首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 825 毫秒
1.
Soil compaction limits soil water availability which adversely affects coconut production in Sri Lanka. Field experiments were conducted in coconut (Cocos nucifera L.) plantations with highly and less compacted soils in the intermediate climatic zone of Sri Lanka. Soil physical properties of sixteen major soil series planted with coconut were evaluated to select the most suitable soil series to investigate the effect of deep ploughing on soil water conservation. Soil compaction and soil water retention with respect to deep ploughing were monitored during the dry and rainy seasons using cone penetrometer and neutron scattering techniques, respectively. Evaluation of soil physical properties showed that the range of mean values of bulk density (BD) and soil penetration resistance (SPR) in the surface soil (0–10 cm depth) of major soil series in coconut lands was from 1.38 ± 0.02 to 1.57 ± 0.07 g/cm3 and 55 ± 10 to 315 ± 16.4 N/cm2 respectively. The total available water fraction increased with clay content of soil as a result of high micropores. However, due to soil compaction, ability of soils to conserve water and to remain aerated was low for those series. Deep ploughing during the rainy and dry periods in highly compacted soils (BD > 1.5 g/cm3 and SPR > 250 N/cm2) greatly increased conserved soil water in the profile, while in less compacted soils (BD < 1.5 g/cm3 and SPR < 250 N/cm2) conserved water content was adversely affected. Soil water retention in bare soils of both highly and less compacted soil series was higher than that of live grass-covered soil. Amount of water conserved in ploughed Andigama series with respect to bare soils and grass-covered treatments during the severe dry period was 10.4 and 16.9 cm/m, while water storage reduction in the same treatments with ploughed Madampe series was 6.55 and 5.45 cm/m respectively. In addition, deep ploughing even in the effective root zone with live grass-covered highly compacted soils around coconut tree was favorable for soil water retention compared to that of live grass-covered less compacted soils.  相似文献   

2.
The population of burrowing plateau zokors (Myospalax baileyi) was markedly increased in the Qinghai–Tibetan Plateau. The objective of this study was to investigate the effects of zokor foraging and mound-making disturbance on topsoil properties and organic C pools at an alpine site of the Qinghai–Tibetan Plateau. Surface (0–15 cm) soil samples were collected from mounds with different ages (3 months and 3, 6, and 15 years) and from undisturbed grassland. Above- and below-ground plant biomasses were depleted by zokors in newly created mounds (3 months). Plant cover and root biomass gradually recovered thereafter, but were still lower in the 15-year-old mounds than in the undisturbed soils. Organic C contents of coarse (>2 mm), soil (<2 mm), particulate (2–0.05 mm) fractions, and microbial biomass, organic C mineralization, β-glucosidase activity, urease activity, alkaline phosphatase activity, acid phosphatase activity, and soil aggregation were significantly lower in the 3, 6, and 15-year-old mound soils than in the undisturbed soils or newly created mound soils. Fifteen years after mound creation, the soil had only 12% of root biomass, 35% of coarse organic C, 83% of particulate organic C, 58% of microbial biomass C, 57% of 30-day respired C, and 45% of water-stable aggregate mean weight diameter, compared to values of the undisturbed soils. Our results suggested that foraging and mound-making by zokors have negative impacts on properties and organic matter content of the topsoil.  相似文献   

3.
A range of soils from Pleistocene deposits with sandy to sandy loam textures, and a group of loess-derived soils with predominantly silty textures were subjected to 60 mm of simulated rainfall to form structural seals. After drying, samples of the surface crusts were collected to determine their bulk: densities at a high resolution of depth (0–15 mm) using an immersion method. The bulk density data obtained for each soil sample were plotted as a function of depth beneath the soil surface. Two models were fitted to these plots. The first was an exponential decay type function as proposed by Mualem et al. (1990), and the second was a sigmoidal type of function assuming that maximum compaction had already progressed to some depth below the soil crust surface.All of the results indicated a gradual decrease in the bulk density with depth below the surface, until convergence with the initial bulk density of the undisturbed soil was attained. The maximum bulk densities recorded for crust segments representing the uppermost 2 mm of the crusts ranged from 1.713 to 1.91 g cm−3 for soils with silty sand, loamy sand or sandy loam textures. Crusts of loess-derived soils showed lower values, ranging from 1.44 to 1.65 g cm−3. The maximum surface bulk density was shown to be highly significantly correlated with the log of geometric mean diameter of the primary grain size distribution. In most cases, both models showed good to very good fits to the measured data; the exponential decay function appeared to better represent the initial stages of surface compaction, and the sigmoidal function the later stages of structural crust formation.  相似文献   

