首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prescribed fire is used to reduce the rate of woody plant encroachment in grassland ecosystems. However, fire is challenging to apply in continuously grazed pastures because of the difficulty in accumulating sufficient herbaceous fine fuel for fire. We evaluated the potential of rotationally grazing cattle in fenced paddocks as a means to defer grazing in selected paddocks to provide fine fuel for burning. Canopy cover changes from 1995 to 2000 of the dominant woody plant, honey mesquite (Prosopis glandulosa Torr.), were compared in three landscape-scale grazing and mesquite treatment restoration strategies: 4-paddock, 1-herd with fire (4:1F), 8-paddock, 1-herd with fire (8:1F), and 4:1 with fire or aerial application of 0.28 kg · ha?1 clopyralid + 0.28 kg · ha?1 triclopyr herbicide (4:1F/H), and a continuously grazed control with mesquite untreated (CU). Prescribed burning took place in late winter (February–March). Droughts limited burning during the 5-yr period to half the paddocks in the 4:1F and 8:1F strategies, and one paddock in each 4:1F/H strategy. Mesquite cover was measured using digitized aerial images in 1995 (pretreatment) and 2000. Mesquite cover was reduced in all paddocks that received prescribed fire, independent of grazing strategy. Net change in mesquite cover in each strategy, scaled to account for soil types and paddock sizes, was +34%, +15%, +5%, and -41% in the CU, 4:1F, 8:1F, and 4:1F/H strategies, respectively. Thus, rotational grazing and fire strategies slowed the rate of mesquite cover increase but did not reduce it. Fire was more effective in the 8:1F than the 4:1F strategy during drought because a smaller portion of the total management area (12.5% vs. 25%) could be isolated to accumulate fine fuel for fire. Herbaceous fine fuel and relative humidity were the most important factors in determining mesquite top-kill by fire.  相似文献   

2.
3.
Beef cattle production from rangelands in the Southern Great Plains has decreased in concert with herbaceous forage production declines in response to woody plant encroachment by honey mesquite (Prosopis glandulosa Torr.) over the past 120 yr. Combinations of livestock overstocking and fire suppression are considered to be primary drivers of these changes. This experiment evaluated cow–calf production responses over a 7-yr (1995–2001) period to ranch-scale (1 294–2 130 ha) integrated restoration strategies involving prescribed fire and grazing management. Restoration strategies tested in this year-round grazing ecosystem were 4-pasture, 1-herd rotation with fire (25% of pasture acreage burned each year; 4:1F); an 8-pasture, 1-herd rotation, with fire (8:1F); and a 4-pasture, 1-herd, with fire and aerial application of 0.28 kg · ha?1 clopyralid + 0.28 kg · ha?1 triclopyr herbicide (4:1F / H). Restoration strategies were compared to a continuous grazing strategy with no mesquite treatment. All cattle stocking rates were moderate (7.5–15 ha · animal unit?1 · year?1) and all fires were applied during late winter. Beef cattle (cow–calf) production variables measured included conception rate, weaned calf percentage, weaning weight, weight of calf per exposed cow, weight of calf per hectare, and supplement fed per cow. We observed significant differences in beef production among strategies primarily during the first 2 yr where the continuous grazing strategy exhibited better overall livestock production than the integrated restoration strategies. Differences in livestock production among strategies were minimal over the last 5 yr of the study. These livestock production results suggest livestock and management adapted to restoration strategies after the first 2 yr. Results point to the need to cautiously transition into integrated grazing and fire restoration strategies when cattle and management are changed and intensified from prior historical protocols.  相似文献   

