首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract In 1993 and 1994, 40 cows in early lactation in early spring were assigned randomly to four feeding treatments. One group of cows was kept indoors with access to grass silage ad libitum, plus 6 kg of concentrate daily. The other three groups had access to grass pasture (5–6 h per day in 1993 and 11–12 h per day in 1994) plus grass silage similar to that fed to the previous group while indoors plus 6, 4 or 2 kg of concentrate daily. The average daily allocations of herbage (> 3·5 cm) were 8·5 and 14·0 kg DM cow?1 day?1 in 1993 and 1994 respectively. The treatments were applied for 8 weeks (26 February to 23 April) in 1993, and 7 weeks (11 March to 29 April) in 1994. Cows with access to pasture had lower (P < 0·001) silage dry‐matter (DM) intakes and higher (P < 0·001) total forage DM intakes in both years than those kept indoors. This resulted in significantly higher yields of milk, fat, protein and lactose. Similarly, milk protein concentration was higher (P < 0·05 in 1993; P < 0·001 in 1994). There was a significant linear increase in total DM intake in both years with increased concentrate supplementation. In 1993, there was a linear increase in milk (P < 0·01), fat (P < 0·01), protein (P < 0·001) and lactose (P < 0·01) yields with increased concentrate supplementation. In 1994, only milk protein yield (P < 0·05) was increased. Concentrate supplementation had no effect on milk composition or liveweight change. Cows with access to grazed grass had higher liveweight gains (P < 0·05) than those kept indoors in both years. In 1993, increasing the energy intake increased the processing qualities of the milk produced. The results showed that access to grass pasture resulted in higher milk production, in reduced silage requirement and in reduced level of concentrate supplementation required for a given level of milk production with spring‐calving cows in early lactation compared with those kept indoors.  相似文献   

2.
Two factorial design experiments were carried out in the spring of 1994 and 1995, each of 6 weeks, to quantify the effects of sward height (SH), concentrate level (CL) and initial milk yield (IMY) on milk production and grazing behaviour of continuously stocked dairy cows. In Experiment 1, forty‐five Holstein Friesian cows were in five groups with initial milk yields of 16·9, 21·1, 28·0, 31·5 and 35·5 kg d–1, grazed sward heights were 3–5, 5–7 and 7–9 cm (LSH, MSH and HSH respectively), and concentrates were fed at rates of 0, 3 and 6 kg d–1. In Experiment 2, 48 cows were in two groups with IMY of 21·3 and 35·5 kg d–1, grazed sward heights were 3–5 and 7–9 cm (LSH and HSH), and concentrates were fed at 0 and 6 kg d–1 and ad libitum. Multiple regression models were used to quantify the effects of the three variables on milk yield persistency (MYP), estimated herbage dry‐matter (DM) intake (HDMI), grazing time (GT) and rate of DM intake (RI). The partial regression coefficients showed that increased SH led to increased MYP (Experiment 1 P < 0·001, Experiment 2 P < 0·05), increased HDMI (P < 0·01, P < 0·01), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·001, P < 0·05). Increasing CL led to increased MYP (NS, P < 0·001), decreased HDMI (P < 0·001, P < 0·001), decreased GT (NS, P < 0·001) and decreased RI (P < 0·001, P < 0·001). Higher IMY level of cows decreased MYP (P < 0·001, P < 0·001), increased HDMI (P < 0·001, P < 0·001), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·05, P < 0·01). The models were highly significant (P < 0·001), and accounted for 0·48–0·87 of the total variance. The partial regression coefficients quantified the extent to which GT and RI by cows respond positively to higher IMY, and negatively to increased CL, but respond differently (GT declines in response to a higher RI) with increasing SH.  相似文献   

