Spurge, began collecting and redistributing flea beetles (Aphthona spp.) to research/demonstration sites and landowners throughout the Little Missouri River drainage basin to control leafy spurge in 1998. A study to evaluate the change over time of leafy spurge (Euphorbia esula L.) phytosociological characteristics following release of flea beetles was initiated in 2002 on leafy spurge–infested pasture and rangeland in the Little Missouri River drainage of Montana, North Dakota, South Dakota, and Wyoming. A total of 292 flea beetle release sites were analyzed in June and July 2002 and 2003 for leafy spurge stem density, foliar cover, flea beetle density, and vegetation composition. Leafy spurge stem density suppression was evident at 91% of the study sites. On two-thirds of the study sites stem density was reduced from greater than 100 stems·m−1 to less than 25 stems·m−1. Leafy spurge foliar cover was less than 5% on approximately two-thirds of the flea beetle release sites and less than 25% on over 90% of the release sites. Area of observed leafy spurge suppression ranged from 0 m2 to 30000 m2. Approximately 40% of the release sites had leafy spurge suppression ranging from 1000 m2 to 5000 m2, and 14% of the release sites had greater than 10000 m2 of leafy spurge control. Plant community composition following leafy spurge suppression was characteristic of native plant communities that had not been burned or grazed. Flea beetles effectively reduced leafy spurge stem density and cover in 4–5 yr across a variety of locations and corresponding environmental conditions, both within the Little Missouri River drainage and in selected nearby locations.  相似文献   

2.
Domestic sheep (Ovis aries) are increasingly being used to control non-native invasive plants in areas where restoration is a management goal. However, the efficacy of sheep grazing depends on both its potential for controlling undesirable plants and its ability to promote natives. To date, few studies have investigated impacts of sheep grazing on native forb recovery in North American grasslands. We assessed the impact of sheep on forbs by measuring the number of stems grazed before and after sheep foraged in western Montana, United States. Sheep grazed a higher percentage of non-native than native forbs (70% vs. 23%, respectively), and number of stems grazed was six times higher for non-natives than natives (48 vs. 5, respectively). Sheep preferentially selected the non-native forbs sulphur cinquefoil and yellow salsify over leafy spurge (fi = 2.075; fi = 0.969; fi = 0.969, respectively), as well as the native forbs white prairie aster (fi = 1.090) and blanketflower (fi = 1.000). Selection of native forbs was positively correlated with their pregrazing abundance and increased over the grazing period. Our findings indicate that when using sheep to control invasive forbs, appropriate timing and monitoring of grazing are critical for reducing nontarget impacts to native vegetation.  相似文献   

3.
Mechanical cutting and mastication of juniper trees aims to restore grassland habitat by reducing the density of encroaching woody species. However, the associated soil disturbance may also create conduits for invasive species, a risk that must be mitigated by land managers. We characterized herbaceous communities in treated and adjacent untreated areas in a piñon-juniper (Pinus edulis and Juniper monosperma) woodland in northern Arizona 2.5 years after treatment. Untreated plots had 4 × the herbaceous cover (82%) than treated plots (21%). Within treated plots, native species cover (19%) was 10 × higher than invasive species cover (2%). Furthermore, treated plots exhibited greater plant community variability and diversity than untreated plots, driven by an increase in the diversity of native grasses and non-native forbs. No new recruits were Arizona listed noxious weeds, indicating that, at least in the short term, mastication is not producing invasive species hot spots in this piñon-juniper woodland.  相似文献   

