首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) and other exotic annual grasses have invaded millions of hectares of sagebrush (Artemisia L.) steppe. Revegetation of medusahead-invaded sagebrush steppe with perennial vegetation is critically needed to restore productivity and decrease the risk of frequent wildfires. However, it is unclear if revegetation efforts provide long-term benefits (fewer exotic annuals and more perennials). The limited literature available on the topic questions whether revegetation efforts reduce medusahead abundance beyond 2 or 3 yr. We evaluated revegetation of medusahead-invaded rangelands for 5 yr after seeding introduced perennial bunchgrasses at five locations. We compared areas that were fall-prescribed burned immediately followed by an imazapic herbicide treatment and then seeded with bunchgrasses 1 yr later (imazapic-seed) with untreated controls (control). The imazapic-seed treatment decreased exotic annual grass cover and density. At the end of the study, exotic annual grass cover and density were 2-fold greater in the control compared with the imazapic-seed treatment. The imazapic-seed treatment had greater large perennial bunchgrass cover and density and less annual forb (predominately exotic annuals) cover and density than the untreated control for the duration of the study. At the end of the study, large perennial bunchgrass density average 10 plant ? m? 2 in the imazapic-seed treatment, which is comparable with intact sagebrush steppe communities. Plant available soil nitrogen was also greater in the imazapic-seed treatment compared with the untreated control for the duration of the study. The results of this study suggest that revegetation of medusahead-invaded sagebrush steppe can provide lasting benefits, including limiting exotic annual grasses.  相似文献   

2.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic, annual grass invading sagebrush steppe rangelands in the western United States. Medusahead invasion has been demonstrated to reduce livestock forage, but otherwise information comparing vegetation characteristics of medusahead-invaded to noninvaded sagebrush steppe communities is limited. This lack of knowledge makes it difficult to determine the cost–benefit ratio of controlling and preventing medusahead invasion. To estimate the impact of medusahead invasion, vegetation characteristics were compared between invaded and noninvaded Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) steppe communities that had similar soils, topography, climate, and management. Noninvaded plant communities had greater cover and density of all native herbaceous functional groups compared to medusahead-invaded communities (P < 0.01). Large perennial grass cover was 15-fold greater in the noninvaded compared to invaded plant communities. Sagebrush cover and density were greater in the noninvaded compared to the medusahead-invaded communities (P < 0.01). Biomass production of all native herbaceous functional groups was higher in noninvaded compared to invaded plant communities (P < 0.02). Perennial and annual forb biomass production was 1.9- and 45-fold more, respectively, in the noninvaded than invaded communities. Species richness and diversity were greater in the noninvaded than invaded plant communities (P < 0.01). The results of this study suggest that medusahead invasion substantially alters vegetation characteristics of sagebrush steppe plant communities, and thereby diminishes wildlife habitat, forage production, and ecosystem functions. Because of the broad negative influence of medusahead invasion, greater efforts should be directed at preventing its continued expansion.  相似文献   

3.
Seeding is a key management tool for arid rangeland. In these systems, however, seeded species often fail to establish. A recent study in Wyoming big sagebrush steppe suggested that over 90% of seeded native grass individuals die before seedlings emerged. This current study examines the timing and rate of seed germination, seedling emergence, and seedling death related to this demographic bottleneck. We seeded monocultures of two native perennial bunchgrasses, Pseudoroegenaria spicata (Pursh) Á. Löve and Elymus elymoides (Raf.) Swezey, and one introduced bunchgrass, Agropyron desertorum (Fisch. ex Link) Schult., in 2007, 2008, and 2009 and tracked sown seed and seedling fate. Across the study years and species we found that germination was rapid and high, with species obtaining 50% germination by December, less than 2 mo after planting. Emergence of germinated seed did not occur until late February for A. desertorum and March for the two native grasses. In 2007 the majority of emergence and death was constrained to several weeks, whereas in 2008 and 2009 emergence and death was distributed across several months. The timing of seedling emergence did not influence survival probability or midday plant water potential (probability of exceedance &spilt; 0.05). Survival probabilities once seedlings emerged were greater for native species (0.71) than A. desertorum (0.51) in 2 of the 3 study yr (probability of exceedance &spigt; 0.98). The early germination of grasses following fall seeding, and the long 2- to 3-mo period that germinated grass seed remain in the soil before emerging, support the hypothesis that seedling recruitment might be limited largely by ecological processes and conditions during winter or early spring (such as soil freeze–thaw events, seed pathogens, or physical crusts). Delaying seeding to early winter or spring and other management tools that mitigate these factors driving this bottleneck might greatly improve restoration outcomes in these systems.  相似文献   