4.
Soils exposed to atmospheric pollution (> 125 SO2μg m?3). contained significantly greater numbers of thiobacilli and sulphur-oxidizing fungi than did similar but unpolluted soils. S-Oxidizing heterotrophic bacteria and actinomycetes were, however, infrequently isolated from either polluted or unpolluted soils. Polluted soils contained more fungi (total count) than unpolluted soils but contained fewer heterotrophic bacteria (total count).The distribution of S-oxidizing micro-organisms was closely associated in polluted soils with total S, S2O2?3, S4O3 amd SO2?4 concentrations. These ions increased in concentration below the canopy of polluted sycamore, while soil pH was lower.Rhodanese activity was higher in polluted than in unpolluted soils. The results indicate that microbial S-oxidation is actively occurring in soils exposed to heavy atmospheric pollution.  相似文献   

5.
To evaluate the importance of plant-soil feedbacks in forest ecosystems, it is fundamental to understand the spatial range within which plant species control soil physicochemical and microbial properties. We investigated the spatial pattern of soil properties associated with canopy trees in a tropical montane forest on Mt. Kianbalu, Borneo. We analyzed soil physicochemical properties and microbial communities (biomarker lipid abundance) as a function of soil depth and distance from the tree trunk of a conifer (Dacrydium gracilis) or a broadleaf tree (Lithocarpus clementianus). The concentration of condensed tannins and fungi-to-bacteria were higher beneath Dacrydium than beneath Lithocarpus. Furthermore, carbon-degrading enzyme activities were lower beneath Dacrydium. These effects of the tree species were more distinct on soil properties beneath the tree crown than on those outside the tree crown. These effects appeared to be largely due to differences in litter chemistry, and the distinct set of soil properties formed corresponding to the above canopy crown. In conclusion, the species-rich forest on the tropical mountain contains spatially distinct units of soil properties associated with canopy trees, and this spatial pattern can influence ecosystem dynamics in the forest through plant-soil feedback effects.  相似文献   

6.
Ant mounds often occur at high densities in marsh wetlands. However, little information is available regarding their impacts on soil nutrient pools in these ecosystems. We studied Corg, dissolved organic carbon (DOC), total nitrogen (TN), NO3 and NH4+ concentrations in above-ground ant mounds and in soils under mounds for three ant species (Lasius flavus, Lasius niger and Formica candida), and estimated their contribution to the total soil nutrient pools in a marsh wetland. Ant impacts were greatest in above-ground soils. All measured nutrient concentrations in above-ground mounds were significantly higher than the average values in reference soils (upper 25 cm). However, except for DOC, no significant differences for nutrient concentrations existed between soils under mounds and reference soils. The impacts of ant mounds on soil C and nutrient concentrations varied by ant species. L. niger above-ground mounds stored less Corg, TN and NO3 than F. candida and L. flavus mounds, or reference soils. At the ecosystem scale, soils in above-ground mounds and under ant mounds all contained less Corg per hectare than the reference soils. Total amounts in nutrient pools from mounds of the three ant species comprised from 5.3% to 7.6% of the total in natural marsh soils. More importantly, ant mounds increased the spatial heterogeneity of nutrient pools. Thus, ant mounds can be important to a fully integrated understanding of the structure and function of wetland nutrient cycles and balances.  相似文献   