4.
This study quantified herbaceous biomass responses to increases in honey mesquite (Prosopis glandulosa Torr.) cover on two soils from 1995 to 2001 in north central Texas. Vegetation was sampled randomly with levels of mesquite ranging from 0% to 100%. With no mesquite covering the silt loam soils of bottomland sites, peak herbaceous biomass averaged (±SE) 3 300 ± 210 kg · ha−1 vs. 2 560 ± 190 kg · ha−1 on clay loam soils of upland sites (P = 0.001). A linear decline of 14 ± 2.5 kg · ha−1 in herbaceous biomass occurred for each percent increase in mesquite cover (P = 0.001). The slope of this decline was similar between soils (P = 0.135). Herbaceous biomass with increasing mesquite cover varied between years (P = 0.001) as did the slope of decline (P = 0.001). Warm-season herbaceous biomass decreased linearly with increasing mesquite cover averaging a 73 ± 15% reduction at 100% mesquite cover (P = 0.001) compared to 0% mesquite cover. Cool-season herbaceous biomass was similar between soils with no mesquite, 1 070 ± 144 kg · ha−1 for silt loam vs. 930 ± 140 kg · ha−1 for clay loam soils, but averaged 340 ± 174 kg · ha−1 more on silt loam than on clay loam soils at 100% mesquite cover (P = 0.004). Multiple regression analysis indicated that each centimeter of precipitation received from the previous October through the current September produced herbaceous biomass of 51 kg · ha−1 on silt loam and 41 kg · ha−1 on clay loam soils. Herbaceous biomass decreased proportionally with increasing mesquite cover up to 29 kg · ha−1 at 100% mesquite cover for each centimeter of precipitation received from January through September. Increasing mesquite cover reduces livestock forage productivity and intensifies drought effects by increasing annual herbaceous biomass variability. From a forage production perspective there is little advantage to having mesquite present.  相似文献   

5.
Domestic herbivores’ effect on vegetation is spatially heterogeneous, being one of the major causes of forage resources degradation. It has been proposed that paddock size controls grazing impact’s heterogeneity because as size decreases, herbivores’ utilization is spatially more even. However, this has not been critically evaluated in commercial-scale paddocks isolating paddock size effects from other factors influencing the interaction between herbivores and vegetation. Here we assessed how paddock size mediates the heterogeneity of continuous sheep grazing effects on vegetation, at constant stocking rate in Patagonian steppes. We selected three small (ca. 110 ha) and three large (ca. 1 100 ha) paddocks dominated by the same plant community. All paddocks contained a single watering point and presented similar shape. Total and specific plant cover, vegetation patchiness, population size distribution of dominant grass species, plant morphology, and sheep feces density were estimated at increasing distances from watering points. Relationships between vegetation variables and distance from the watering point were in most cases asymptotic exponential, although responses generally differed between small and large paddocks. In small paddocks, vegetation variables mostly reached a plateau at a short distance from the watering point (~ 200 m). Instead, in large paddocks, the changes in vegetation variables were larger and more gradual, and reached a plateau at much greater distances (~ 2 000 m). Vegetation heterogeneity throughout the paddock was lower in small than large paddocks. Our findings suggest that paddock size mediates the spatial pattern of grazing effects on vegetation. Reducing paddock size decreases grazing impacts spatial heterogeneity, which makes plant-animal interactions more predictable and might improve forage utilization efficiency.  相似文献   

6.
There has been increasing interest in the use of summer fires to limit woody plant encroachment on grasslands, but information regarding effects of such fires on perennial grass recovery and annual forb production is also needed. Our objective was to examine effects of fire seasonality and intensity on the woody legume honey mesquite (Prosopis glandulosa Torr.), the C4 midgrass tobosagrass (Pleuraphis mutica Buckl.), and the annual forb common broomweed (Amphiachyris dracunculoides [DC.] Nutt.). Treatments included summer fires, high-intensity winter fires, low-intensity winter fires, and no burn in replicated plots. None of the fire treatments caused whole-plant mortality (root kill) in mesquite. Mesquite aboveground mortality (top kill) was much greater after summer and high-intensity winter fires than low-intensity winter fires. Tobosagrass total yield (live + dead) was lower following summer fires and was not enhanced by any of the fire treatments for two growing seasons postfire when compared to the no-burn condition. However, tobosagrass live yield was 40% greater in the high-intensity winter fire treatment than the no-burn condition the first summer postfire and recovered in the other fire treatments by the end of the first growing season postfire. Tobosagrass percentage of live tissue was greatest in the summer fire treatment at the end of each of the two growing seasons postfire. Common broomweed cover increased in the summer fire treatment and decreased in both winter fire treatments relative to the no-burn condition by the end of the first growing season postfire. Summer fire offered no clear advantage over high-intensity winter fire with respect to mesquite suppression. However, the increase in late-season tobosagrass percentage live tissue caused by summer fire may be advantageous for forage quality. In addition, patch burning summer fires to increase broomweed cover in selected areas may be useful for wildlife habitat.  相似文献   

