首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

Peatlands have an important role in methane cycling in the natural environment. Methane emissions as a result of methanogenesis and methanotrophy in soil are affected by several environmental factors such as temperature, oxygen and groundwater level. The objective of this study was to analyse methane cycling as a function of soil depth.

Materials and methods

In this study, methane cycling and soil organic matter mineralization were investigated in a drained fen grassland area of Ljubljana marsh, Slovenia that has been subjected to reclamation strategies for several centuries. Potential mineralization, methane production and methane oxidation rates were measured in slurry incubation experiments with soil samples from 10 sampling depths of a 1-m profile. In addition, the extent of iron reduction in the soil was determined.

Results and discussion

The potential for methane production was low in the investigated soil profile, even in constantly flooded layers below the water table fluctuations. During anaerobic incubations, the highest accumulated concentrations and production rates of methane were observed in the upper 10-cm layer and the lowest in deeper soil layers, indicating that plant exudates are the main source of energy for heterotrophic soil microbes and that methanogenesis in deeper layers is limited by the availability of appropriate organic substrates. Methane oxidation was on the other hand active throughout the soil profile, suggesting that the potentially active methane oxidizing community is present despite low methane production. The highest abundance and activity of methanotrophs was detected in the water table fluctuation layers.

Conclusions

Together, these findings have implications for understanding the biogeochemical function of drained peat soils and emphasize the influence of drainage on quality of soil organic matter and consequently on methane production even in flooded soils.
  相似文献   

2.

Purpose

Increasing data have shown that biochar amendment can improve soil fertility and crop production, but there is little knowledge about whether biochar amendment can improve water infiltration in saline soils. We hypothesized that biochar amendment could promote water infiltration in saline soil. The aims of this study were to evaluate the effects of biochar amendment on water infiltration and find the suitable amendment rate and particle size of biochar as a saline soil conditioner.

Materials and methods

We measured water infiltration parameters in a coastal saline soil (silty loam) amended with non-sieved biochar at different rates (0.5, 1, 2, 5, and 10%, w/w) or sieved biochar of different particle sizes (≤?0.25 mm, 0.25–1 mm, and 1–2 mm) at 1 and 10% (w/w).

Results and discussion

Compared with the control, amending non-sieved biochar at 10% significantly decreased water infiltration into the saline soil (P?<?0.05). In contrast, sieved biochar of ≤?0.25 mm significantly improved water infiltration capacity, irrespective of the amendment rate. Sieved biochar of 1–2 mm was less effective to improve soil porosity and when amended at 10%, it even reduced the water infiltration capacity. The Philip model (R2?=?0.983–0.999) had a better goodness-of-fit than the Green-Ampt model (R2?=?0.506–0.923) for simulation of cumulative infiltration.

Conclusions

Amending biochar sieved to a small particle size improved water infiltration capacity of the coastal saline soil compared with non-sieved biochar irrespective of the amendment rate. This study contributes toward improving the hydrological property of coastal saline soil and rationally applying biochar in the field.
  相似文献   

3.
4.

Purpose

The agriculture industry is under intense pressure to produce more food with a lower environmental impact, while also mitigating climate change. Biochar has the potential to improve food security while improving soil fertility and sequestering carbon. The aim of our research was to evaluate the effects of apple branch biochar on wheat yield and soil nutrients under different nitrogen (N) and water conditions.

Materials and methods

Durum wheat was grown for nearly 6 months in pots with silt clay soil supplemented with apple branch biochar. The biochar was applied at five rates (0, 1, 2, 4, and 6% w/w; B0, B1, B2, B3, and B4), and N fertilizer was applied at three rates (0, 0.2, and 0.4 g kg?1; N0, N1, and N2). From the jointing to maturation stages, the soil water content was controlled at two rates to simulate sufficient water and drought conditions (75 and 45% of field capacity; W1 and W2). After harvest, we investigated grain yield and soil nutrient status.