7.
Red lead (Pb3O4) has been used extensively in the past as an anti-corrosion paint for the protection of steel constructions. Prominent examples being some of the 200,000 high-voltage pylons in Germany which have been treated with red lead anti-corrosion paints until about 1970. Through weathering and maintenance work, paint compounds and particles are deposited on the soils beneath these constructions. In the present study, six such “pylon soils” were investigated in order to characterize the plant availability and plant uptake of Pb, Cd, and Zn. For comparison, three urban soils with similar levels of heavy metal contamination were included. One phase extractions with 1 M NH4NO3, sequential extractions (seven steps), and extractions at different soil pH were used to evaluate the heavy metal binding forms in the soil and availability to plants. Greenhouse experiments were conducted to determine heavy metal uptake by Lolium multiflorum and Lactuca sativa var. crispa in untreated and limed red lead paint contaminated soils. Concentrations of Pb and Zn in the pylon soils were elevated with maximum values of 783 mg Pb kg−1 and 635 Zn mg kg−1 while the soil Cd content was similar to nearby reference soils. The pylon soils were characterized by exceptionally high proportions of NH4NO3-extractable Pb reaching up to 17% of total Pb. Even if the relatively low pH of the soils is considered (pH 4.3–4.9), this appears to be a specific feature of the red lead contamination since similarly contaminated urban soils have to be acidified to pH 2.5 to achieve a similarly high Pb extractability. The Pb content in L. multiflorum shoots reached maximum values of 73 mg kg−1 after a cultivation time of 4 weeks in pylon soil. Lime amendment reduced the plant uptake of Pb and Zn significantly by up to 91%. But L. sativa var. crispa cultivated on soils limed to neutral pH still contained critical Pb concentrations (up to 0.6 mg kg−1 fresh weight). Possible mechanisms for the exceptionally high plant availability of soil Pb derived from red lead paint are discussed.  相似文献   

8.
《Soil biology & biochemistry》2001,33(7-8):1077-1093
We studied soil moisture dynamics and nitrous oxide (N2O) fluxes from agricultural soils in the humid tropics of Costa Rica. Using a split-plot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter content, water retention capacity, and hydraulic conductivity. The top 2–3 cm of the soils consists of distinct small aggregates (dia. <0.5 cm). We measured a strong gradient of bulk density and moisture within the top 7 cm of the clay soil. Using automated sampling and analysis systems we measured N2O emissions at 4.6 h intervals, meteorological variables, soil moisture, and temperature at 0.5 h intervals. Mean daily soil moisture content at 5 cm depth ranged from 46% water filled pore space (WFPS) on clay in April 1995 to near saturation on loam during a wet period in February 1996. On both soils the aggregated surface layer always remained unsaturated. Soils emitted N2O throughout the year. Mean N2O fluxes were 1.04±0.72 ng N2O-N cm−2 h−1 (mean±standard deviation) from unfertilized loam under annual crops compared to 3.54±4.31 ng N2O-N cm−2 h−1 from the fertilized plot (351 days measurement). Fertilization dominated the temporal variation of N2O emissions. Generally fluxes peaked shortly after fertilization and were increased for up to 6 weeks (‘post fertilization flux’). Emissions continued at a lower rate (‘background flux’) after fertilization effects faded. Mean post-fertilization fluxes were 6.3±6.5 ng N2O-N cm−2 h−1 while the background flux rate was 2.2±1.8 ng N2O-N cm−2 h−1. Soil moisture dynamics affected N2O emissions. Post fertilization fluxes were highest from wet soils; fluxes from relatively dry soils increased only after rain events. N2O emissions were weakly affected by soil moisture during phases of low N availability. Statistical modeling confirmed N availability and soil moisture as the major controls on N2O flux. Our data suggest that small-scale differences in soil structure and moisture content cause very different biogeochemical environments within the top 7 cm of soils, which is important for net N2O fluxes from soils.  相似文献   

9.
Nitric oxide (NO) plays a central role in the formation of tropospheric ozone, hydroxyl radicals, as well as nitrous and nitric acids. There are, however, large uncertainties around estimates of global NO emissions due to the paucity of data. In particular, there is little information on the rate of NO emission and its sensitivity to processes such as land use changes in dry environments. Here we report on a two-year study on the influence of afforestation on soil NO fluxes in the semi-arid afforestation system in Southern Israel (Yatir forest, mean annual precipitation ∼280 mm). Laboratory incubations were carried out under seasonally defined conditions of soil moisture and temperature using soils sampled in different seasons from the native shrubland (taken both under shrub canopy and in the inter-shrub areas), and from the adjacent ∼2800 ha, 40-year-old pine afforestation site. Combining laboratory results with field measurements of soil moisture and temperature, we up-scaled soil-atmosphere NO fluxes to the ecosystem level. The different microsites differed in their annual mean NO release rates (0.04, 0.14 and 0.03 mg m−2 d−1 for the shrubland under and between shrubs and for the forest, respectively), and exhibited high inter-seasonal variability in NO emission rates (ranging from zero up to 0.25 mg m−2 d−1 in the wet and dry-rewetting seasons, respectively), as well as in temperature responses. Up-scaling results to annual and ecosystem scales indicated that afforestation of the semi-arid shrubland could reduce soil NO emission by up to 65%.  相似文献   