7.
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3–23.6 Mg · ha?1; between 32% and 92% of the total loading was composed of live and dead big sagebrush. Fuel consumption ranged from 0.8–22.3 Mg · ha?1, which equates to 11–99% of prefire loading (mean = 59%). Model predictors include prefire shrub loading, proportion of area burned, and season of burn for shrub fuels (R2 = 0.91). Models for predicting proportion of area burned for spring and fall fires were also developed (R2 = 0.64 and 0.77 for spring and fall fire models, respectively). Proportion of area burned, an indicator of the patchiness of the fire, was best predicted from the coverage of the herbaceous vegetation layer, wind speed, and slope; for spring fires, day-of-burn 10-h woody fuel moisture content was also an important predictor variable. Models predicted independent shrub consumption measurements within 8.1% (fall) and 12.6% (spring) for sagebrush fires.  相似文献   

8.
Plant demographic responses to an experimental summer fire were monitored for 12 yr on the Sevilleta National Wildlife Refuge, New Mexico, to determine recovery rates of burned plants and evaluate fire effectiveness in preventing shrub invasion of desert grasslands. Fourteen common species of grasses, shrubs, yucca, and cacti were measured for mortality, resprouting, regrowth, herbivory, and reproduction. After the first postfire growing season, black grama (Bouteloua eriopoda [Torr.] Torr.) declined 80% in size, whereas blue grama (Bouteloua gracilis [Willd. ex Kunth] Lag. ex Griffiths) exhibited no decline. Linear regression indicated that B. eriopoda needed 11 yr to recover. Spike dropseed (Sporobolus contractus A.S. Hitchc.) and purple three-awn (Aristida purpurea Nutt.) showed postfire declines in plant sizes, requiring 4- and > 5-yr recovery times, respectively. Sand muhly (Muhlenbergia arenicola Buckl.) exhibited no fire impact. Snakeweed (Gutierrezia sarothrae [Pursh] Britt. & Rusby) sustained 61% fire mortality and reduction in regrowth canopy size. Creosotebush (Larrea tridentata [Sesse & Moc. ex DC.] Coville) had 12% mortality, but survivors recovered over 12 yr. Fourwing saltbush (Atriplex canescens [Pursh] Nutt.) sustained 62% mortality, but recovered plant size in 5–6 yr. Winterfat (Krascheninnikovia lanata [Pursh] A. D. J. Meeuse & Smit) suffered 7% mortality, but required 9+ yr to recover. Pale desert-thorn (Lycium pallidum Miers) survived fire, recovering prefire canopy size in 3 yr. Torrey joint-fir (Ephedra torreyana Watson) exhibited < 1% mortality, and recovered in 2–3 yr. Soapweed yucca (Yucca glauca Nutt.) had < 2% mortality, recovered plant sizes in 2 yr, and increased numbers of rosettes 17%. Chollas (Opuntia imbricata [Haw.] DC. and Opuntia clavata Engelm.) suffered high mortality rates and required > 12 yr recovery times. Results demonstrated that summer fire may counter some shrub and cacti invasion in central New Mexico, but once shrubs mature, fire is less effective in removing woody plants to restore southwestern grasslands.  相似文献   

9.
Complete rest or grazing deferment is a general recommendation to encourage vegetative recovery following fire in the western United States. However, effects of grazing deferments on animal performance have not been determined. Prescribed fires were individually applied to nine separate, 1.5-ha pastures each year (2006 and 2007) for a total of 18 pastures. Grazing was deferred until spring (16 May), early summer (19 June), or late summer (1 August) the growing season after fire. At the end of each deferment, a 70-d (2007) or 41-d (2008) grazing period was initiated. Stocking rates were consistent between treatments within year, but were adjusted between years to achieve the targeted residual biomass of approximately 300 kg · ha?1. Diet quality was assessed approximately every 15 d throughout each grazing period (three pastures · period?1) via collection of rumen extrusa throughout the 2-yr study. Ewe body weight was measured on and off-test for each grazing period. Diet extrusa samples for in vitro organic matter disappearance was less (P = 0.03) for late summer than early summer grazing periods and equal to the spring period (62.9, 64.6, and 61.0 ± 0.90%, respectively for spring, early summer, and late summer grazing periods). In vitro neutral detergent fiber disappearance decreased (P = 0.01) by 10.6 percentage units from early grazing to late grazing period in 2007, whereas no differences were observed in 2008. Ewe average daily gain did not differ between spring and early summer grazing periods and were greater (P = 0.03) than the negligible body weight gains of the late summer grazing period. Total gain was 10.9 kg · ha?1 greater in 2008, and a quadratic response was measured for grazing period in 2007. Results indicate that deferment until early summer may be preferable so that stocking rates can be more accurately determined and animal performance is not diminished.  相似文献   