Results and discussion

The application of biochar alone had a positive effect on wheat production and soil nutrients, especially under sufficient water conditions. Compared with the addition of N fertilizer alone, the addition of biochar at B1 and B2 combined with N fertilizer under sufficient water conditions increased the crop yield by 7.40 to 12.00%, whereas this was not the case under drought stress. Furthermore, regardless of water conditions, compared with N fertilizer application alone, a high rate of biochar application (B3 and B4) led to a significant decrease in the grain yield of approximately 6.25–21.83%. Biochar had strong effects on soil nutrients, with NO3? and available phosphorus contents and the C:N ratio exerting the greatest effects on wheat yield.

Conclusions

The effects of biochar on wheat production and soil nutrients varied with the biochar application rate, N fertilizer application rate, and water conditions. Drought stress weakened or offset the positive effect of biochar on crop production, especially under the high-N level (N2) conditions. The optimum application combination was 1% (or possibly even less) apple branch biochar (B1) and moderate N fertilizer (N1).
  相似文献   

5.
The concept of productive efficiency of nutrients has been discussed at length by Kimura and Chiba (1943)1). Considering that the effect of a nutrient for the production of grain and straw may be divided into several growing periods of plant.life, Kimura and Chiba (1943) conducted water culture experiments to study the effect of nitrogen absorbed at a definite period on the production of grain and straw. The total productive efficiency was divided into several partial efficiencies based upon the growing period of the rice plant. The following is a summary of their findings.  相似文献   

6.

Purpose

The carbon sink function of peatlands is primarily driven by a higher production than decomposition of the litter Sphagnum mosses. The observed increase of vascular plants in peatlands could alter the decomposition rate and the carbon (C) cycle through a litter mixing effect, which is still poorly studied. Here, we examine the litter mixing effect of a peat moss (Sphagnum fallax) and two vascular plants (Pinus uncinata and Eriophorum vaginatum) in the field and laboratory-based experiment.

Materials and methods

During the laboratory incubation, mass loss, CO2 production, and dissolved organic carbon concentration were periodically monitored during 51 days. The collected data were then processed in a C dynamics model. The calculated enzymatic activity was correlated to the measured β-glucosidase activity in the litter. In the field experiment, mass loss and CO2 production from litter bags were annually measured for 3 years.

Results and discussion

Both laboratory and field experiments clearly show that the litter mixture, i.e., Sphagnum-Pinus-Eriophorum, had a synergistic effect on decomposition by enhancing the mass loss. Such enhanced mass loss increased the water extractable C and CO2 production in the litter mixture during the laboratory experiment. The synergistic effect was mainly controlled by the Sphagnum-Eriophorum mixture that significantly enhanced both mass loss and CO2 production. Although the β-glucosidase activity is often considered as a major driver of decomposition, mixing the litters did not cause any increase of the activity of this exo-enzyme in the laboratory experiment suggesting that other enzymes can play an important role in the observed effect.

Conclusions

Mixing litters of graminoid and Sphagnum species led to a synergistic effect on litter decomposition. In a context of vegetation dynamics in response to environmental change, such a mixing effect could alter the C dynamics at a larger scale. Identifying the key mechanisms responsible for the synergistic effect on litter decomposition, with a specific focus on the enzymatic activities, is crucial to better predict the capacity of peatlands to act as C sinks.
  相似文献   

7.

Purpose

Our aim was to examine linkages between mass loss, chemical transformation and CH4 production during decomposition of leaf litters submerged under water. We hypothesised that (i) labile leaf litters would fuel a rapid, high rate of methane (CH4) production and that recalcitrant litters would fuel long-lasting but lower emissions, (ii) leaf litters experiencing a greater alteration to chemical properties would stimulate increased CH4 production and (iii) nitrogen (N) addition would increase CH4 emissions.

Materials and methods

Litters from six plant species were collected from a riparian ecosystem adjacent to Wyaralong Dam, located in Queensland, Australia, i.e., Lophostemon confertus, Cynodon dactylon, Heteropogon contortus, Chamaecrista rotundifolia, Chrysocephalum apiculatum and Imperata cylindrica. We evaluated the rate of mass loss and CH4 emissions for 122 days of incubation in inundated microcosms with and without N addition. We quantified the chemical changes in the decomposing litters with 13 C-cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectrum.