4.
As part of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), butterflies were surveyed pretreatment and up to 4 yr posttreatment at 16 widely distributed sagebrush steppe sites in the interior West. Butterfly populations and communities were analyzed in response to treatments (prescribed fire, mechanical, herbicide) designed to restore sagebrush steppe lands encroached by piñon-juniper woodlands (Pinus, Juniperus spp.) and invaded by cheatgrass (Bromus tectorum). Butterflies exhibited distinct regional patterns of species composition, with communities showing marked variability among sites. Some variation was explained by the plant community, with Mantel's test indicating that ordinations of butterfly and plant communities were closely similar for both woodland sites and lower-elevation treeless (sage-cheat) sites. At woodland sites, responses to stand replacement prescribed fire, clear-cutting, and tree mastication treatments applied to 10–20-ha plots were subtle: 1) no changes were observed in community structure; 2) Melissa blues (Plebejus melissa) and sulfurs (Colias spp.) increased in abundance after either burning or mechanical treatments, possibly due to increase in larval and nectar food resource, respectively; and 3) the juniper hairstreak (Callophrys gryneus) declined at sites at which it was initially present, probably due to removal of its larval food source. At sage-cheat sites, after prescribed fire was applied to 25–75-ha plots, we observed 1) an increase in species richness and abundance at most sites, possibly due to increased nectar resources for adults, and 2) an increase in the abundance of skippers (Hesperiidae) and small white butterflies. Linkages between woody species removal, the release of herbaceous vegetation, and butterfly response to treatments demonstrate the importance of monitoring an array of ecosystem components in order to document the extent to which management practices cause unintended consequences.  相似文献   

5.
There is limited information about the effects of cattle grazing to longer-term plant community composition and herbage production following fire in sagebrush steppe. This study evaluated vegetation response to cattle grazing over 7 yr (2007–2013) on burned Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments, replicated four times and applied in a randomized complete block design, included no grazing on burned (nonuse) and unburned (control) sagebrush steppe; and cattle grazing at low (low), moderate (moderate), and high (high) stocking on burned sagebrush steppe. Vegetation dynamics were evaluated by quantifying herbaceous (canopy and basal cover, density, production, reproductive shoot weight) and shrub (canopy cover, density) response variables. Aside from basal cover, herbaceous canopy cover, production, and reproduction were not different among low, moderate, and nonuse treatments. Perennial bunchgrass basal cover was about 25% lower in the low and moderate treatments than the nonuse. Production, reproductive stem weight, and perennial grass basal cover were greater in the low, moderate, and nonuse treatments than the control. The high treatment had lower perennial bunchgrass cover (canopy and basal) and production than other grazed and nonuse treatments. Bunchgrass density remained unchanged in the high treatment, not differing from other treatments, and reproductive effort was comparable to the other treatments, indicating these areas are potentially recoverable by reducing stocking. Cover and production of Bromus tectorum L. (cheatgrass) did not differ among the grazed and nonuse treatments, though all were greater than the control. Cover and density of A.t. spp. wyomingensis did not differ among the burned grazed and nonuse treatments and were less than the control. We concluded that light to moderate stocking rates are compatible to sustainable grazing of burned sagebrush steppe rangelands.  相似文献   

6.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an invasive annual grass that reduces biodiversity and production of rangelands. To prevent medusahead invasion land managers need to know more about its invasion process. Specifically, they must know about 1) the timing and spatial extent of medusahead seed dispersal and 2) the establishment rates and interactions with plant communities being invaded. The timing and distance medusahead seeds dispersed from invasion fronts were measured using seed traps along 23 35-m transects. Medusahead establishment was evaluated by introducing medusahead at 1, 10, 100, 1 000, and 10 000 seeds · m−2 at 12 sites. Most medusahead seeds dispersed less than 0.5 m from the invasion front (P < 0.01) and none were captured beyond 2 m. Medusahead seeds dispersed from the parent plants from early July to the end of October. More seeds were trapped in August than in the other months (P < 0.01). Medusahead establishment increased with higher seed introduction rates (P < 0.01). Medusahead density was negatively correlated to tall tussock perennial grass density and positively correlated to annual grass density of the preexisting plant communities (P = 0.02). Medusahead cover was also negatively correlated with tall tussock perennial grass density (P = 0.03). The results suggest that containment barriers around medusahead infestations would only have to be a few meters wide to be effective. This study also suggests that promoting or maintaining tall tussock perennial grass in areas at risk of invasion can reduce the establishment success of medusahead. Tall tussock perennial grass and annual grass density, in combination with soil data, may be useful in predicting susceptibility to medusahead invasion.  相似文献   