10.
Extensive woodland expansion in the Great Basin has generated concern regarding ecological impacts of tree encroachment on sagebrush rangelands and strategies for restoring sagebrush steppe. This study used rainfall (0.5 m2 and 13 m2 scales) and concentrated flow simulations and measures of vegetation, ground cover, and soils to investigate hydrologic and erosion impacts of western juniper (Juniperus occidentalis Hook.) encroachment into sagebrush steppe and to evaluate short-term effects of burning and tree cutting on runoff and erosion responses. The overall effects of tree encroachment were a reduction in understory vegetation and formation of highly erodible, bare intercanopy between trees. Runoff and erosion from high-intensity rainfall (102 mm · h?1, 13 m2 plots) were generally low from unburned areas underneath tree canopies (13 mm and 48 g · m?2) and were higher from the unburned intercanopy (43 mm and 272 g · m?2). Intercanopy erosion increased linearly with runoff and exponentially where bare ground exceeded 60%. Erosion from simulated concentrated flow was 15- to 25-fold greater from the unburned intercanopy than unburned tree canopy areas. Severe burning amplified erosion from tree canopy plots by a factor of 20 but had a favorable effect on concentrated flow erosion from the intercanopy. Two years postfire, erosion remained 20-fold greater on burned than unburned tree plots, but concentrated flow erosion from the intercanopy (76% of study area) was reduced by herbaceous recruitment. The results indicate burning may amplify runoff and erosion immediately postfire. However, we infer burning that sustains residual understory cover and stimulates vegetation productivity may provide long-term reduction of soil loss relative to woodland persistence. Simply placing cut-downed trees into the unburned intercanopy had minimal immediate impact on infiltration and soil loss. Results suggest cut-tree treatments should focus on establishing tree debris contact with the soil surface if treatments are expected to reduce short-term soil loss during the postcut understory recruitment period.  相似文献   

11.
Much interest lies in long-term recovery rates of sagebrush communities after fire in the western United States, as sagebrush communities comprise millions of hectares of rangelands and are an important wildlife habitat. Little is known about postfire changes in sagebrush canopy cover over time, especially at a landscape scale. We studied postfire recovery of shrub canopy cover in sagebrush-steppe communities with the use of spectral mixture analysis. Our study included 16 different fires that burned between 1937 and 2005 and one unburned site at the US Sheep Experiment Station in eastern Idaho. Spectral mixture analysis was used with September 2006 Systeme Pour l’Observation de la Terre-5 (SPOT-5) satellite imagery to estimate percent shrub canopy cover within pixels. Very large-scale aerial (VLSA) imagery with 24-mm resolution was used for training and validation. SPOT-5 image classification was successful and the spectral mixture analysis estimates of percent shrub canopy cover were highly correlated with the shrub canopy cover estimates in the VLSA imagery (R2 = 0.82; P < 0.0001). Additional accuracy assessment of shrub classification produced 85% overall accuracy, 98% user’s accuracy, and 78% producer’s accuracy. This successful application of spectral mixture analysis has important implications for the monitoring and assessment of sagebrush-steppe communities. With the use of the percent shrub canopy cover estimates from the classified SPOT-5 imagery, we examined shrub canopy recovery rates since different burn years. With the use of linear-plateau regression, it was determined that shrub cover in mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) communities recovered approximately 27 yr after fire, with an average shrub cover of 38%. These results are consistent with other field-based studies in mountain big sagebrush communities.  相似文献   