Results and discussion

The inundation treatment of plant litters significantly affected decomposition rates. All litters decomposed in either inundated or aerobic microcosms were quite distinct with regard to the NMR spectra of their initial litters. N addition altered the NMR spectra under both inundation and aerobic conditions. The N treatment only marginally influenced the decomposition rates of I. cylindrica and C. apiculatum litters. The diurnal patterns of CH4 production in the H. contortus, C. rotundifolia and C. apiculatum litters under inundation incubation could be expressed as one-humped curves, with the peak value dependent on litter species and N treatment. N addition stimulated CH4 emission by C. rotundifolia and C. apiculatum litters and inhibited CH4 emission from microcosms containing the litters of the three gramineous species, i.e., I. cylindrica, C. dactylon and H. contortus.

Conclusions

Our results provide evidence that labile leaf litters could fuel a rapid, high rate of CH4 production and that recalcitrant litters fuelled a lower CH4 emission. We did not find that leaf litters with altered chemical properties stimulated increased CH4 production. We also found that N addition was able to increase CH4 emissions, but this effect was dependent on the litter species.
  相似文献   

8.

Purpose

Soils provide a variety of ecosystem services (ESs) that are crucial to food security, water security, energy security, climate change abatement, and biodiversity, especially in densely populated countries such as China. At present, China is facing great challenges from serious soil heavy metal (HM) contamination which has damaged soil ESs and soil security. In this paper, we evaluate the ESs that contaminated soils can potentially provide before and after remediation, and we explore the connections between these ESs and the achievement of soil security in China.

Materials and methods

After an introduction to the concepts of ESs and soil security and a review of the current status of soil HM contamination in China, the ESs that can potentially be provided by HM-contaminated soils are discussed. Finally, we discuss the current remediation status of HM-contaminated soils from the standpoint of optimizing the ability of these soils to provide ESs.

Results and discussion

The status of the provision of ESs by HM-contaminated soils of croplands, brownfields, and mining wastelands is described in detail. Contaminated cropland soils fail to provide provisioning (e.g., food production), cultural, and regulating services, while the regulating and supporting services of brownfield soils are greatly reduced. The ESs of mining wasteland soils have been severely damaged, resulting in a high potential for contamination of surrounding ecosystems. Recent soil remediation projects have demonstrated that the damaged ESs of HM-contaminated soils can be restored, which would enhance Chinese soil security. However, it has often been the case that only visible ESs (e.g., food production and vegetation cover) are addressed, while other less noticeable but important services (e.g., water quality and biodiversity) are neglected. Therefore, we propose a framework for the evaluation of ESs provided by HM-contaminated soils.

Conclusions

The ESs that could potentially be provided by HM-contaminated soils would help to achieve soil security in China, not only by improving food security, water security, and energy security but also by helping to protect soil biodiversity and abate global climate change. The ESs provided by HM-contaminated soils should be taken into account in soil policy and management systems as well as by the remediation industry.
  相似文献   

9.

Purpose

Irrigation and fertilization can change soil environment, which thereby influence soil microbial metabolic activity (MMA). How to alleviate the adverse effects by taking judicious saline water irrigation and fertilization regimes is mainly concerned in this research.

Materials and methods

Here, we conducted a field orthogonal designed test under different saline water irrigation amount, water salinity, and nitrogen fertilizer application. The metabolic profiles of soil microbial communities were analyzed by using the Biolog method.

Results and discussion

The results demonstrated that irrigation amount and fertilizer application could significantly change MMA while irrigation water salinity had no significant effect on it. Medium irrigation amount (30 mm), least (50 kg ha?1) or medium (350 kg ha?1) N fertilizer application, and whatever irrigation water salinity could obtain the optimal MMA. Different utilization rates of carbohydrates, amino acids, carboxylic acids, and polymers by soil microbial communities caused the differences of the effects, and D-galactonic acid γ-lactone, L-arginine, L-asparagine, D-glucosaminic acid, Tween 80, L-threonine, and D-galacturonic acid were the indicator for distinguishing the effects.