4.
Remote sensing is used to map the actual distribution of some invasive plant species, such as leafy spurge (Euphorbia esula L.), whereas geospatial models are used to indicate the species’ potential distribution over a landscape. Geographic data layers were acquired for Crook County, Wyoming, and the potential distribution of leafy spurge presence or absence were predicted with the use of the Weed Invasion Susceptibility Prediction (WISP) model. Hyperspectral imagery and field data were acquired in 1999 over parts of the study area. Leafy spurge presence or absence was classified with the use of the Spectral Angle Mapper with a 74% overall accuracy. However, the user accuracy was 93%, showing that where leafy spurge was indicated in the image, leafy spurge was usually found at that location. With the use of Kappa analysis, there was no agreement between WISP model predictions and either the field data or the classified hyperspectral image. Kappa analysis was then used to compare predictions based on single geographic data layers, to increase the power to detect subtle relationships between independent variables and leafy spurge distribution. The WISP model was revised for leafy spurge based on the remote-sensing analyses, and only a few variables contributed to predictions of leafy spurge distribution. The revised model had significantly increased accuracy, from 52.8% to 61.3% for the field data and from 30.4% to 80.3% for the hyperspectral image classification, primarily by reducing the areas predicted to have potential for invasion. It is generally more cost effective to deal with the initial stages of invasion by only a few plants, compared to an invasion that is large enough to be detected by remote sensing. By reducing the potential area for monitoring, management of invasive plants could be performed more efficiently by field crews.  相似文献   

5.
Rangeland invertebrates contribute greatly to biodiversity and provide important services including pollination, pest control, and nutrient cycling. As wildfire frequency increases across these areas of the United States, it is imperative to understand how these disturbances affect beneficial invertebrate communities. We examined bee (Hymenoptera), spider (Araneae), and vegetative communities 1 yr before and 1 yr after a large wildfire swept across an intact grassland in eastern Oregon. Several sites were left unburned after the fire, and a before-after-control-impact study design was used to assess changes within the communities. Fire had no effect on bee or spider abundance, or spider diversity or richness; however, fire significantly increased native bee diversity and richness. In addition, composition of both native bee and spider communities differed significantly between burned and unburned areas 1 yr after the fire. Sheet web spiders (Linyphiidae) and several bee species (primarily large, generalist species) were associated with burned sites. Invasive annual grass and biological soil crust cover decreased significantly in burned sites, but maximum vegetation height and litter cover did not differ significantly among treatments. Forb abundance increased in burned sites; however, species richness of forbs in burned and unburned sites did not differ significantly 1 yr after the fire. Several forbs were indicative of burned areas including non-native species, such as Douglas’ knotweed (Polygonum douglasii) and Russian thistle (Salsola tragus), and native species such as Canadian horseweed (Conyza canadensis), hoary tansyaster (Machaeranthera canescens), and tall willowherb (Epilobium brachycarpum). This study demonstrates that both invertebrate and plant communities show strong short-term responses to wildfire, and our results can be used to inform management of rare habitat and biodiversity in rangelands impacted by wildfire in arid grasslands.  相似文献   

6.
Seed mixes used for postfire seeding in the Great Basin are often selected on the basis of short-term rehabilitation objectives, such as ability to rapidly establish and suppress invasive exotic annuals (e.g., cheatgrass, Bromus tectorum L.). Longer-term considerations are also important, including whether seeded plants persist, continue to suppress invasives, and promote recovery of desired vegetation. To better understand long-term effects of postfire seed mixes, we revisited study sites in Tintic Valley, Utah, where seeding experiments had been initiated after the 1999 Railroad wildfire. Four different mixes, including two comprised entirely of native species, had been applied using rangeland drills at a shrubland site and aerial seeding followed by one-way Ely chaining at a woodland site. New vegetation data collected 16 years post fire revealed changes relative to 3 years post fire. We found significant increases in total cover of seed-mix species in all treatments, including the unseeded control where these species were present as residual populations or had spread from seeded treatments. Significant increases of seed-mix species cover and density were observed in blocks where seeding treatments had previously been considered unsuccessful. Some seed-mix species, particularly rhizomatous grasses, increased while others declined. Exotic annual forb cover decreased in all treatments while cheatgrass increased in the unseeded control and to a lesser extent in the native-only seeded treatments. Recruitment of non-seed-mix native perennials was highest in the unseeded control. Results indicate that postfire seeding has lasting effects on vegetation composition and structure, implying that seed mixes should be carefully formulated to promote long-term management objectives. Seed mixes containing large amounts of competitive introduced species may be especially effective for long-term cheatgrass suppression, but native-only mixes can also serve this purpose to a lesser degree while avoiding drawbacks of non-native species introductions.  相似文献   