12.
Western juniper (Juniperus occidentalis Hook.) has expanded into sagebrush steppe plant communities the past 130 ? 150 yr in the northern Great Basin. The increase in juniper reduces herbage and browse for livestock and big game. Information on herbaceous yield response to juniper control with fire is limited. We measured herbaceous standing crop and yield by life form in two mountain big sagebrush communities (MTN1, MTN2) and a Wyoming/basin big sagebrush (WYOBAS) community for 6 yrs following prescribed fire treatments to control western juniper. MTN1 and WYOBAS communities were early-successional (phase 1) and MTN2 communities were midsuccessional (phase 2) woodlands before treatment. Prescribed fires killed all juniper and sagebrush in the burn units. Total herbaceous and perennial bunchgrass yields increased 2 to 2.5-fold in burn treatments compared with unburned controls. Total perennial forb yield did not differ between burns and controls in all three plant communities. However, tall perennial forb yield was 1.6- and 2.5-fold greater in the WYOBAS and MTN2 burned sites than controls. Mat-forming perennial forb yields declined by 80 ? 90% after burning compared with controls. Cheatgrass yield increased in burned WYOBAS and MTN2 communities and at the end of the study represented 10% and 22% of total yield, respectively. Annual forbs increased with burning and were mainly composed of native species in MTN1 and MTN2 communities and non-natives in WYOBAS communities. Forage availability for livestock and wild ungulates more than doubled after burning. The additional forage provided on burned areas affords managers greater flexibility to rest and treat additional sagebrush steppe where juniper is expanding, as well as rest or defer critical seasonal habitat for wildlife.  相似文献   

13.
Treatments to reduce shrub cover are commonly implemented with the objective of shifting community structure away from shrub dominance and toward shrub and perennial grass codominance. In sagebrush (Artemisia L.) ecosystems, shrub reduction treatments have had variable effects on target shrubs, herbaceous perennials, and non-native annual plants. The factors mediating this variability are not well understood. We used long-term data from Utah’s Watershed Restoration Initiative project to assess short-term (1  4 yr post-treatment) and long-term (5  12 yr post-treatment) responses of sagebrush plant communities to five shrub reduction treatments at 94 sites that span a range of abiotic conditions and sagebrush community types. Treatments were pipe harrow with one or two passes, aerator, and fire with and without postfire seeding. We analyzed effect sizes (log of response ratio) to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) communities, but in mountain big sagebrush (ssp. vaseyana [Rydb.] Beetle) communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses (largely invasive cheatgrass, Bromus tectorum L.) increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.  相似文献   

14.
Increases of velvet mesquite (Prosopis velutina Woot.) in southwestern grasslands might have been caused by livestock consumption of fuels that once burned with sufficient frequency and intensity to kill the trees. However, attempts to control mesquite with fire usually have failed. We measured fire damage and 5 years of postfire recovery for 225 mesquite trees > 1 m tall, following a 2002 wildfire that included grasslands differing in fire history, presence vs. 34-year livestock exclusion, and predominance of native vs. exotic grasses. The fire burned 100% of ground cover in ungrazed areas and 65% on grazed lands. Top-kill was 100% for trees in exotic ungrazed grasslands (the areas with highest fuel loads), 79% for trees in ungrazed native grasslands, and 28% for trees in grazed grasslands. Most top-killed trees produced ground sprouts, so that by 2006 the combined foliage volume from ground sprouts and surviving branches was 78% (± 3.2 SE) of preburn foliage volume in grazed areas, 66% (± 3.3) in ungrazed exotic grasslands, and 57% (± 4.0) in ungrazed native grasslands. Fire damage was greater among surviving trees in ungrazed areas that had burned twice (1987 and 2002) than among those that had burned only once since 1968 (in 2002), especially in native grasslands where postfire foliage recovery for twice-burned trees was only 47% (± 6.3) by 2006. Only 1 of 84 trees died in the area burned once, whereas 12 of 66 (18.2%) died in the area burned twice, including several individuals > 3 m tall. These results suggest that repeated fires likely could have prevented the historic spread of velvet mesquite into southwestern grasslands, but probably could be used to control mesquite today only in areas where abundant herbaceous growth provides sufficient fine fuels.  相似文献   

15.
Red brome (Bromus rubens), an exotic annual grass, can dominate soil seed banks and poses serious threats to mature native plant communities in the Mojave Desert by competing with native species and providing fine fuels that facilitate widespread wildfire. By exploring how seed bank density and composition in burned areas change over time since fire (TSF), we can improve our understanding of how the seed banks are affected by fire. Samples of the 5-cm-deep soil seed bank were collected from two microsites (under shrubs, in open interspaces) within paired burned and unburned areas on 12 fires ranging from 5–31 yr TSF. Seed bank samples were assayed using the emergence method and seed densities were compared among TSFs, burn status (burned, unburned), and microsites for the species that emerged. Red brome soil seed bank density was spatially variable and TSF rarely predicted abundance. Overall, undershrub seed densities did not differ between burned and unburned areas. However, at some fire sites, seed densities in interspaces were greater in burned than unburned areas. Although native seed densities were low overall, they did not appear to differ according to burn status. Studies have shown that red brome plant and seed bank densities can be greatly reduced immediately after fire. Management efforts that focus on this initial colonization window may be able to take advantage of diminished red brome seed densities to limit its reestablishment while facilitating the establishment of native species. However, this window is brief, as our findings indicate that once reestablished, red brome soil seed densities in burned areas can be similar to those in unburned areas within 5 yr.  相似文献   