Conclusions

The results presented here demonstrated that by regulating irrigation water amount and fertilizer application, the effects of irrigation salinity on MMA could be alleviated, which offered an efficient approach for guiding saline water irrigation.
  相似文献   

10.
Summary The influence of soil moisture on denitrification and aerobic respiration was studied in a mull rendzina soil. N2O formation did not occur below –30 kPa matric water potential (m), above 0.28 air-filled porosity (a) and below 0.55 fractional water saturation (v/PV volumetric water content/total pore volume). Half maximum rates of N2O production and O2 consumption were obtained between m = –1.2 and –12 kPa,a = 0.05 and 0.23, and v/PV = 0.63 and 0.92. No oxygen consumption was measured at v/PC 1.17. O2 uptake and denitrification occurred simultaneously arounda = 0.10 (at m = –10 kPa and v/PV = 0.81) at mean rates of 3.5 µl O2 and 0.3 µl N2 h–1g–1 soil. Undisturbed, field-moist soil saturated with nitrate solution showed constant consumption and production rates, respectively, of 0.6 µl O and 0.22 µl N2O h–1g–1 soil, whereas the rates of air-dried remoistened soil were at least 10 times these values. The highest rates obtained in remoistened soil amended with glucose and nitrate were 130 µl O2 and 27 µl N2O h–1g–1 soil.  相似文献   

11.

Purpose

Water management has a strong influence on Cd solubility in agricultural soils, affecting Cd uptake in crops. In the process, sulfur interaction with other metals such as zinc may play an important role. A pot experiment was carried out to investigate the effects of water management coupled with zinc and sulfate amendment on Cd uptake by the leafy vegetable amaranth with a strong Cd accumulation tendency in its edible parts.

Materials and methods

The soils were amended with Cd, Cd+SO4 and Cd+SO4+Zn with no amendment as control. Then, the soils were flooded for 1 month, after which amaranth was grown with soil kept saturated (wet cultivation). In the succeeding planting, soils were tilled to aeration condition under which amaranth was grown again (dry cultivation). Soil and crop samples were collected and analysed for various parameters.

Results and discussion

The readily exchangeable quantities of Cd and Zn in the soil decreased under wet cultivation, increasing again under dry cultivation but to levels lower than those in the initial soil. Wet cultivation enhanced plant Cd concentration but reduced Zn accumulation compared to dry cultivation. Zn bioavailability was strongly affected by soil water status but failed to reduce Cd uptake by amaranth. Irreversible or slowly reversible changes occurred in Cd and Zn solubility and phytoavailability as soil water-saturated status was altered by periodic flooding events.

Conclusions

Dry cultivation with lower soil water content ensured high production with low Cd in the edible part of this leaf vegetable and so remains the recommended irrigation regime.
  相似文献   

12.

Purpose

Eucalyptus forest plantations are normally devoid of understory vegetation that is often assumed to be associated with Eucalyptus allelopathic effects. The objective of this study was to determine the influence of high soil compaction and low soil moisture content on inhibition of the germination of understory seeds in Eucalyptus forests and thus would result in the scarcity of understory vegetation.

Materials and methods

The soil water content above the depth of 1 m of six major understory vegetation types was analyzed to determine if there was a correlation between soil water content and understory vegetation. The effects of soil treatment (soil-loosening vs. no soil-loosening) and water supply amount (2500, 2000, 1500, 1000, 500, 250, or 0 ml of water per day) on the seed germination rate of Stylosanthes sp. were explored using an artificial climate chamber experiment. Influence of soil source (five Eucalyptus forest soils vs. two non-Eucalyptus forest soils) and water supply (0, 50, 150, 200, or 400 ml of water every day) on the germination rate of five types of seed were assessed using a three-factor analysis of variance (ANOVA).