7.
Prescribed fire in rangeland ecosystems is applied for a variety of management objectives, including enhancing productivity of forage species for domestic livestock. In the big sagebrush (Artemisia tridentata Nutt.) steppe of the western United States, fire has been a natural and prescribed disturbance, temporarily shifting vegetation from shrub–grass codominance to grass dominance. There is limited information on the impacts of grazing to community dynamics following fire in big sagebrush steppe. This study evaluated cattle grazing impacts over four growing seasons after prescribed fire on Wyoming big sagebrush (Artemisia tridentata subsp. Wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments included no grazing on burned and unburned sagebrush steppe, two summer-grazing applications after fire, and two spring-grazing applications after fire. Treatment plots were burned in fall 2002. Grazing trials were applied from 2003 to 2005. Vegetation dynamics in the treatments were evaluated by quantifying herbaceous canopy cover, density, annual yield, and perennial grass seed yield. Seed production was greater in the ungrazed burn treatments than in all burn–grazed treatments; however, these differences did not affect community recovery after fire. Other herbaceous response variables (cover, density, composition, and annual yield), bare ground, and soil surface litter did not differ among grazed and ungrazed burn treatments. All burn treatments (grazed and ungrazed) had greater herbaceous cover, herbaceous standing crop, herbaceous annual yield, and grass seed production than the unburned treatment by the second or third year after fire. The results demonstrated that properly applied livestock grazing after low-severity, prescribed fire will not hinder the recovery of herbaceous plant communities in Wyoming big sagebrush steppe.  相似文献   

8.
Woodland encroachment on United States rangelands has altered the structure and function of shrub steppe ecosystems. The potential community structure is one where trees dominate, shrub and herbaceous species decline, and rock cover and bare soil area increase and become more interconnected. Research from the Desert Southwest United States has demonstrated areas under tree canopies effectively store water and soil resources, whereas areas between canopies (intercanopy) generate significantly more runoff and erosion. We investigated these relationships and the impacts of tree encroachment on runoff and erosion processes at two woodland sites in the Intermountain West, USA. Rainfall simulation and concentrated flow methodologies were employed to measure infiltration, runoff, and erosion from intercanopy and canopy areas at small-plot (0.5 m2) and large-plot (13 m2) scales. Soil water repellency and vegetative and ground cover factors that influence runoff and erosion were quantified. Runoff and erosion from rainsplash, sheet flow, and concentrated flow processes were significantly greater from intercanopy than canopy areas across small- and large-plot scales, and site-specific erodibility differences were observed. Runoff and erosion were primarily dictated by the type and quantity of ground cover. Litter offered protection from rainsplash effects, provided rainfall storage, mitigated soil water repellency impacts on infiltration, and contributed to aggregate stability. Runoff and erosion increased exponentially (r2 = 0.75 and 0.64) where bare soil and rock cover exceeded 50%. Sediment yield was strongly correlated (r2 = 0.87) with runoff and increased linearly where runoff exceeded 20 mm·h?1. Measured runoff and erosion rates suggest tree canopies represent areas of hydrologic stability, whereas intercanopy areas are vulnerable to runoff and erosion. Results indicate the overall hydrologic vulnerability of sagebrush steppe following woodland encroachment depends on the potential influence of tree dominance on bare intercanopy expanse and connectivity and the potential erodibility of intercanopy areas.  相似文献   