3.
This study evaluated the prediction accuracy of grass dry‐matter intake (GDMI) and milk yield predicted by the model GrazeIn using a database representing 522 grazing herds. The GrazeIn input variables under consideration were fill value (FV), grass energy content [Unité Fourragère Lait (UFL)], grass protein value [true protein absorbable in the small intestine when rumen fermen energy is limiting microbial protein synthesis in the rumen (PDIE)], pre‐grazing herbage mass (PGHM), daily herbage allowance (DHA) and concentrate supplementation. GrazeIn was evaluated using the relative prediction error (RPE). The mean actual GDMI and milk yields of grazing herds in the database ranged from 9·9–22·0 kg DM per cow d?1 and 8·9–41·8 kg per cow d?1, respectively. The accuracy of predictions for the total database estimated by RPE was 12·2 and 12·8% for GDMI and milk yield, respectively. The mean bias (predicted minus actual) for GDMI was ?0·3 kg DM per cow d?1 and for milk yield was +0·9 kg per cow d?1. GrazeIn predicted GDMI with a level of error <13·4% RPE for spring, summer and autumn. GrazeIn predicted milk yield in autumn (RPE = 17·6%) with a larger error in comparison with spring (RPE = 10·4%) and summer (RPE = 11·0%). Future studies should focus on the adaptation of GrazeIn to correct and improve the prediction of milk yield in autumn.  相似文献   

4.
The effect of offering a total mixed ration of silage and concentrate (proportionately 0·44 silage) system [indoor feeding system (IF)] was compared with grazing at a high daily herbage allowance with a low level of concentrate supplementation [early grazing system (EG)] in early spring on the performance of spring‐calving dairy cows in Ireland. Sixty‐four spring‐calving Holstein–Friesian dairy cows (mean calving date, 2 February) were allocated to one of two systems between 16 February and 4 April 2004. An equal number of primiparous and multiparous cows were assigned to each system. The dairy cows on the IF system were housed for a 7‐week period and offered a diet of 10·9 kg DM cow?1 d?1 (s.d. 2·3) of concentrate, the remainder of the diet was 8·6 kg DM cow?1 d?1 (s.d. 1·9) of grass silage. The dairy cows on the EG system were offered a mean daily herbage allowance of 15·1 kg DM cow?1 d?1 (s.d. 3·7) and were supplemented with 3·0 kg DM cow?1 d?1 (s.d. 1·0) of concentrate. There was no difference in milk yield between the two systems but the cows in the EG system had a higher milk protein concentration (2·9 g kg?1) and a higher milk protein yield than in the IF system. Milk fat concentration was higher for cows in the IF than EG system (3·0 g kg?1). There was no difference in total daily dry‐matter intake between the systems, measured in week 6 of the study. Mean live weight of the cows in the IF system was greater than in the EG system. The results of the study suggest that a slightly greater performance can be achieved by a system offering a high daily herbage allowance to spring‐calving dairy cows in early lactation compared with a system offering a total mixed ration containing a high proportion of concentrate with grass silage.  相似文献   

5.
The prediction of both food intake and milk production constitutes a major issue in ruminants. This article presents a model predicting voluntary dry matter intake and milk production by lactating cows fed indoors. This model, with an extension to predict herbage intake at grazing presented in a second article, is used in the Grazemore decision support system. The model is largely based on the INRA fill unit system, consisting of predicting separately the intake capacity of the cows and the fill value (ingestibility) of each feed. The intake capacity model considers potential milk production as a key component of voluntary feed intake. This potential milk production represents the energy requirement of the mammary gland, adjusted by protein supply when the protein availability is limiting. Actual milk production is predicted from the potential milk production and from the nutritional status of the cow. The law of response of milk production is a function of the difference between energy demand and actual energy intake, modulated by protein intake level. The simulation of experimental data from different feeding trials illustrates the performance of the model. This new model enables dynamic simulations of intake and milk production sensitive to feeding management during the whole lactation period.  相似文献   