7.
Conifer encroachment in sagebrush ecosystems reduces habitat heterogeneity, niche space, and resource availability, all of which negatively affect many wildlife populations. Sagebrush restoration is recommended as a management action to mitigate conifer encroachment and restore wildlife across millions of hectares in the Great Basin. Despite this recommendation, the effects of conifer encroachment and sagebrush restoration are unknown for most wildlife species. Small nonvolant mammal communities include keystone species, consumers and prey; facilitate energy flow and ecological function; and provide important ecological goods and services. We assessed causal relationships between conifer encroachment and sagebrush restoration (conifer removal and seeding native plants) on small mammal communities over 11 yr using a Before-After-Control–Impact design. Sagebrush habitat supported an additional small mammal species, twice the biomass, and nearly three times higher densities than conifer-encroached habitat. Sagebrush restoration increased shrub cover, decreased tree cover, and density but failed to increase native herbaceous plant density. Restoration caused a large increase in the non-native, invasive annual cheatgrass (Bromus tectorum L.). Counter to prediction, small mammal diversity did not increase in response to sagebrush restoration, but restoration maintained small mammal density in the face of ongoing conifer encroachment. Piñon mice (Peromyscus truei), woodland specialists with highest densities in conifer-encroached habitat, were negatively affected by sagebrush restoration. Increasing cheatgrass due to sagebrush restoration may not negatively impact small mammal diversity, provided cheatgrass density and cover do not progress to a monoculture and native vegetation is maintained. The consequences of conifer encroachment, a long-term, slow-acting impact, far outweigh the impacts of sagebrush restoration, a short-term, high-intensity impact, on small mammal diversity. Given the ecological importance of small mammals, maintenance of small mammal density is a desirable outcome for sagebrush restoration.  相似文献   

8.
Broadleaf herbicides are commonly used in rangelands to suppress exotic weeds and release native communities from negative impacts of invasion. However, few studies have comprehensively evaluated treatment effects on differing community components across a gradient of initial invasion levels. We conducted a 6-yr experiment within grasslands of western Montana to measure local-scale effects of a broadcast application of picloram on 1) cover of the target invader, spotted knapweed (Centaurea stoebe L.), 2) prevalence of native functional groups, and 3) the secondary invader cheatgrass (Bromus tectorum L.) at differing initial levels of knapweed invasion. Treatment effectively suppressed knapweed, with cover in treated vs. control plots reduced by >60% in the sixth posttreatment year. Treatment also appeared to alleviate knapweed’s impacts on native perennial grasses, but only at the highest initial level of invasion, where cover of this group increased by >30% in treated vs. control plots to equal levels associated with noninvaded plots. In some cases, treatment appeared to exacerbate knapweed’s impacts on native forbs. At the no-invasion level, perennial forb cover declined by >20% in treated vs. control plots to match values associated with moderate or high levels of invasion, but these treatment effects were minimal at the latter invasion levels. Across initial invasion levels, species richness of perennial and/or annual forbs declined by >20% in treated vs. control plots. Treatment also promoted increases in cheatgrass cover, although differences between treated and control plots were relatively small by the sixth posttreatment year. Overall, effects of picloram application depended on initial levels of knapweed invasion, largely due to the varying strength of release effects. Selective treatment of invaded patches vs. broadcast applications would reduce side effects of broadleaf herbicide application and increase compatibility with other management measures designed to improve rangeland conditions and restore grassland communities.  相似文献   