10.
The impact of land‐use intensity is evaluated through changes in the soil properties in different areas of the traditional central Spanish landscape. Soil organic carbon (SOC) content, bulk density, aggregate stability and water‐holding capacity (WHC) in the topsoil of active and abandoned vineyards, livestock routes (LR) and young Quercus afforested areas were analysed. These different types of land use can be interpreted as having a gradient of progressively less impact on soil functions or conservation. As soil use intensity declines, there is an increase in SOC content (from 0.2 to 0.6%), WHC (from 0.2 to 0.3 g H2O per g soil) and aggregate stability (from 4 to 33 drop impacts). Soils beneath vines have lost their upper horizon (15 cm depth) because of centuries‐old tillage management of vineyards. Except for an increase in bulk density (from 1.2 to 1.4 g/cm3), there were no differences in soil characteristics 4 yr after the abandonment of vine management. LR can be considered sustainable uses of land, which preserve or improve soil characteristics, as there were no significant differences between topsoil from LR and that from a 40‐yr‐old Quercus afforested area. SOC content, one of the main indicators for soil conservation, is considered very low in every case analysed, even in the more conservative uses of land. These data can be useful in understanding the slow rate of recovery of soils, even after long‐term cessation of agricultural land use.  相似文献   

11.
Francisco L. Prez 《CATENA》2009,76(3):191-205
The influence of tephra covers on soil water was studied in Haleakala (Maui, Hawai'i) during two summers; eight sites with tephra layers and silverswords (Argyroxiphium sandwicense DC.) were sampled at 2415–2755 m. At each site, eight paired-sample sets were obtained in bare soils and under adjacent tephra, at three depths. Tephra were sharply separated from underlying soils and showed prominent vertical stratification. Tephra clast size-distribution was assessed by photosieving and on interstitial-gravel samples; stones included 45.6% cobbles, 29.4% pebbles, and 25% blocks.Moisture content increased with depth in both positions, but soils below tephra had more water at all depths than exposed areas. Surface soils beneath tephra contained 83% more water than bare ground. Soils at 5–10 cm had  106% greater moisture under rocks, but only  70% at 10–15 cm. Differences between plots were statistically significant ( p < 0.001) for surface soils, but less pronounced for subsoils. Soils above 2650 m had greater water content than at lower elevations, and moisture disparity between sample pairs increased with altitude.All soils were coarse, with  20% gravel and  94% sand; most fine material (≤ 0.063 mm) was silt, as clay content was negligible. Organic-matter percentage was low (1.65%). Bulk density and porosity were associated with moisture variation both in tephra-insulated and bare soils; 80% of field moisture was statistically (p < 0.001) accounted for by pore space. Air and soil temperatures were recorded at three sites during  one-week periods prior to moisture sampling. Tephra substantially decreased soil maxima and daily thermal amplitude in underlying soils, but did not noticeably affect nightly minima. Thin (5–6 cm) tephra layers were nearly as effective as thicker (9–15 cm) deposits in depressing soil maxima. Possible water-conservation mechanisms under tephra include: decreased evaporation due to ground shielding and lower maxima; reduced capillary flow; greater infiltration depth; nocturnal dew condensation; and fog interception by blocks.  相似文献   

12.
Summary The relationship between phosphatase activity and soil was studied in 14 mounds and adjacent control soils of plant debris-feeding termites from a Venezuelan savanna. The soils were assayed for acid phosphatase activity with p-nitrophenyl phosphate as substrate and for the effect of inorganic P (300 g P g–1). The proportion of organic matter in the mounds was four times that found in topsoils, indicating strong selection by the termites for organic-rich soil fractions. A comparison of phosphatase activities found no difference between mounds and adjacent soils. It seems possible that the expected increase of enzyme activity in mounds, due to a higher C content, was counteracted by enzyme inhibition due to higher levels of available inorganic P in the mounds. Addition of inorganic P to soil and mound material reduced enzyme activities by 10%–45%, but after a 2-day incubation period differences between the treated soil and the control tended to disappear.  相似文献   