6.
This study evaluated the prediction accuracy of grass dry‐matter intake (GDMI) and milk yield predicted by the GrazeIn model using a large database representing 8787 per cow GDMI measurements. In this study, the animal input variables (age, parity, week of lactation, potential peak milk yield, milk fat content, milk protein content, bodyweight, body condition score (BCS), week of conception, BCS at calving and calf birth weight) were investigated. The mean actual GDMI of the database was 15·9 kg DM per cow d?1 and GrazeIn predicted a mean GDMI for the database of 15·5 kg DM per cow d?1. The mean bias was ?0·4 kg DM per cow d?1. GrazeIn predicted GDMI for the total database with an RPE of 15·5% at cow level. The mean actual daily milk yield of the database was 21·3 kg per cow d?1 and GrazeIn predicted a daily milk yield for the database of 22·2 kg per cow d?1. The mean bias was +0·9 kg per cow d?1. GrazeIn predicted milk yield for the total database with an RPE of 16·7% at cow level. From the evaluation, GrazeIn predicted milk yield of all cows in late lactation with a larger level of error than in early and mid‐lactation. This error appears to be due to the persistency of the lactation curve used by the model, which results in a higher predicted milk yield in late lactation compared with the actual milk yield.  相似文献   

7.
A 2‐year whole‐farm system study compared the accumulation, utilization and nutritive value of grass in spring‐calving grass‐based systems differing in stocking rate (SR) and calving date (CD). Six treatments (systems) were compared over two complete grazing seasons. Stocking rates used in the study were low (2·5 cows ha?1), medium (2·9 cows ha?1) and high (3·3 cows ha?1), respectively, and mean CDs were 12 February (early) and 25 February (late). Each system had its own farmlet of eighteen paddocks and one herd that remained on the same farmlet area for the duration of the study. Stocking rate had a small effect on total herbage accumulation (11 860 kg DM ha?1 year?1), but had no effect on total herbage utilization (11 700 kg DM ha?1 year?1). Milk and milk solids (MS; fat + protein) production per ha increased by 2580 and 196 kg ha?1 as SR increased from 2·5 to 3·3 cows ha?1. Milk production per ha and net herbage accumulation and utilization were unaffected by CD. Winter feed production was reduced as SR increased. Increased SR, associated with increased grazing severity, resulted in swards of increased leaf content and nutritive value. The results indicate that, although associated with increased milk production per ha, grazed grass utilization and improved sward nutritive value, the potential benefits of increased SR on Irish dairy farms can only be realized if the average level of herbage production and utilization is increased.  相似文献   

8.
Decision support tools to help dairy farmers gain confidence in grazing management need to be able to predict performance of grazing animals with easy‐to‐obtain variables on farm. This paper, the second of a series of three, describes the GrazeIn model predicting herbage intake for grazing dairy cows. The model of voluntary intake described in the first paper is adapted to grazing situations taking account of sward characteristics and grazing management, which can potentially affect intake compared to indoor feeding. Rotational and continuously stocked grazing systems are considered separately. Specific effects of grazing management on intake were quantified from an extensive literature review, including the effect of daily herbage allowance and pre‐grazing herbage mass in rotational grazing systems, sward surface height in continuously stocked grazing systems, and daily time at pasture in both grazing systems. The model, based on iterative procedures, estimates many interactions between cows, supplements, sward characteristics and grazing management. The sensitivity of the prediction of herbage intake to sward and management characteristics, as well as the robustness of the simulations and an external validation of the GrazeIn model with an independent data set, is presented in a third paper.  相似文献   

9.
A comparative study of grazing behaviour, herbage intake and milk production of three strains of Holstein‐Friesian dairy cow was conducted using three grass‐based feeding systems over two years. The three strains of Holstein‐Friesian cows were: high production North American (HP), high durability North American (HD) and New Zealand (NZ). The three grass‐based feeding systems were: high grass allowance (MP), high concentrate (HC) and high stocking rate (HS). In each year seventy‐two pluriparous cows, divided equally between strains of Holstein‐Friesian and feeding systems were used. Strain of Holstein‐Friesian cow and feeding system had significant effects on grazing behaviour, dry matter (DM) intake and milk production. The NZ strain had the longest grazing time while the HD strain had the shortest. The grazing time of cows in the HC system was shorter than those in both the HS and MP systems. There was a significant strain of Holstein‐Friesian cow by feeding system interaction for DM intake of grass herbage and milk production. The NZ strain had the highest substitution rate with the HP strain having the lowest. Hence, response in milk production to concentrate was much greater with the HP than the NZ strain. Reduction in milk yield as a consequence of a higher stocking rate (MP vs. HS system) was, however, greater for the HP and HD strains compared with the NZ strain. The results suggest that differences in grazing behaviour are important in influencing DM intake and milk production.  相似文献   