16.
Invasive woody plant expansion is a primary threat driving fragmentation and loss of sagebrush (Artemisia spp.) and prairie habitats across the central and western United States. Expansion of native woody plants, including conifer (primarily Juniperus spp.) and mesquite (Prosopis spp.), over the past century is primarily attributable to wildfire suppression, historic periods of intensive livestock grazing, and changes in climate. To guide successful conservation programs aimed at reducing top-down stressors, we mapped invasive woody plants at regional scales to evaluate landscape level impacts, target restoration actions, and monitor restoration outcomes. Our overarching goal was to produce seamless regional products across sociopolitical boundaries with resolution fine enough to depict the spatial extent and degree of woody plant invasion relevant to greater sage-grouse (Centrocercus urophasianus) and lesser prairie-chicken (Tympanuchus pallidicinctus) conservation efforts. We mapped tree canopy cover at 1-m spatial resolution across an 11-state region (508 265 km2). Greater than 90% of occupied lesser prairie-chicken habitat was largely treeless for conifers (< 1% canopy cover), whereas > 67% was treeless for mesquite. Conifers in the higher canopy cover classes (16 ? 50% and > 50% canopy cover) were scarce (< 2% and 1% canopy cover), as was mesquite (< 5% and 1% canopy cover). Occupied habitat by sage-grouse was more variable but also had a relatively large proportion of treeless areas (x? = 71, SE = 5%). Low to moderate levels of conifer cover (1 ? 20%) were fewer (x? = 23, SE = 5%) as were areas in the highest cover class (> 50%; x? = 6, SE = 2%). Mapping indicated that a high proportion of invading woody plants are at a low to intermediate level. Canopy cover maps for conifer and mesquite resulting from this study provide the first and most geographically complete, high-resolution assessment of woody plant cover as a top-down threat to western sage-steppe and prairie ecosystems.  相似文献   

17.
Purple threeawn (Aristida purpurea Nutt. varieties) is a native grass capable of increasing on rangelands, forming near monocultures, and creating a stable state. Productive rangelands throughout the Great Plains and Intermountain West have experienced increases in purple threeawn abundance, reducing overall forage quality. Our objectives were to 1) reveal the effects of prescribed fire and nitrogen amendments on purple threeawn abundance and 2) assess nontarget plant response posttreatment. Season of fire (no fire, summer fire, fall fire) and nitrogen addition (0 kg N · ha?1, 46 kg N · ha?1, and 80 kg N · ha?1) were factorially arranged in a completely randomized design and applied to two similar sites in southeastern Montana. We evaluated fire and nitrogen effects on purple threeawn basal cover, relative composition, and current-year biomass one growing season postfire at two sites treated during different years. Spring weather following fire treatments was very different between years and subsequently impacted community response. Initial purple threeawn biomass at both sites was 1 214 ± 46 kg · ha?1 SEc. When postfire growing conditions were wet, current-year biomass of purple threeawn was reduced 90% and 73% with summer and fall fire, respectively. Under dry postfire growing conditions, purple threeawn current-year biomass was reduced 73% and 58% with summer and fall fire, respectively. Nitrogen additions had no effect on purple threeawn current-year biomass at either site. Current-year biomass of C3 perennial grass doubled with nitrogen additions and was not impacted by fire during a wet spring. Nitrogen additions and fire had no effect on C3 perennial grass current-year biomass following a dry spring. Prescribed fire appears to be a highly effective tool for reducing purple threeawn abundance on semiarid rangelands, with limited detrimental impacts to nontarget species.  相似文献   