Results and discussion

Soil-loosening and water supply significantly (P?<?0.05) increased seed germination rate with the contribution rates of 26.14 and 42.93 %, respectively. Analysis of variance for three-factor experiments revealed a significant (P?<?0.05) effect of water supply and vegetation seed type on the germination rate of plant seeds. No significant effect of soil type was observed on germination rate, indicating that germination rate was not affected by soils in Eucalyptus forest.

Conclusions

The conservation of soil characteristics, such as water content and compaction, during the development of a Eucalyptus forest plantation may be an effective strategy for encouraging the growth of understory vegetation. This study highlights the importance that in dry areas or areas prone to long-term drought, it would be preferable to retain native vegetation.
  相似文献   

13.
14.
Adsorption is acknowledged as effective for the removal of pollutants from drinking water and wastewater. Biochar, as a widely available material, holds promises for pollutant adsorption. So far, biochar has been found to be effective for multiple purposes, including carbon sequestration, nutrient storage, and water-holding capacity. However, its limited porosity restricts its use in water treatment. Activation of biochars, when performed at a high temperature (i.e., 900 °C) and in the presence of certain chemicals (H3PO4, KOH) and/or gases (CO2, steam), improves the development of porosity through the selective gasification of carbon atoms. Physicochemical activation process is appropriate for the production of highly porous materials. As well, the morphological and chemical structure of feedstock together with pyro-gasification operating conditions for the biochar production can greatly impact the porosity of the final materials. The effectiveness of activated biochar as adsorbent depends on porosity and on some functional groups connected to its structure, both of these are developed during activation. This study provides a comprehensive synthesis of the effect of several activated biochars when applied to the treatment of organic and inorganic contaminants in water. Results show that high aromaticity and porosity are essential for the sorption of organic contaminants, while the presence of oxygen-containing functional groups and optimum pH are crucial for the sorption of inorganic contaminants, especially metals. Finally, although activated biochar is a promising option for the treatment of contaminants in water, further research is required to evaluate its performance with real effluents containing contaminants of emerging concern.
Graphical abstract ?
  相似文献   

15.
The effects of intensive banana production with high mineral‐fertilizer application and of extensive pastures were compared regarding water quality in a lowland region of SE Mexico. We monitored NO$ _3^- $ , NO$ _2^- $ , and PO43– concentrations in groundwater (80 m depth), subsurface water (5 m depth), and surface water (open‐ditch drainage) at monthly intervals for a one‐year period. Irrespective of the land use, the NO$ _3^- $ concentrations in all water bodies were lower than the threshold value for drinking water and aquatic life. Particularly in areas with intense banana production, the NO$ _2^- $ contents in water exceeded the safety thresholds for drinking water of 1.0 mg L–1 (WHO, 2006) and aquatic ecosystems of 0.2 mg L–1 (OATA, 2008). Water from pastureland showed significantly higher PO43– concentration than that from the banana plantation, indicating a high risk of eutrophication. There is a need to provide recommendations for optimal time and amount of N application in commercial banana production and for limitation of P inputs in pasturelands to avoid further contamination of water bodies.  相似文献   