9.
Western juniper (Juniperus occidentalis Hook.) has expanded into sagebrush steppe plant communities the past 130 ? 150 yr in the northern Great Basin. The increase in juniper reduces herbage and browse for livestock and big game. Information on herbaceous yield response to juniper control with fire is limited. We measured herbaceous standing crop and yield by life form in two mountain big sagebrush communities (MTN1, MTN2) and a Wyoming/basin big sagebrush (WYOBAS) community for 6 yrs following prescribed fire treatments to control western juniper. MTN1 and WYOBAS communities were early-successional (phase 1) and MTN2 communities were midsuccessional (phase 2) woodlands before treatment. Prescribed fires killed all juniper and sagebrush in the burn units. Total herbaceous and perennial bunchgrass yields increased 2 to 2.5-fold in burn treatments compared with unburned controls. Total perennial forb yield did not differ between burns and controls in all three plant communities. However, tall perennial forb yield was 1.6- and 2.5-fold greater in the WYOBAS and MTN2 burned sites than controls. Mat-forming perennial forb yields declined by 80 ? 90% after burning compared with controls. Cheatgrass yield increased in burned WYOBAS and MTN2 communities and at the end of the study represented 10% and 22% of total yield, respectively. Annual forbs increased with burning and were mainly composed of native species in MTN1 and MTN2 communities and non-natives in WYOBAS communities. Forage availability for livestock and wild ungulates more than doubled after burning. The additional forage provided on burned areas affords managers greater flexibility to rest and treat additional sagebrush steppe where juniper is expanding, as well as rest or defer critical seasonal habitat for wildlife.  相似文献   

10.
Cover and yield are two of the most commonly monitored plant attributes in rangeland vegetation surveys. These variables are usually highly correlated and many previous authors have suggested point-intercept estimates of plant cover could be used as a surrogate for more expensive and destructive methods of estimating plant biomass. When measurement variables are highly correlated, double sampling can be used to prestratify variability in the measurement that is more difficult or costly to obtain, thus improving sampling efficiency. The objective of this study was to examine the cost effectiveness of using point-intercept data to prestratify variability in subsequent clipped-biomass sampling on a sagebrush–bunchgrass rangeland site in southern Idaho. Point-intercept and biomass data were obtained for shrub, grass, and forb vegetation in 90 1-m2 plots. These data were used to develop a synthetic population of 10 000 simulated plots for conducting sensitivity analysis on alternative double-sampling scenarios. Monte Carlo simulation techniques were used to determine the effect of sampling design on cost and variability of biomass estimates as a function of point-intercept sample size (i), number of point-intercept sample strata (s), and number of biomass samples per stratum (m). Minimization of variability in biomass estimates were always obtained from double-sampling scenarios in which a single median biomass estimate was obtained for a given stratum in the point-intercept data. Double-sampling strategies in which half of the point-intercept plots were also measured for biomass yielded a cost savings of 39% with a reduction in biomass-sample precision of 18% ± 4 SD. The relative loss of precision in biomass estimates (62% ± 12 SD) became equal to the relative cost savings of double sampling for scenarios in which the ratio of point-intercept/biomass samples exceeded a value of five.  相似文献   

11.
Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S.L. Welsh) plant communities of the Intermountain West have been greatly reduced from their historic range as a result of wildfire, agronomic practices, brush control treatments, and weed invasions. The impact of prescribed fall burning Wyoming big sagebrush has not been well quantified. Treatments were sagebrush removed with burning (burned) and sagebrush present (control). Treatments were applied to 0.4-ha plots at 6 sites. Biomass production, vegetation cover, perennial herbaceous vegetation diversity, soil water content, soil inorganic nitrogen (NO-3, NH+4), total soil nitrogen (N), total soil carbon (C), and soil organic matter (OM) were compared between treatments in the first 2 years postburn. In 2003 and 2004, total (shrub and herbaceous) aboveground annual biomass production was 2.3 and 1.2 times greater, respectively, in the control compared to the burned treatment. In the upper 15 cm of the soil profile, inorganic N concentrations were greater in the burned than control treatment, while soil water, at least in the spring, was greater in the control than burned treatment. Regardless, greater herbaceous aboveground annual production and cover in the burned treatment indicated that resources were more available to herbaceous vegetation in the burned than the control treatment. Exotic annual grasses did not increase with the burn treatment. Our results suggest in some instances that late seral Wyoming big sagebrush plant communities can be prescribed fall burned to increase livestock forage or alter wildlife habitat without exotic annual grass invasion in the first 2 years postburn. However, long-term evaluation at multiple sites across a larger area is needed to better quantify the effects of prescribed fall burning on these communities. Thus, caution is advised because of the value of Wyoming big sagebrush plant communities to wildlife and the threat of invasive plants.  相似文献   