9.
Solarization (covering soil and vegetation with plastic) has long been used in agriculture to control undesirable plants, but solarization of invasive plants in rangelands has shown mixed and species-specific results. Yellow bluestem (Bothriochloa ischaemum (L.) Keng var. songarica (Rupr. ex Fisch & C.A. Mey) Celarier & Harlan), an invasive perennial C4 grass, is common throughout the southern Great Plains and is not controlled by winter prescribed fire. We tested whether solarization (tarping) with black plastic, combined with winter prescribed fire, could control yellow bluestem. We applied three treatments (with four replicates): solarization (August to November 2017) + fire (January 2018), trimming + fire, and fire only. Results after two growing seasons show that total yellow bluestem cover in solarized + fire plots was reduced to 54% ± 10% (mean ± standard error), lower than trimmed + fire (82% ± 5%, p < 0.01) and fire only plots (78% ± 6%, p = 0.01). Forb cover in solarized + fire plots (15% ± 4%) was much higher than trimmed + fire (4% ± 1%, p < 0.01) and fire only plots (3% ± 1%, p < 0.01). Native forb richness was only slightly higher in solarized + fire plots (16 ± 2 species) compared to fire only (10 ± 2 species, p = 0.08) and trimmed + fire plots (10 ± 1 species, p = 0.08). Interestingly, native forb richness in all plots increased compared to pre-treatment values (2 ± 1 species for all treatments, p < 0.01). Solarization + winter fire can slightly decrease yellow bluestem cover and greatly increase native forb cover, creating islands of diversity in otherwise low-diversity grasslands. However, repeated treatments or alternative techniques will be needed for full control of yellow bluestem.  相似文献   

10.
Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semiarid grasslands. We evaluated aboveground biomass, cover, and frequency response to summer, fall, and spring fires and no fire on silty and clayey sites in semiarid, C3-dominated grassland. The magnitude of change in biomass between years was greater than any differences among fire treatments. Still, differences existed among seasons of fire. Summer fire reduced non-native annual forb frequency (3% vs. 10% ± 2%) and Hesperostipa comata, reduced native annual forbs the first year, increased Poa secunda and bare ground, and increased Vulpia octoflora the second year. Fall fire increased grass biomass (1224 vs. 1058 ± 56 kg ? ha? 1), but fall fire effects were generally similar to those of summer fire. Spring fire effects tended to be intermediate between no fire and summer and fall fire with the exception that spring fire was most detrimental to H. comata the first growing season and did not increase bare ground. All seasons of fire reduced litter, forb biomass, and frequency of Bromus japonicus and Artemisia spp., and they reduced H. comata, V. octoflora, and native annual forbs the first year, but increased basal cover of C3 perennial grasses (2.2% vs. 0.6% ± 0.4%). Fire during any season increased dominance of native species compared with no fire (6.6% vs. 2.0% ± 1.0% basal cover) and maintained productivity. Seasonal timing of fire manipulated species composition, but increased C3 perennial grass cover and native species dominance with fire during any season indicated that using fire was more important than the season in which it occurred. In addition, fire effects on the vegetation components tended to be counter to previously observed effects of grazing, suggesting fire and grazing may be complementary.  相似文献   

11.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis &lsqb;Beetle & A. Young] S.L. Welsh) plant communities with degraded native herbaceous understories occupy vast expanses of the western United States. Restoring the native herbaceous understory in these communities is needed to provide higher-quality wildlife habitat, decrease the risk of exotic plant invasion, and increase forage for livestock. Though mowing is commonly applied in sagebrush communities with the objective of increasing native herbaceous vegetation, vegetation response to this treatment in degraded Wyoming big sagebrush communities is largely unknown. We compared mowed and untreated control plots in five Wyoming big sagebrush plant communities with degraded herbaceous understories in eastern Oregon for 3 yr posttreatment. Native perennial herbaceous vegetation did not respond to mowing, but exotic annuals increased with mowing. Density of cheatgrass (Bromus tectorum L.), a problematic exotic annual grass, was 3.3-fold greater in the mowed than untreated control treatment in the third year posttreatment. Annual forb cover, largely consisting of exotic species, was 1.8-fold greater in the mowed treatment compared to the untreated control in the third year posttreatment. Large perennial grass cover was not influenced by mowing and remained below 2%. Mowing does not appear to promote native herbaceous vegetation in degraded Wyoming big sagebrush plant communities and may facilitate the conversion of shrublands to exotic annual grasslands. The results of this study suggest that mowing, as a stand-alone treatment, does not restore the herbaceous understory in degraded Wyoming big sagebrush plant communities. We recommend that mowing not be applied in Wyoming big sagebrush plant communities with degraded understories without additional treatments to limit exotic annuals and promote perennial herbaceous vegetation.  相似文献   