13.
Indigenous soil microorganisms contribute to disease suppression in cropping systems by reducing and competing with pathogen populations, thereby limiting disease severity. Various communities of indigenous microorganisms in any particular soil have adapted to the specific environmental conditions. If the soil around the plant roots could be altered to favor the indigenous soil microorganisms relative to the plant pathogen, the survival and proliferation of indigenous soil microorganisms, and thus effectiveness of biological control, may be increased. Wood chippolyacrylamide (PAM) cores were used to alter the soil environment in a greenhouse study to favor indigenous soil microorganisms in vegetable and manure compost to reduce Verticillium dahliae infection of potato (Solanum tuberosum L.) plants. Potato plants growing in soils amended with vegetable compost-wood chip-PAM cores had significantly lower visible (Vvis) and isolation (Viso) V. dahliae infection rates than control soils and soils with dairy or vegetable compost alone. Soils amended with wood chip-PAM-dairy compost cores had significantly lower Vvis and isolation Viso than control soils and soils with dairy compost. Soils with wood chip-PAM cores and soils with wood chip-PAM-vegetable compost had greater microbial biomass/Verticillium dahliae biomass (MB/VB) ratios in soil than control soils or in soils amended with compost alone. MB/VB ratios in wood chip-PAM cores and wood chip- PAM-vegetable compost were greater than in wood chip-PAM-dairy compost cores. Vvis correlated in a quadratic relationship with the MB/VB ratio (r2=0.76). As MB/VB ratio increased Vvis decreased. Although field studies with several crops and economic evaluations are necessary, this greenhouse study provides evidence that a wood chip-PAM or wood chip- PAM-vegetable compost soil amendment may be a viable method to control some soil diseases in high value crops.  相似文献   

14.
Growth and symbiotic activity of legumes are reduced by high soil compaction and mediated by Nod factors (LCO, lipo-chitooligosaccharides) application. Our objective was to assess the combined effects of soil compaction and Nod factors application on growth and symbiotic activity of pea. The experiment was two factorial and included soil compaction (1.30 g cm−3 – not compacted (control) and 1.55 g cm−3 – compacted soil), and Nod factors concentration (control without addition of Nod factors and use of 260 nM Nod solution) for each soil compaction. The soil (Haplic Luvisol) was packed into pots, pea (Pisum sativum L.) seeds were soaked with Nod factors solution or water and then plants were grown for 46 days. This study has shown that soil compaction and treatments of pea seeds with Nod factors influenced pea growth and symbiotic activity. Soil compaction significantly reduced pea growth parameters, namely plant height, dry mass, leaf area, root mass and root length and symbiotic parameters, namely mass of nodules, dry mass of an individual nodule, nitrogenase activity and total nitrogen content in plant in comparison to the non-compacted treatment. Treatment of seeds with Nod factors generally improved nearly all of the above parameters. Nitrogenase activity per pot and total plant nitrogen content were significantly reduced by soil compaction and increased by application of Nod factors in plants grown in not compacted soil. Our results demonstrate that increased symbiotic activity resulting from Nod factors addition may mitigate adverse effect of soil compaction on plant growth.  相似文献   

15.
Methane oxidation in aerated soils is a significant sink for atmospheric methane (CH4). Salt-affected soils are extensively present and constitute about 7% of total land surface. However, our knowledge about CH4 turnover between the atmosphere and the saline soils is very limited. In order to evaluate the potential of CH4 consumption in saline soils, CH4 fluxes were measured in intact cores of the slightly (ECe = 3.2 mS cm−1), moderately (ECe = 7.1 mS cm−1) and extremely (ECe = 50.7 mS cm−1 and 112.6 mS cm−1) saline soils from the Yellow River Delta, China. CH4 uptake of cores from the slightly saline soil ranged from 14 to 24 μg CH4-C m−2 h−1, comparable to those in the non-saline forest soils with similar texture. CH4 uptake of cores from the moderately saline soil was only about 6% of that in the slightly saline soil. CH4 uptake was too low to be measurable in the extremely saline soil. Compared with the non-saline soil, CH4 uptake in the saline soils was much less sensitive to salt, suggesting the higher salt-tolerance of CH4 oxidizers in the saline soil. The result also indicated an underestimate in CH4 uptake for the naturally-occurring saline soils by adding salt to non-saline soils. These results should be useful to study the global CH4 budget and to explore the physiological and ecological characteristics of methanotrophic bacteria in the salt-affected soils.  相似文献   