10.
Four perennial ryegrass (Lolium perenne L.) cultivars were compared for differences in herbage production, nutritive value and herbage intake of dry matter (DM) during the summers of 2002 and 2003. Two paddocks were sown with pure stands of four cultivars in a randomized block design with three replicates. Each plot was subdivided into fourteen subplots (22 m × 6 m) which were grazed by one cow during 24 h. Twelve lactating dairy cows were assigned to one cultivar for a period of 2 weeks in a 4 × 4 Latin square experimental design; the experiment lasted 8 weeks in each year. Sward structure (sward surface height, DM yield, green leaf mass, bulk density and tiller density) and morphological characteristics were measured. The ash, neutral‐detergent fibre, acid‐detergent lignin, crude protein and water‐soluble carbohydrate concentrations, and in vitro digestibility of the herbage were measured. The sward was also examined for infestation by crown rust (Puccinia coronata f. sp. lolii). Herbage intake of dairy cows was estimated using the n‐alkane technique. Cultivar differences for all sward structural characteristics were found except for bulk density and tiller density in 2003. Cultivars differed for proportions of pseudostem, stem (in 2003 only) and dead material. The chemical composition of the herbage was different among cultivars, with the water‐soluble carbohydrate concentration showing large variation (>0·35). Cultivars differed in susceptibility to crown rust. Herbage intake differed among cultivars in 2002 (>2 kg DM) but not in 2003. Herbage intake was positively associated with sward height, DM yield and green leaf mass. Canopy morphology did not affect herbage intake. Crown rust affected herbage intake negatively. It was concluded that options for breeders to select for higher intake were limited. High‐yielding cultivars and cultivars highly resistant to crown rust were positively related with a high herbage intake.  相似文献   

11.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

12.
An experiment was conducted to test the hypothesis that for cows with high levels of milk yield, rotational grazing produces higher milk yields than continuous grazing. The comparison of grazing systems was made at two levels of milk yield (initially 20·3 and 32·5 kg d?1), and interactions with sward height and concentrate level were also examined. The study used 48 multiparous Holstein Friesian cows over a period of 62 d. Mean milk yield, its persistency and composition, live weight, body condition score and liveweight gain were not significantly affected by grazing system at either level of milk yield. There were no significant interactions between grazing system and sward height or concentrate level for any milk production measurement. Mean estimated herbage and total dry matter (DM) intake (P < 0·01), grazing time (P < 0·05) and ruminating time (P < 0·01) were significantly greater on the continuous grazing system. The cows in the higher milk yield group and those grazed at the higher sward height had a significantly (P < 0·05) higher estimated daily herbage DM intake and rate of herbage intake on the continuous grazing system than those on the rotational grazing system. There was no evidence to support the hypothesis that rotational grazing systems support higher levels of milk production than continuous grazing for cows of high milk yield. The shorter grazing time on the rotational grazing system indicated that cows may anticipate the timing of the daily movement of the electric fence, and this reduces their time spent grazing residual herbage.  相似文献   

13.
An experiment was undertaken to examine the effect of supplement type on herbage intake, total dry matter (DM) intake, animal performance and nitrogen utilization with grazing dairy cows. Twenty‐four spring‐calving dairy cows were allocated to one of six treatments in a partially balanced changeover design with five periods of four weeks. The six treatments were no supplement (NONE), or supplementation with either grass silage (GS), whole‐crop wheat silage (WS), maize silage (MS), rapidly degradable concentrate (RC) or slowly degradable concentrate (SC). Cows were rotationally grazed with a mean herbage allowance of 20·5 kg DM per cow per day, measured above 4 cm. Forage supplements were offered for approximately 2 h immediately after each morning milking, with cows on NONE, RC and SC treatments returning to the grazing paddock immediately after milking. Cows on treatment MS had a significantly higher supplement DM intake than the other treatments but a significantly lower grass DM intake than the other treatments, resulting in no significant difference in total DM intake when compared with cows on treatments WS, RC and SC. Concentrate type had no significant effect on herbage intake, milk yield, milk composition or yield of milk components. The yield of milk fat and milk protein was significantly higher on treatments MS, RC and SC compared with treatments NONE, GS and WS. The results indicate that despite a relatively high substitution rate, maize silage can be a useful supplement for the grazing dairy cow.  相似文献   