12.
Usable space for northern bobwhites (Colinus virginianus) has declined significantly over the past 3 decades in Texas because non-native grasses have replaced native vegetation. We hypothesized that burning patches in pastures dominated by buffelgrass (Pennisetum ciliare) and Old World bluestems (Bothriochloa spp. and Dichanthium spp.) followed by livestock grazing would increase limiting habitat attributes, thereby increasing usable space and bobwhite demographic parameters and population densities. Our study was conducted during 2009–2011 in LaSalle County, Texas on a ranch dominated by non-native grasses. Our experimental design was composed of 2 blocks with two 240-ha pastures, one control (graze only), and one treatment (patch-burn and graze) in each. We estimated grass standing crop in grazing exclosures (June–September) and habitat attributes along transects (October) 2009–2011. Bobwhites were captured and monitored via radiotelemetry 2–3 times/wk during March–November. Means of vegetation metrics important to bobwhites such as bare ground, traversibility, and forb and subshrub cover were similar between control and treatment units in post-treatment years. However, grass standing crop tended to be lower in treatment (June and August 2010 and September 2011—110.5 ± 26.2 g/m2) compared with control units (June and August 2010 and September 2011—145.5 ± 58.6 g/m2). Plant species richness was also greater (21%) in treatment (4.6 ± 0.4/0.1 m2) compared with control units (3.8 ± 0.4/0.1 m2) during the last year of the study (P ≥ 0.057). Patch heterogeneity was increased in treatment units. There was an increase in bobwhite densities in treatment units, although demographic metrics remained similar between treatment and controls. Patch burning and grazing is a viable tool for managing monotypic non-native grasslands for bobwhites in semiarid environments.  相似文献   

13.
Herbaceous vegetation comprises the main habitat type in cool-seasons grasslands and can be managed by various methods. We compared changes in plant communities and bird and mammal use of grasslands that were not managed, managed by mechanical methods (mowing), or managed by chemical methods (plant growth regulator). This 1-year study was conducted from May through October 2003 in Erie County, Ohio. Twelve circular 1.5 ha plots were established: 4 were not managed, 4 were mowed to maintain vegetation height between 9–15 cm, and 4 were sprayed with a plant growth regulator and mowed when vegetation exceeded 15 cm. We monitored vegetation growth, measured plant community composition, and observed all plots for wildlife activity each week. Vegetation in unmanaged plots was taller and denser (P < 0.001) than vegetation in mowed and growth regulator plots. Plant community characteristics differed among study plots (P < 0.001); managed plots had higher grass cover and lower woody cover than unmanaged plots. We observed more (P < 0.001) total birds per 5-minute survey in unmanaged than mowed or growth regulator plots. We observed more (P < 0.001) white-tailed deer (Odocoileus virginianus) in mowed plots than either control or growth regulator plots. We captured 13 small mammals in unmanaged plots and no small mammals in managed plots. Applying the plant growth regulator was not a cost-effective alternative to mowing for managing vegetation height in our study. Vegetation height management practices altered plant communities and animal use of grassland areas and thus might be useful for accomplishing species-specific habitat management objectives.  相似文献   