16.
Effects of large-scale weed invasion on the nature and magnitude of moisture-pulse-driven soil processes in semiarid ecosystems are not clearly understood. The objective of this study was to monitor carbon dioxide (CO2) and nitrous oxide (N2O) emissions and changes in soil carbon (C) and nitrogen (N) following the application of a water pulse in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) communities dominated by the exotic annual grass cheatgrass (Bromus tectorum) and by the native perennial grass western wheatgrass (Pascopyrum smithii). Sampling locations were established in shrub interspaces dominated by B. tectorum and P. smithi and beneath shrub canopies adjacent to interspaces dominated by B. tectorum and P. smithi, where no grass was present. Soils were classified as fine-loamy, mixed, Borollic Haplargids. Soil samples (0–10 cm) and air samples were collected at 0, 4, 8, 24, 49, 72, and 216 h following additions of 25.4 mm of water. Soil samples were analyzed for dissolved organic carbon (DOC), microbial biomass carbon (MBC), extractable ammonia (NH4+), extractable nitrate (NO3?), and dissolved organic nitrogen (DON). Grass species induced differences in soil nitrification, N2O and CO2 emissions, and the quantity and timing of labile C available to microbial populations responding to increased moisture availability. In the first 8-h phase after wetting P. smithii soils had the greatest CO2 emissions compared to other soils but B. tectorum soils had the greatest N2O emissions and the greatest increases in CO2 emissions relative to before wetting. Microbial biomass C in B. tectorum interspace soils increased rapidly but the response was short-lived despite sufficient water availability. After the first 8 h of soil response to wetting, the observed MBC declines in B. tectorum interspace coincided with disproportional DOC and DON concentration increases. Similar DOC and DON increases were also observed in B. tectorum soils beneath shrub canopy. In contrast, DOC and DON concentrations in P. smithii soils remained unaffected by soil wetting and small MBC increases observed during the first 8-h phase did not decline as rapidly as in B. tectorum interspace soils. In conclusion, summer drying-wetting cycles that occur frequently in areas invaded by B. tectorum can accelerate rates of nitrification and C mineralization, and contribute significantly to trace gas emissions from sagebrush-steppe grasslands. With frequent summer rainfall events, the negative consequences B. tectorum presence in the ecosystem can be significant.  相似文献   

17.
Chen  Li  Zeng  Chao  Wang  Dan  Yang  Jin-yan 《Journal of Soils and Sediments》2020,20(4):1931-1942
Purpose

Combining biodegradable chelating agents with phytoextraction is an efficient technique to amend metal-contaminated soils, but most studies have addressed remediation efficiency rather than a comprehensive understanding of the interactions among plant stress, metal accumulation, and metal bioavailability. This study aimed to investigate the effects of biodegradable chelating agents on improving the efficiency of phytoextraction for cobalt (Co)-contaminated soil by sweet alyssum (Lobularia maritima (L.)) and to explore the interrelationships among plant stress, Co accumulation, and Co bioavailability.

Materials and methods

Sweet alyssum (three plants per pot) was grown in pots containing soil with Co added at 0, 40, and 60 mg kg?1, respectively. After 70 days of growth, we added four biodegradable chelating agents (EDDS, NTA, CA, and OA) at various concentrations (0, 2.5, 5.0, and 7.5 mmol kg?1). The plants were harvested after 7 days, and the biomass, reactive oxygen species (ROS) parameters, Co concentrations of the shoot and root, and available Co content in the soil were analyzed.

Results and discussion

The results demonstrate that chelating agents significantly (p?<?0.05) improved the phytoextraction capability of sweet alyssum and influenced plant growth and stress. The capability of EDDS to activate Co was higher than that of other chelating agents at identical concentrations in Co-contaminated soils. Furthermore, we observed that a moderate concentration (40 mg kg?1) of Co could promote plant growth and that high concentrations of Co (60 mg kg?1) and EDDS (7.5 mmol kg?1) cause enhanced stress to plant growth, even resulting in lower shoot Co accumulation than that in the moderate EDDS treatment (5.0 mmol kg?1).

Conclusions

The present study demonstrates that the application of EDDS may be a better choice for Co phytoextraction than NTA, CA, and OA; nevertheless, a high concentration of EDDS may enhance the negative effects on plant growth, physiological traits, and Co accumulation.