12.
Evaluating vegetation cover is an important factor in understanding the sustainability of many ecosystems. Remote sensing methods with sufficient accuracy could dramatically alter how biotic resources are monitored on both public and private lands. Idaho National Laboratory (INL), in conjunction with the University of Idaho, evaluated whether unmanned aerial vehicles (UAVs) are sufficiently accurate and more efficient than the point-frame field method for monitoring vegetative cover and bare ground in sagebrush steppe ecosystems. These values are of interest to land managers because typically there are limited natural resource scientists and funding for comprehensive ground evaluations. In this project, unmanned helicopters were used to collect still-frame imagery to determine vegetation cover during June and July 2005. The images were used to estimate percent cover for six vegetative cover classes (shrub, dead shrub, grass, forbs, litter, and bare ground). Field plots used to collect imagery and on-the-ground measurements were located on the INL site west of Idaho Falls, Idaho. Ocular assessments of digital imagery were performed using SamplePoint, and the results were compared with field measurements collected using a point-frame method. The helicopter imagery evaluation showed a high degree of agreement with field cover class values for grass, litter, and bare ground and reasonable agreement for dead shrubs. Shrub cover was often overestimated, and forbs were generally underestimated. The helicopter method took 45% less time than the field method. This study demonstrates that UAV technology provides a viable method for monitoring selective types of cover on rangelands and could save time and resources.  相似文献   

13.
14.
Postfire succession in mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) ecosystems results in a gradual shift from herbaceous dominance to dominance by shrubs. Determining the quality, quantity, and distribution of carbon (C) in rangelands at all stages of succession provides critical baseline data for improving predictions about how C cycling will change at all stages of succession under altered climate conditions. This study quantified the mass and distribution of above- and belowground (to 1.8-m depth) biomass at four successional stages (2, 6, 20, and 39 yr since fire) in Wyoming to estimate rates of C pool accumulation and to quantify changes in ecosystem carbon to nitrogen (C∶N) ratios of the pools during recovery after fire. We hypothesized that biomass C pools would increase over time after fire and that C∶N ratios would vary more between pools than during succession. Aboveground and live coarse roots (CR) biomass increased to 310 and 17 g C · m?2, but live fine roots (FR) mass was static at about 225 g C · m?2. Fine litter (≤ 1-cm diameter) accounted for about 70% of ecosystem C accumulation rate, suggesting that sagebrush leaves decompose slowly and contribute to a substantial soil organic carbon (SOC) pool that did not change during the 40 yr studied. Total ecosystem C (not including SOC) increased 16 g · m?2 · yr?1 over 39 yr to a maximum of 1 100 g · m?2; the fastest accumulation occurred during the first 20 yr. C∶N ratios ranged from 11 for forb leaves to 110 for large sagebrush wood and from 85 for live CR to 12 for bulk soil and were constant across growth stages. These systems may be resilient to grazing after fire because of vigorous regrowth of persistent bunchgrasses and stable pools of live FR and SOC.  相似文献   

15.
Downy brome or cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae) are the most problematic invasive annual grasses in rangelands of the western United States, including sagebrush communities that provide habitat to sage grouse. Rehabilitation of infested sites requires effective weed control strategies combined with seeding of native plants or desirable competitive species. In this study, we evaluated the effect of three fall-applied pre-emergence herbicides (imazapic, rimsulfuron, and chlorsulfuron + sulfometuron), and one spring-applied postemergence herbicide (glyphosate) on the control of downy brome and medusahead and the response of seeded perennial species and resident vegetation in two sagebrush communities in northeastern California. All pre-emergence treatments gave > 93% control of both invasive species at both sites in the first year. Glyphosate was less consistent, giving > 94% control at one site and only 61% control of both species at the other site. Imazapic was the only herbicide to maintain good control (78–88%) of both species 2 yr after treatment. No herbicide caused detectible long-term damage to either perennial grasses or annual forbs, and imazapic treatment resulted in an increase in resident native forb cover 3 yr after treatment. Broadcast seeding with or without soil incorporation did not result in successful establishment of perennial species, probably due to below-average precipitation in the year of seeding. These results indicate that several chemical options can give short-term control of downy brome and medusahead. Over the course of the study, imazapic provided the best management of both invasive annual grasses while increasing native forb cover.  相似文献   