18.
Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semiarid grasslands. We evaluated aboveground biomass, cover, and frequency response to summer, fall, and spring fires and no fire on silty and clayey sites in semiarid, C3-dominated grassland. The magnitude of change in biomass between years was greater than any differences among fire treatments. Still, differences existed among seasons of fire. Summer fire reduced non-native annual forb frequency (3% vs. 10% ± 2%) and Hesperostipa comata, reduced native annual forbs the first year, increased Poa secunda and bare ground, and increased Vulpia octoflora the second year. Fall fire increased grass biomass (1224 vs. 1058 ± 56 kg ? ha? 1), but fall fire effects were generally similar to those of summer fire. Spring fire effects tended to be intermediate between no fire and summer and fall fire with the exception that spring fire was most detrimental to H. comata the first growing season and did not increase bare ground. All seasons of fire reduced litter, forb biomass, and frequency of Bromus japonicus and Artemisia spp., and they reduced H. comata, V. octoflora, and native annual forbs the first year, but increased basal cover of C3 perennial grasses (2.2% vs. 0.6% ± 0.4%). Fire during any season increased dominance of native species compared with no fire (6.6% vs. 2.0% ± 1.0% basal cover) and maintained productivity. Seasonal timing of fire manipulated species composition, but increased C3 perennial grass cover and native species dominance with fire during any season indicated that using fire was more important than the season in which it occurred. In addition, fire effects on the vegetation components tended to be counter to previously observed effects of grazing, suggesting fire and grazing may be complementary.  相似文献   

19.
The objectives of the current study were to determine the amounts of above- and below-ground plant biomass production, P uptake by forage, and P concentration of cool-season grass forage as influenced by management and season. Five forage management treatments were evaluated over 3 years in smooth bromegrass (Bromus inermis Leyss) pastures. Management practices were: ungrazed (U), hay harvest/fall stockpile grazing (HS), rotational stocking to residual sward heights of 10 (10R) or 5 (5R) cm, and continuous stocking to maintain sward height at 5 cm (5C). Forage samples were hand-clipped within and outside grazing exclosures monthly from April through November of each year and analyzed for mass and P concentration. Root samples were collected at the initiation and completion of the study for determination of root length density (RLD) and root surface area density (RSAD). Phosphorus concentrations of forage outside the grazing exclosures did not differ among 5C, 5R, and 10R treatments, which were greater than U paddocks in April and August and less than HS paddocks in June. Mean annual forage productivity was greater in HS, 10R, 5R, and 5C paddocks (6 744 ± 62 kg · ha-1 mean ± SE) than in the U paddocks (1 872 ± 255 kg · ha-1). Mean P concentration of forage outside exclosures was greatest during the spring (0.21 ± 0.01%), and lowest during the fall (0.13 ± 0.01%). Mean annual P uptake by forage followed the same trend as forage production, being greater in the HS, 10R, 5R, and 5C paddocks (13.9 ±  kg · ha-1) than in the U paddocks (3.7 ±  kg · ha-1). After 3 years, RLD decreased in the ungrazed paddocks, but was unchanged in the HS, 10R, 5R, and 5C paddocks. Forage production and P uptake by forage is stimulated by forage harvest, either by grazing or hay harvest in smooth bromegrass pastures.  相似文献   

20.
Prescribed fire in rangeland ecosystems is applied for a variety of management objectives, including enhancing productivity of forage species for domestic livestock. In the big sagebrush (Artemisia tridentata Nutt.) steppe of the western United States, fire has been a natural and prescribed disturbance, temporarily shifting vegetation from shrub–grass codominance to grass dominance. There is limited information on the impacts of grazing to community dynamics following fire in big sagebrush steppe. This study evaluated cattle grazing impacts over four growing seasons after prescribed fire on Wyoming big sagebrush (Artemisia tridentata subsp. Wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments included no grazing on burned and unburned sagebrush steppe, two summer-grazing applications after fire, and two spring-grazing applications after fire. Treatment plots were burned in fall 2002. Grazing trials were applied from 2003 to 2005. Vegetation dynamics in the treatments were evaluated by quantifying herbaceous canopy cover, density, annual yield, and perennial grass seed yield. Seed production was greater in the ungrazed burn treatments than in all burn–grazed treatments; however, these differences did not affect community recovery after fire. Other herbaceous response variables (cover, density, composition, and annual yield), bare ground, and soil surface litter did not differ among grazed and ungrazed burn treatments. All burn treatments (grazed and ungrazed) had greater herbaceous cover, herbaceous standing crop, herbaceous annual yield, and grass seed production than the unburned treatment by the second or third year after fire. The results demonstrated that properly applied livestock grazing after low-severity, prescribed fire will not hinder the recovery of herbaceous plant communities in Wyoming big sagebrush steppe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号