  相似文献   

18.
Though microbial activity is known to occur in frozen soils, little is known about the fate of animal manure N applied in the fall to agricultural soils located in areas with prolonged winter periods. Our objective was to examine transformations of soil and pig slurry N at low temperatures. Loamy and clay soils were either unamended (Control), amended with 15NH4-labeled pig slurry, or amended with the pig slurry and wheat straw. Soils were incubated at −6, −2, 2, 6, and 10 °C. The amounts of NH4, NO3 and microbial biomass N (MBN), and the presence of 15N in these pools were monitored. Total mineral N, NO3 and 15NO3 increased at temperature down to −2 °C in the loam soil and −6 °C in the clay soil, indicating that nitrification and mineralization proceeded in frozen soils. Nitrification and mineralization rates were 1.8-4.9 times higher in the clay than in the loamy soil, especially below freezing point (3.2-4.9), possibly because more unfrozen water remained in the clay than in the loamy soil. Slurry addition increased nitrification rates by 3-14 times at all temperatures, indicating that this process was N-limited even in frozen soils. Straw incorporation caused significant net N immobilization only at temperatures ≥2 °C in both soils; the rates were 1.4-3.4 higher in the loam than in the clay soil. Nevertheless, up to 30% of the applied 15N was present in MBN at all temperatures. These findings indicate that microbial N immobilization occurred in frozen soils, but was not strong enough to induce net immobilization below the freezing point, even in the presence of straw. The Q10 values for estimated mineralization and nitrification rates were one to two orders-of-magnitude larger below 2 °C than above this temperature (13-208 versus 1.5-6.9, respectively), indicating that these processes are highly sensitive to a small increase in soil temperature around the freezing point of water. This study confirms that net mineralization and nitrification can occur at potentially significant rates in frozen agricultural soils, especially in the presence of organic amendments. In contrast, net N immobilization could be detected essentially above the freezing point. Our results imply that fall-applied N could be at risk of overwinter losses, particularly in fine-textured soils.  相似文献   

19.
Arbuscular mycorrhizal fungus (AMF) can enhance plant growth and resistance to toxicity produced by heavy metals (HMs), affect the bioavailability of HMs in soil and the uptake of HMs by plants, and thus has been emerged as the most prominent symbiotic fungus for contribution to phytoremediation. A greenhouse pot experiment was conducted to assess the effect of Glomus versiforme BGC GD01C (Gv) on the growth and Cd accumulation of Cd-hyperaccumulator Solanum nigrum in different Cd-added soils (0, 25, 50, 100 mg Cd kg−1 soil). Mycorrhizal colonization rates were generally high (from 71% to 82%) in Gv-inoculated treatments at all Cd levels. Gv colonization enhanced soil acid phosphatase activity, and hence elevated P acquisition and growth of S. nigrum at all Cd levels. Moreover, the presence of Gv significantly increased DTPA-extractable (phytoavailable) Cd concentrations in 25 and 50 mg Cd kg−1 soils, but did not affect phytoavailable Cd in 100 mg Cd kg−1 soil. Similarly, inoculation with Gv significantly increased Cd concentrations of S. nigrum in 25 and 50 mg Cd kg−1 soils, but decreased Cd concentrations of the plants in 100 mg Cd kg−1 soil. Overall, inoculation with Gv greatly improved the total Cd uptakes in all plant tissues at all Cd levels. The present results indicated that S. nigrum associated with Gv effectively improved the Cd uptake by plant and would be a new strategy in microbe-assisted phytoremediation for Cd-contaminated soils.  相似文献   

20.
Copper (Cu) is an essential trace element for all living organisms; however, excess amounts in soil, plants, and food have negative impacts on the environment and human health. The aim of this study was to determine Cu levels in different chemical phases of soils and the relationship between Cu levels in soil phases and concentrations in plants. Soils and plants grown in these soils from an industrialized area in Turkey were analyzed using a selective and four-stage sequential extraction procedure. Copper levels in exchangeable fractions were found up to 658 mg kg?1 while total levels were in the range of 133–5609 mg kg?1. Copper concentrations in plant parts (roots and stem) were in the range of 2.6–240 mg kg?1. The exchangeable forms of Cu were in the range of 3–22% of total Cu concentrations. The relationships were observed between soil Cu and Rumex plant Cu, and soil Cu and root of Brassicasea plant Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号