16.
Rainfall erosion and subsequent intermittent drought are serious barriers for agricultural production in the subtropical red soil region of China. Although it is widely recognized that rainfall-induced soil structure degradation reduced soil water storage and water-holding capacity, the effects of variation of the rainfall-induced topsoil structure on the subsequent soil water regime during the dry period is still rarely considered. The objective of this study was to ascertain the way of rainfall-induced topsoil structure changes on the subsequent soil water regime during the dry period. In a three-year-long experiment, six practices (CK, only crop; SM, straw mulching; PAM, polyacrylamide surface application; B, contour Bahia-grass strip; SPAM, straw mulching and polyacrylamide surface application; and BPAM, contour Bahia-grass strip and polyacrylamide surface application) were conducted at an 8° farmland with planting summer maize resulting in different topsoil structure and root-zone moisture, to establish and reveal the quantitatively relationship between the factors of topsoil structure and soil drought. Rainfall erosion significantly increased the soil crust coverage, and decreased the WSA0.25, 0–30 mm soil porosity and mean pore size. There was no significant difference during the raining stage of root-zone water storage between CK and other practices. An index of soil drought intensity (I) and degree (D) was established using soil water loss rate and soil drought severity. The larger value of I means a higher rate of water loss. The larger value of D means more severe drought. During the dry period, I and D were significantly higher in CK than in other practices. I and D had significantly positively correlation with the crust size and crust coverage, and negatively with WSA0.25, 15–30 mm soil porosity and mean pore size. Among of soil structure factors, the soil porosity had the largest effect on I and D. The rainfall-induced topsoil structure changes greatly deteriorated the root-zone regime during the dry period mainly due to significant increasing soil water loss but little improving the raining stage of soil water storage. Straw mulching had greater effects than other practices in alleviating rainfall-induced erosion and intermittent drought, and could be a better strategy applied for this region.  相似文献   

17.

Purpose

Soil aggregate mechanical characteristics can significantly affect soil strength and are important soil properties to predict soil erodibility. However, in most research, the aggregate mechanical strength is always measured under air-dried condition, and limited information is available about the mechanical strength of aggregates and soil blocks with different water contents. This study evaluated the effects of water content, bulk density, and aggregate size on mechanical properties of soil blocks and aggregates.

Materials and methods

Shear strength (τ) parameters (φ and c) of soil blocks in different states (undisturbed and remoulded) and tensile strength (TS) of aggregates were determined in the laboratory on two soils derived from Quaternary red clay (Q) and shale (S) with variations in water content, bulk density, and aggregate size.

Results and discussion

The results indicated that the φ values were higher in drier and denser soil and showed no obvious variation with varying aggregate size. The c values increased first and then decreased with increasing water content and decreasing aggregate size and increased with increasing bulk density. The water content corresponding to the rapid decrease of the c value appeared to be related to soil properties. Tensile strength increased with decreasing water content in all sizes of aggregates. It decreased with increasing aggregate size at a relative low water content (3.2–7.3 %), but increased with increasing aggregate size at a relative high water content (10.6–14.8 %). The effect of soil moisture on soil strength varied with soil states. Thus, water content, bulk density, and aggregate size have significant effects on the mechanical properties of the soil blocks and aggregates.

Conclusions

The result from this research may contribute to a better understanding of the soil erosion resistance of Aquults from the perspective of soil mechanics.
  相似文献   

18.
The production of nitrous oxide (N2O) by facultative anaerobic fungi from the Fusarium, Trichoderma, and Paecylomyces genera was detected. Representatives of the genus Mucorales did not produce N2O. The formation of N2O in sterile soddy-podzolic soil inoculated by Fusarium oxysporum and F. solani increased significantly with the rise of the soil water content from 16–20% (50–60% of the field water capacity) to 30% (the field water capacity) with maximum values reached at the water content of 50% (the total soil water capacity). The production of N2O by fungi at the soil water content of 50% was often higher under microaerobic conditions than under anaerobic conditions created via substitution of argon for atmospheric air in the flasks. The activity of N2O production by fungi in the soil increased by several times upon nitrite or nitrate amendments. The specific activity of N2 O formation in the soil was 0.38 ± 0.15 nmol N2O/(h per mg) of dry mycelium. It was significantly lower than the rate of N2O formation by Fusarium oxysporum 11dn1 in the nitrite-containing media and close to the rate of N2O formation by this fungus in the nitrate-containing media. A comparison of the rate of N2O release by active strain Fusarium oxysporum 11dn1 inoculated into the sterile soil with the rate of denitrification processes in the nonsterile soil showed that the contribution of soil fungi to the total emission of gaseous nitrogen compounds from the soil may reach 8% under optimum conditions.  相似文献   