14.
Little is known about how cultivation legacies affect the outcome of rehabilitation seedings in the Great Basin, even though both frequently co-occur on the same lands. Similarly, there is little known about how these legacies affect native species re-establishment into these seedings. We examined these legacy effects by comparing areas historically cultivated and seeded to adjacent areas that were seeded but never cultivated, for density of seeded crested wheatgrass (Agropyron cristatum [L.] Gaertn.) and native perennial grasses, vegetation cover, and ground cover. At half of the sites, historically cultivated areas had lower crested wheatgrass density (P < 0.05), and only one site had a higher density of crested wheatgrass (P < 0.05). Likewise, the native shrub Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young) had lower cover (P < 0.05) in historically cultivated areas at half the sites. Sandberg bluegrass (Poa secunda J. Presl.) density was consistently lower in historically cultivated areas relative to those seeded-only. At sites where black greasewood (Sarcobatus vermiculatus [Hook.] Torr.) and bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey) were encountered, there was either no difference or a higher density and cover within historically cultivated areas (P < 0.05). Likewise, cover of exotic forbs, especially halogeton (Halogeton glomeratus [M. Bieb.] C. A. Mey.), was either not different or higher in historically cultivated areas (P < 0.05). Bare ground was greater in historically cultivated areas at three sites (P < 0.05). These results suggest that cultivation legacies can affect seeding success and re-establishment of native vegetation, and therefore should not be overlooked when selecting research sites or planning land treatments that include seeding and or management to achieve greater native species diversity.  相似文献   

15.
Flea infestations are common in Thailand, but little is known about the flea-borne infections. Fifty flea pools and 153 blood samples were collected from client-owned cats between June and August 2009 from veterinary hospitals in Bangkok, Thailand. Total DNA was extracted from all samples, and then assessed by conventional PCR assays. The prevalence rates of Bartonella spp. in blood and flea samples were 17% and 32%, respectively, with DNA of Bartonella henselae and Bartonella clarridgeiae being amplified most commonly. Bartonella koehlerae DNA was amplified for the first time in Thailand. Hemoplasma DNA was amplified from 23% and 34% of blood samples and flea pools, respectively, with ‘Candidatus Mycoplasma haemominutum’ and Mycoplasma haemofelis being detected most frequently. All samples were negative for Rickettsia felis. Prevalence rate of B. henselae DNA was increased 6.9 times in cats with flea infestation. Cats administered flea control products were 4.2 times less likely to be Bartonella-infected.  相似文献   

16.
In and around the Great Basin, United States, restoration of shrub steppe vegetation is needed where rangelands are transitioning to annual grasslands. Mechanical seedbed preparation can aid native species recovery by reducing annual grass competition. This study was designed to investigate the nature and persistence of hydrologic and erosion impacts caused by different mechanical rangeland seeding treatments and to identify interactions between such impacts and related soil and vegetation properties. A cheatgrass (Bromus tectorum L.)–dominated site was burned and seeded with native grasses and shrubs in the fall of the year. An Amazon-drill and a disk-chain seeder were used to provide varying levels of surface soil disturbance. An undisturbed broadcast seeding was used as a control. Simulated rainfall was applied to 6 large (32.5-m2) plots per treatment over 3 growing seasons at a rate of 63.5 mm · h-1. Rainfall was applied for 60 minutes under dry antecedent moisture conditions and for 30 minutes, 24 hours later under wet antecedent moisture conditions. The disk-chain created the largest reduction in infiltration and increase in sediment yield, which lasted for 3 growing seasons posttreatment. The Amazon-drill had a lesser impact, which was insignificant after the second growing season posttreatment. Surface soil properties showed little correlation with treatment-induced hydrologic and erosion impacts. Hydrologic recovery was strongly correlated with litter dynamics. The seeding treatments were unsuccessful at establishing seeded plant species, and the site once again became dominated by cheatgrass. A continuous upward trend in biomass production and surface litter cover was observed for all treatments between the beginning and end of the study because of cheatgrass invasion. Although the initial goal of using mechanical seeding treatments to enhance recovery of native grass species failed, cheatgrass production provided sufficient biomass to rapidly replenish surface litter cover necessary for rapid hydrologic stability of the site.  相似文献   

17.
In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma &lsqb;Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.  相似文献   