16.
Soil freeze-thaw cycles can result in soil surface crusting, pedestaling, and movement. This study was undertaken to quantify the amount of heaving and soil moisture migration in a silt loam soil from the sagebrush steppe. Soil columns containing silt loam soil with moisture treatments of 26%, 34%, 42%, or 50% water content and initial temperatures of 9o C or 20o C were exposed to ? 7o C for 18 h, which did not completely freeze the soil to full depth. Moisture redistribution amounts of 10% to 20% were observed in treatments above field capacity. Surface saturation was observed after freezing with treatments of 42% and 50% water volume. Soil heaving of up to 0.5 cm was observed after one freezing event.  相似文献   

17.
Remotely sensed data products depicting physical and ecological attributes of a landscape are becoming invaluable tools in wildlife and rangeland management. However, if such geospatial tools and data layers are to be used in management, their accuracy and appropriateness for such use needs to be vetted and validated. We assessed accuracy of two National Land Cover Database (NLCD) shrubland products for use in western South Dakota—percent sagebrush and sagebrush height—by comparing them to ground-truthed data. Western South Dakota sagebrush communities are an ecotone between sagebrush (Artemisia spp.) and grassland. This ecotone is typified by shorter- and lower-density sagebrush than interior sagebrush steppe ecosystem. This distinction could make it difficult to remotely detect and map sagebrush in this area. We determined NLCD correlations with ground estimates of sagebrush canopy cover (r = 0.17) and sagebrush height (r = 0.40). The NLCD percent sagebrush accurately predicted sagebrush presence ∼73‒76% of the time once resampled to 100-m pixels and 50-m mean values, respectively. Cohen’s kappa values were estimated to determine if the ground-truthed and remoted-sensed data were in agreement when determining sagebrush presence. Kappa values were 0.26 ± 0.06 and 0.28 ± 0.06 for mean values within 50-m and resampled 100-m pixels, respectively, indicating a “fair” level of agreement between the ground-truthed and remote-sensed data types when determining presence of sagebrush. The NLCD data sufficiently described the presence of sagebrush in South Dakota, which is useful for estimating geographic distributions of sagebrush obligate species, species distribution models in which presence or absence of sagebrush is of interest, or mapping the occurrence of sagebrush in South Dakota. Inaccuracies of the NLCD shrubland products in predicting sagebrush height and sagebrush canopy cover may limit their utility as continuous variables in species distribution models, habitat selection, and suitability models or when assessing rangeland quality in South Dakota.  相似文献   

18.
State-and-transition models (STMs), conceptual models of vegetation change based on alternate state theory, are increasingly applied as tools for land management decision-making. As STMs are created throughout the United States, it is crucial to ensure that they are supported by ecological evidence. Plant species composition reflects ecosystem processes that are difficult to measure and may be a useful indicator of alternate states. This study aims to create data-driven STMs based on plant species composition for two ecological sites (Claypan and Mountain Loam) in northwestern Colorado sagebrush steppe. We sampled 76 plots with different management and disturbance histories. Drawing on the hierarchical approach currently taken to build STMs, we hypothesized that A) differences in species composition between the two ecological sites would be related to environmental factors and B) differences in species composition within each ecological site would be related to management and disturbance history. Relationships among species composition, site history, and environmental variables were evaluated using multivariate statistics. We found that between ecological sites, species composition was related to differences in soil texture, supporting Hypothesis A and the creation of separate STMs for each site. Within ecological sites, species composition was related to site history and also to environmental variation. This finding partially supports Hypothesis B and the identification of alternate states using species composition, but also suggests that these ecological sites are not uniform physical templates upon which plant community dynamics play out. This data-driven, plant species–based approach created two objective, credible STMs with states and transitions that are consistent with the sagebrush steppe literature. Our findings support the hierarchical view of landscapes currently applied in building STMs. An approach that acknowledges environmental heterogeneity within ecological sites is necessary to help define finer-resolution ecological sites and elucidate cases in which specific abiotic conditions make transitions between states more likely.  相似文献   

19.
In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species including sage grouse and pygmy rabbit. Improved methods of monitoring these habitats are needed because not enough resource specialists or funds are available for comprehensive on-the-ground evaluations. In this project, two UAV platforms, fixed-wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to 1) estimate percentage of cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and 2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Laboratory site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percentage of cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号