14.
Low rates of herbage dry matter (DM) intake impose limits on total daily DM intake in grazing dairy cows. The objective of this study was to increase total daily DM intake and milk production by restricting daily time available for grazing (TAG) and replacing it with time available for eating a maize silage/soyabean meal (TAMS) diet indoors. The treatments (TAG + TAMS) were 20 + 0, 19 + 1, 10 + 10 and 5 + 15 h. Measurements were made of milk production, intake and feeding behaviour. The interactions of TAG + TAMS treatments with sward height (SH) and concentrate level (CL) were also examined. Two experiments, each lasting 42 days, were carried out in spring ( Experiment 1 ) and autumn ( Experiment 2 ) using forty‐eight and twenty‐four Holstein‐Friesian cows respectively. Treatments were arranged in a factorial design with TAG + TAMS treatments, SH ( Experiment 1 only) and CL as the independent variables and a TAG + TAMS of 20 h. Reducing TAG and increasing TAMS significantly reduced estimated herbage DM intake and significantly increased maize silage/soyabean meal intake in both experiments, but there were no significant main effects of TAG + TAMS treatments on milk yield (mean, 27·4 and 25·5 kg d?1 for Experiments 1 and 2 respectively), and yield of milk constituents. Increasing SH ( Experiment 1 ) and CL ( Experiments 1 and 2 ) significantly increased milk yield. In Experiment 1 , there was a significant interaction between TAG + TAMS treatments and SH with the taller sward height of 8–10 cm and the 20 + 0 treatment having the highest milk yield (29·7 kg d?1) and the 5 + 15 treatment the lowest (27·2 kg d?1), whereas at the lower sward height of 4–6 cm, milk yield was lowest on the 20 + 0 treatment (25·5 kg d?1) with the other three treatments being higher (mean, 26·9 kg d?1). Replacing TAG with TAMS significantly increased liveweight gain in Experiment 1 but not in Experiment 2 . Estimated rates of intake of herbage were lower in the autumn experiment ( Experiment 2 , 9·6 g DM min ?1) than in the spring experiment ( Experiment 1 , 29·4 g DM min ?1) but rates of intake of maize silage were higher in the autumn (112·4 g DM min?1) than in the spring (72·5 g DM min?1). In conclusion, in spring the response to replacing TAG with TAMS was dependent on sward conditions with the highest milk fat plus protein yield being on the 20 + 0 treatment at the high sward height and on the 19 + 1 treatment at the low sward height. The high liveweight gain of the 5 + 15 treatment could be an important means of restoring body condition in grazing lactating cows. In autumn, intakes of herbage were low in spite of its high estimated nutritive value with all treatments having a similar level of performance.  相似文献   

15.
The effects of severity of grazing on the herbage intake and milk production of continuously stocked British Friesian cows calving in February–March were examined in three experiments conducted in the years 1976–78 (experiments 1–3 respectively) using a put-and-take technique. In experiment 1 four grazing severities were imposed by maintaining swards with different herbage masses (2500, 3000, 3500, 4000 kg OM ha-1); in experiments 2 and 3 there were two severities of grazing maintained by keeping swards canopies at constant heights of 5 and 7 cm (experiment 2) and 5 and 7·2 cm (experiment 3). Cows were reallocated to treatment every 8 weeks in experiments 1 and 2 and there were three periods, whereas they all grazed throughout a 23-week period on the same treatment in the final trial.
A decrease in the quantity of herbage on offer or in sward height reduced herbage intake and milk production in all experiments. Mean daily herbage OM intakes were 11·2, 12·2, 12·2 and 12·2 kg respectively in experiment 1, 12·2 and 13·2 kg respectively in experiment 2 and 12·2 and 152 kg respectively in experiment 3. Mean daily solids–corrected milk yields were 14·2, 15·2, 15·2 and 16·2 kg respectively in experiment 1, 14·2 and 16·2 kg respectively in experiment 2 and 12·2 and 17·2 kg respectively in experiment 3. It was apparent from the data obtained in the first two trials that grazing at a sward canopy height of 7 rather than 9 cm had little effect, but that at 5 cm there were significant depressions in both herbage intake and milk production. Milk yield was depressed to a greater extent when cows were kept on the same treatment for the whole season.  相似文献   