18.
Effective control methods need to be developed to reduce crested wheatgrass (Agropyron cristatum [L.] Gaertner) monocultures and promote the establishment of native species. This research was designed to determine effective ways to reduce crested wheatgrass and establish native species while minimizing weed invasion. We mechanically (single- or double-pass disking) and chemically (1.1 L · ha?1 or 3.2 L · ha?1 glyphosate–Roundup Original Max) treated two crested wheatgrass sites in northern Utah followed by seeding native species in 2005 and 2006. The study was conducted at each site as a randomized block split plot design with five blocks. Following wheatgrass-reduction treatments, plots were divided into 0.2-ha subplots that were either unseeded or seeded with native plant species using a Truax Rough Rider rangeland drill. Double-pass disking in 2005 best initially controlled wheatgrass and decreased cover from 14% to 6% at Lookout Pass and from 14% to 4% at Skull Valley in 2006. However, crested wheatgrass recovered to similar cover percentages as untreated plots 2–3 yr after wheatgrass-reduction treatments. At the Skull Valley site, cheatgrass cover decreased by 14% on herbicide-treated plots compared to an increase of 33% on mechanical-treated plots. Cheatgrass cover was also similar on undisturbed and treated plots 2 yr and 3 yr after wheatgrass-reduction treatments, indicating that wheatgrass recovery minimized any increases in weed dominance as a result of disturbance. Native grasses had high emergence after seeding, but lack of survival was associated with short periods of soil moisture availability in spring 2007. Effective wheatgrass control may require secondary treatments to reduce the seed bank and open stands to dominance by seeded native species. Manipulation of crested wheatgrass stands to restore native species carries the risk of weed invasion if secondary treatments effectively control the wheatgrass and native species have limited survival due to drought.  相似文献   

19.
Agricultural land use is known to alter ecological processes, and native plant communities can require decades to centuries to recover from the disturbance of cultivation. “Recovery” is typically measured by comparison to undisturbed adjacent sites as a control. Recovery following cultivation in sagebrush ecosystems of the Great Basin remains largely unexamined even though nearly a half million hectares of land were dry-farmed and abandoned in the early 1900s. We tested the hypothesis that the native vegetation has not recovered from this exotic disturbance by evaluating differences in canopy cover of shrubs, grasses, and forbs between paired sets of historically dry-farmed land and adjacent never-cultivated areas. Paired sites were located in three ecological sites in northwestern Utah. We found that vegetation recovery from cultivation is variable by growth form, species, and ecological site. Shrub recovery was different among sagebrush (Artemisia) species. Yellow rabbitbrush (Chrysothamnus viscidiflorus [Hook.] Nutt.) and black greasewood (Sarcobatus vermiculatus [Hook.] Torr.), which often increase following disturbance, maintained higher cover inside old fields. At one of the paired sets, shrub composition was altered from a mix of four species to dominance of mainly Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young). Total forb cover was generally lower in cultivated areas and some species, such as spiny phlox (Phlox hoodii Richardson), had not recovered. The most common grass species encountered across all ecological sites, bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey), had higher cover in cultivated areas. Surprisingly, exotic annual species, such as cheatgrass (Bromus tectorum L.), did not dominate these sites as they have for decades after cultivation in other areas of the Great Basin. This study demonstrates that the land-use legacy of dry farming on vegetation remains nearly a century after cultivation has ceased, and has direct implications for describing ecological site conditions.  相似文献   

20.
Explanations for why sympatric ruminant species select diets composed of different plant species or plant parts have been controversial. Our explanation is based on learning from foraging consequences, which includes the influences that morphology, physiology, and experience have on diet selection. We conducted a trial with cattle (Bos taurus), sheep (Ovis aries), and goats (Capra hircus) and leafy spurge (LS; Euphorbia esula L.) to explore the interface between the learning and morphophysiological foraging models with these sympatric ruminants. After a pretrial adjustment period, the control group for each species received, via stomach tube on days 1 and 2, ground grass after eating a novel food (NF; rolled corn), and the treatment group for each species received ground air-dried LS after eating the NF. NF intake on days 2 and 3 was expressed as a percent of NF intake on day 1, and it declined considerably for cattle and sheep dosed with LS but did not decline for goats receiving it (P = 0.001). LS elicited learned aversive feeding responses from cattle and sheep but not from goats. The results are consistent with field observations that goats graze LS more readily than sheep or cattle do. Learning from foraging consequences offers an explanation for the unique diets of sympatric ruminant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号