19.
Francisco L. Prez 《CATENA》2009,76(3):191-205
The influence of tephra covers on soil water was studied in Haleakala (Maui, Hawai'i) during two summers; eight sites with tephra layers and silverswords (Argyroxiphium sandwicense DC.) were sampled at 2415–2755 m. At each site, eight paired-sample sets were obtained in bare soils and under adjacent tephra, at three depths. Tephra were sharply separated from underlying soils and showed prominent vertical stratification. Tephra clast size-distribution was assessed by photosieving and on interstitial-gravel samples; stones included 45.6% cobbles, 29.4% pebbles, and 25% blocks.Moisture content increased with depth in both positions, but soils below tephra had more water at all depths than exposed areas. Surface soils beneath tephra contained 83% more water than bare ground. Soils at 5–10 cm had  106% greater moisture under rocks, but only  70% at 10–15 cm. Differences between plots were statistically significant ( p < 0.001) for surface soils, but less pronounced for subsoils. Soils above 2650 m had greater water content than at lower elevations, and moisture disparity between sample pairs increased with altitude.All soils were coarse, with  20% gravel and  94% sand; most fine material (≤ 0.063 mm) was silt, as clay content was negligible. Organic-matter percentage was low (1.65%). Bulk density and porosity were associated with moisture variation both in tephra-insulated and bare soils; 80% of field moisture was statistically (p < 0.001) accounted for by pore space. Air and soil temperatures were recorded at three sites during  one-week periods prior to moisture sampling. Tephra substantially decreased soil maxima and daily thermal amplitude in underlying soils, but did not noticeably affect nightly minima. Thin (5–6 cm) tephra layers were nearly as effective as thicker (9–15 cm) deposits in depressing soil maxima. Possible water-conservation mechanisms under tephra include: decreased evaporation due to ground shielding and lower maxima; reduced capillary flow; greater infiltration depth; nocturnal dew condensation; and fog interception by blocks.  相似文献   

20.

Purpose

Leaf transpiration drives many of the processes involved in phyto-technologies, and it can represent a useful mechanism to remove water from different kind of storage basins presenting inorganic, organic or microbiological contamination (phyto-dehydration), with the aim to reduce the risk of environmental contamination. In this framework, a mesocosm-scale trial was carried out to test the capacity of different helophyte species to reduce the excess of water in an artificial pond filled with oversaturated sludge.

Materials and methods

The sludge derives from the digestion of pig slurries, presents high levels of zinc and copper and for most of the year is covered by a water layer of about 20 cm due to rainfalls. This layout (water layer over the sludge) was reproduced inside the mesocosms, where four helophyte species (Phragmites australis and a mix of Carex acutiformis, Iris pseudacorus and Juncus effusus) were planted on floating frames. Plant growth and functionality were monitored for one year, along with their water consumption capacity; the vegetation impact on sludge chemistry, sludge microbial community and sludge greenhouse gases emission/uptake were also evaluated. The sensitivity of the phyto-dehydration system to the reduction of water level occurring during summer in the pond was investigated reducing the water input to the mesocosms.

Results and discussion

P. australis and C. acutiformis successfully established in the mesocosms, while a significant mortality was recorded for I. psudacorus and J. effusus. Once established, plants were able to grow in the mesocosms, and no metal toxicity effect was observed on photosynthesis rates that were comparable with values reported for natural stands of the species. Plants significantly increased (from 24 to 63%, depending on the species) the amount of water lost by the mesocosms and counteracted the reduction of sludge organic carbon that could lead to a mobilization of the heavy metals bound to organic matter: furthermore, plants decreased the rates of mesocosm greenhouse gas emission and reduced the sludge pathogen (Enterobacteriaceae) occurrence. Water limitations reversibly reduced the water consumption and CO2 uptake capacity of the mesocosms.

Conclusions

The results of this study demonstrated that the water balance of a sludge/water system can be effectively modified through the phyto-dehydration approach, increasing significantly the amount of water lost. Although the low tolerance of two species to the sludge/water environment after plantation needs to be further investigated, this phyto-technology can represent a promising approach to manage the excess of water in polluted ponds.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号