16.
Dry matter (DM) production of multispecies swards compared to perennial ryegrass (Lolium perenne; PRG) swards under intensive grazing warrants investigation as it is relatively unknown. A 5 × 2 factorial experiment, with five sward types and two defoliation methods, was used to investigate the effect of grazing versus cutting on dry matter (DM) production of multispecies and PRG‐only swards. Five sward types were established namely: a PRG‐only sward, receiving 250 kg N ha?1 year?1 (PRG250), and a PRG‐only sward (PRG90), a two‐species sward with PRG and white clover (Trifolium repens; PRGWC), a six‐species sward (6S) and a nine‐species sward (9S), each receiving 90 kg N ha?1 year?1. Cutting plots measured 1.95 × 10 m and grazing plots measured 10 × 10 m. All plots were harvested concurrently every 21–30 days from April‐November for two years (2015 and 2016). A strip from the grazing plots was cut for DM yield determination prior to turning in cattle for grazing. There was an interaction between sward type and defoliation method (p < .01), whereby there was no effect of defoliation method on the PRG‐only swards, however, the annual DM production of PRGWC, 6S and 9S swards reduced under grazing compared to cutting (p < .001; on average 1,929 kg DM/ha lower). Multispecies swards had lower DM production under grazing compared to cutting, while the DM yield of PRG‐only swards was unaffected by defoliation method.  相似文献   

17.
The effects of a limited grazing period on the performance, behaviour and milk composition of high-yielding dairy cows were examined. A total of 56 Holstein cows yielding 44.7 ± 0.42 kg/day were allocated to one of four treatments in one of two, 4-week periods. Treatments were as follows: control (C)—cows housed and offered TMR ad libitum; early grazing (EG)—cows grazed for 6 hr after morning milking then housed; delayed grazing (DG)—cows returned to housing for 1 hr after morning milking followed by grazing for 6 hr, then housed; restricted TMR (RT)—cows grazed for 6 hr after morning milking, then housed and fed TMR at 75% of ad libitum. Intake of TMR was highest in cows receiving C, intermediate in EG and DG, and lowest in RT at 26.9, 23.6, 24.7 and 20.3 kg DM/day respectively. Pasture intake was similar in cows receiving EG or DG, but was higher in RT at 2.4, 2.0 and 3.5 kg DM/day respectively. Milk yield was similar between cows receiving C, EG or DG, but lowest in RT at 45.7, 44.2, 44.9 and 41.7 kg/cow, respectively, while milk fat content of C18:3 n-3 was increased by grazing. Cows in C spent more than 55 min/day longer lying and had three additional lying bouts/day, while lying bouts were shorter than for cows receiving EG, RT or DG. It is concluded that high-yielding cows can be grazed for 6 hr/day with little impact on performance, provided TMR is available ad libitum when housed.  相似文献   

18.
Abstract The effects of level of concentrate supplementation on the response of dairy cows to grass silage‐based diets containing a constant proportion of fodder beet were examined. Forty Holstein‐Friesian dairy cows of mixed parity were used in a 2 × 5 factorial design experiment. Two basal diet types [grass silage alone or grass silage mixed with fodder beet in a 70:30 dry matter (DM) ratio] were offered ad libitum, and the effects of five levels of concentrate supplementation (mean = 3·0, 5·3, 7·5, 9·8 and 12·0 kg DM per cow d?1) were examined. Concentrate supplements were offered via an out‐of‐parlour feeding system. These treatments were examined in a three‐period (period length = 4 weeks) partially balanced changeover design experiment. Fodder beet inclusion had no significant effect on the estimated metabolizable energy (ME) concentration of the ration (P > 0·001). Total DM intake, estimated ME intake, milk yield, milk protein content and milk energy output all showed significant linear increases with increasing level of concentrate inclusion (P < 0·001) while, in addition, milk yield and milk energy output exhibited a significant quadratic increase (P < 0·01). The inclusion of fodder beet in the diet reduced silage DM intake (P < 0·01) but resulted in an increase in total DM intake and estimated ME intake (P < 0·001). However, inclusion of fodder beet had no significant effect on milk yield (P > 0·05), while increasing milk protein content and milk energy output (P ≤ 0·05). Milk energy output, as a proportion of estimated ME intake, was significantly (P < 0·001) reduced by fodder beet inclusion (0·44 vs. 0·38). Despite large increases in estimated ME intake with the inclusion of fodder beet at all levels of concentrate supplementation, milk energy output responses were small, resulting in an overall reduction in the efficiency of conversion of ME intake into milk energy output. An increased partitioning of dietary ME intake to tissue gain is suggested as the most likely explanation for the observations made.  相似文献   

19.
A 3-year experiment on milk production systems was set up in 1989 to investigate the effect of calving date and stocking rate on the performance of spring-calving dairy cows. An early-calving herd (System A) with a mean calving date of 23 January and stocked at 2·9 cows per hectare was compared with two later calving herds (Systems B and C) with a mean calving date of 15 March. System B had a similar stocking rate to System A (2·9 cows ha−1), while System C had a stocking rate of 2·6 cows ha−1. The average lactation yields (kg) over the three years were as follows: 5872, 5444 and 5584 (milk)210, 204 and 215 (fat), 187, 184 and 189 (protein) and 261, 245 and 250 (lactose) for Systems A, B and C respectively. The average milk composition (gkg−1) was: 36·0, 37·6 and 38·7 (fat), 31·9, 33·7 and 33·8 (protein) and 44·5. 45·1 and 44·8 (lactose) for Systems A, B and C respectively. Delaying calving date to coincide with the beginning of the grass-growing season (System B compared with System A) reduced milk yield per cow significantly (P < 0·05) in all three years of the experiment. However, fat and protein concentration were increased, resulting in no significant difference in the yield of fat or protein per cow. Reducing the stocking rate from 2·9 cows per hectare to 2·6 cows per hectare for cows calving in mid-March (System C compared with System B) increased milk yield per cow significantly (P < 0·05) in only one of the three years (1990). Milk fat content was increased significantly in 1990. Stocking rate had no other  相似文献   

20.
The objective of this study was to examine the effects of predicted milk yields sustained by grazed grass (‘Milk‐from‐Grass’: LOW, MED or HIGH) and Parity (primiparous or multiparous) on the performance and concentrate requirements of grazed Holstein‐Friesian dairy cows offered concentrates on a ‘feed‐to‐yield’ basis during the grazing season. The mean Milk‐from‐Grass values assigned to cows in the LOW, MED and HIGH treatment groups (sixteen multiparous and eight primiparous cows per group) during the experiment (24 May to 2 October; 131 d) were 12·7, 15·4 and 18·1 kg cow?1 d?1, respectively. Concentrate allocations were adjusted every two weeks (approximately) based on individual cows’ milk yields, and concentrate was offered at a rate of 0·45 kg for each kg of milk produced above the assigned Milk‐from‐Grass value at that time. Increasing Milk‐from‐Grass from LOW to MED to HIGH decreased both the mean daily concentrate allocations (4·90, 3·17 and 1·79 kg cow?1 d?1, respectively) and milk yields (23·8, 21·8 and 19·0 kg cow?1 d?1) of the cows. Cows in the LOW treatment group had lower mean and final (i.e. at the end of the study) BCS and LW than those in the MED or HIGH groups. The effects of Milk‐from‐Grass were similar for both primiparous and multiparous cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号